Skip to main content

Virtual Electrode Theory of Pacing

  • Chapter
  • First Online:
Cardiac Bioelectric Therapy

Abstract

Twenty years of optical mapping of cardiac electrical activity and mathematical modeling of the cardiac bidomain have provided insight into the basic mechanisms by which electric fields interact with cardiac tissue. We review this research, focusing on our own work on virtual electrodes and cardiac stimulation, which began with observations of adjacent regions of depolarization and hyperpolarization (virtual electrodes) during unipolar stimulation. We describe how this phenomenon leads to break excitation and quatrefoil reentry, controls the shape of the strength-interval curve, is affected by electrical heterogeneities and boundaries, and ultimately provides a foundation for our understanding of cardiac defibrillation. The collective work on the cardiac bidomain provides a strong and well-validated foundation for our understanding of cardiac pacing, magnetocardiography, and defibrillation, and will help usher in a new era of studies on the interactions between membrane potential, calcium, and mechanical deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jeffrey K. Machines in our hearts: the cardiac pacemaker, the implantable defibrillator, and American health care. Baltimore: Johns Hopkins University Press; 2001.

    Google Scholar 

  2. Rosenbaum DS, Jalife J. In: Rosenbaum DS, Jalife J, editors. Optical mapping of cardiac excitation and arrhythmias. Armonk: Futura; 2001.

    Google Scholar 

  3. Henriquez CS. Simulating the electrical behavior of cardiac tissue using the bidomain model. Crit Rev Biomed Eng. 1993;21(1):1–77.

    CAS  PubMed  Google Scholar 

  4. Zipes DP, Jalife J, Stevenson WG. Cardiac electrophysiology: from cell to bedside. 7th ed. Amsterdam: Elsevier; 2017.

    Google Scholar 

  5. Rantner LJ, Tice BM, Trayanova NA. Terminating ventricular tachyarrhythmias using far-field low-voltage stimuli: mechanisms and delivery protocols. Heart Rhythm. 2013;10(8):1209–17.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bishop MJ, Plank G, Vigmond E. Investigating the role of the coronary vasculature in the mechanisms of defibrillation. Circ Arrhythm Electrophysiol. 2012;5(1):210–9.

    Article  PubMed  Google Scholar 

  7. Neu JC, Krassowska W. Homogenization of syncytial tissues. Crit Rev Biomed Eng. 1993;21(2):137–99.

    CAS  PubMed  Google Scholar 

  8. Roth BJ. Mechanisms for electrical stimulation of excitable tissue. Crit Rev Biomed Eng. 1994;22(3/4):253–305.

    CAS  PubMed  Google Scholar 

  9. Roth BJ. Artifacts, assumptions, and ambiguity: pitfalls in comparing experimental results to numerical simulations when studying electrical stimulation. Chaos. 2002;12(3):973–81.

    Article  PubMed  Google Scholar 

  10. Schmitt OH. Biological information processing using the concept of interpenetrating domains. In: Leibovic KN, editor. Information processing in the nervous system. New York: Springer-Verlag; 1969. p. 325–31.

    Google Scholar 

  11. Muler AL, Markin VS. Electrical properties of anisotropic nerve-muscle syncytia – I. Distribution of the electrotonic potential. Biofizika. 1977;22(2):307–12.

    CAS  PubMed  Google Scholar 

  12. Miller WT III, Geselowitz DB. Simulation studies of the electrocardiogram. I. The normal heart. Circ Res. 1978;43(2):301–15.

    Google Scholar 

  13. Tung L. A bi-domain model for describing ischemic myocardial D-C potentials [PhD Dissertation, Electrical Engineering and Computer Science]. Massachusetts Institute of Technology; 1978.

    Google Scholar 

  14. Geselowitz DB, Miller WT III. A bidomain model for anisotropic cardiac muscle. Ann Biomed Eng. 1983;11(3–4):191–206.

    Article  CAS  PubMed  Google Scholar 

  15. Plonsey R, Barr RC. Current flow patterns in two-dimensional anisotropic bisyncytia with normal and extreme conductivities. Biophys J. 1984;45:557–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Barr RC, Plonsey R. Propagation of excitation in idealized anisotropic two-dimensional tissue. Biophys J. 1984;45:1191–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Roth BJ, Wikswo JP Jr. A bidomain model for the extracellular potential and magnetic field of cardiac tissue. IEEE Trans Biomed Eng. 1986;BME-33(4):467–9.

    Article  Google Scholar 

  18. Plonsey R, Barr RC. Interstitial potentials and their change with depth into cardiac tissue. Biophys J. 1987;51:547–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sepulveda NG, Wikswo JP Jr. Electric and magnetic fields from two-dimensional anisotropic bisyncytia. Biophys J. 1987;51:557–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Henriquez CS, Trayanova NA, Plonsey R. Potential and current distributions in a cylindrical bundle of cardiac tissue. Biophys J. 1988;53:907–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sepulveda NG, Roth BJ, Wikswo JP Jr. Current injection into a two-dimensional anisotropic bidomain. Biophys J. 1989;55:987–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dillon SM. Optical recordings in the rabbit heart show that defibrillation strength shocks prolong the duration of depolarization and the refractory period. Cardiovasc Res. 1991;69(3):842–56.

    CAS  Google Scholar 

  23. Knisley SB, Hill BC. Optical recordings of the effect of electrical stimulation on action potential repolarization and the induction of reentry in two-dimensional perfused rabbit epicardium. Circulation. 1993;88(Part I):2402–14.

    Google Scholar 

  24. Bajaj AK, Kopelman HA, Wikswo JP Jr, Cassidy F, Woosley RL, Roden DM. Frequency- and orientation-dependent effects of mexiletine and quinidine on conduction in the intact dog heart. Circulation. 1987;75(5):1065–73.

    Article  CAS  PubMed  Google Scholar 

  25. Wikswo JP Jr, Wisialowski TA, Altemeier WA, Balser JR, Kopelman HA, Roden DM. Virtual cathode effects during stimulation of cardiac muscle: two-dimensional in-vivo measurements. Circ Res. 1991;68:513–30.

    Google Scholar 

  26. Wiederholt WC. Threshold and conduction velocity in isolated mixed mammalian nerves. Neurology. 1970;20:347–52.

    Article  CAS  PubMed  Google Scholar 

  27. Cummins KL, Dorfman LJ, Perkel DH. Nerve-fiber conduction-velocity distributions. 2. Estimation based on 2 compound action potentials. Electroencephalogr Clin Neurophysiol. 1979;46(6):647–58.

    Article  CAS  PubMed  Google Scholar 

  28. Rattay F. Analysis of models for extracellular fiber stimulation. IEEE Trans Biomed Eng. 1989;36(7):676–82.

    Article  CAS  PubMed  Google Scholar 

  29. Sobie EA, Susil RC, Tung L. A generalized activating function for predicting virtual electrodes in cardiac tissue. Biophys J. 1997;73:1410–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Terman FE, Helliwell RA, Pettit JM, Watkins DA, Rambo WR. Electronic and radio engineering. New York: McGraw Hill; 1955. 191 p.

    Google Scholar 

  31. Furman S, Hurzeler P, Parker B. Clinical thresholds of endocardial cardiac stimulation: a long-term study. J Surg Res. 1975;19(3):149–55.

    Article  CAS  PubMed  Google Scholar 

  32. Goto M, Brooks CM. Membrane excitability of the frog ventricle examined by long pulses. Am J Physiol. 1969;217(4):1236–45.

    Google Scholar 

  33. Hoshi T, Matsuda K. Excitability cycle of cardiac muscle examined by intracellular stimulation. Jpn J Physiol. 1962;12(4):433–46.

    Article  CAS  PubMed  Google Scholar 

  34. Hoffman BF, Cranefield PF. Excitability. Electrophysiology of the heart. New York: McGraw-Hill; 1960. p. 211–56.

    Google Scholar 

  35. Roth BJ. How the anisotropy of intracellular and extracellular conductivities influences stimulation of cardiac muscle. J Math Biol. 1992;30(6):633–46.

    Article  CAS  PubMed  Google Scholar 

  36. Roth BJ. Approximate analytical solutions to the bidomain equations with unequal anisotropy ratios. Phys Rev E. 1997;55(2):1819–26.

    Article  CAS  Google Scholar 

  37. Knisley SB. Transmembrane voltage changes during unipolar stimulation of rabbit ventricle. Circ Res. 1995;77:1229–39.

    Article  CAS  PubMed  Google Scholar 

  38. Neunlist M, Tung L. Spatial distribution of cardiac transmembrane potentials around an extracellular electrode: dependence on fiber orientation. Biophys J. 1995;68(6):2310–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wikswo JP Jr, Lin SF, Abbas RA. Virtual electrodes in cardiac tissue: a common mechanism for anodal and cathodal stimulation. Biophys J. 1995;69(6):2195–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sepulveda NG, Wikswo JP Jr. Bipolar stimulation of cardiac tissue using an anisotropic bidomain model. J Cardiovasc Electrophysiol. 1994;5(3):258–67.

    Google Scholar 

  41. Galappaththige SK, Gray RA, Roth BJ. Modeling bipolar stimulation of cardiac tissue. Chaos. 2017;27(9):093920.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Muzikant AL, Henriquez CS. Bipolar stimulation of a three-dimensional bidomain incorporating rotational anisotropy. IEEE Trans Biomed Eng. 1998;45(4):449–62.

    Article  CAS  PubMed  Google Scholar 

  43. Dekker E. Direct current make and break thresholds for pacemaker electrodes on the canine ventricle. Circ Res. 1970;27:811–23.

    Article  CAS  PubMed  Google Scholar 

  44. Lindemans FW, Heetharr RM, Denier Van der Gon JJ, Zimmerman ANE. Site of initial excitation and current threshold as a function of electrode radius in heart muscle. Cardiovasc Res. 1975;9:95–104.

    Article  CAS  PubMed  Google Scholar 

  45. Ehara T. Rectifier properties of canine papillary muscle. Jpn J Physiol. 1971;21:49–69.

    Article  CAS  PubMed  Google Scholar 

  46. Roth BJ. A mathematical model of make and break electrical stimulation of cardiac tissue by a unipolar anode or cathode. IEEE Trans Biomed Eng. 1995;42(12):1174–84.

    Article  CAS  PubMed  Google Scholar 

  47. Roth BJ. Nonsustained reentry following successive stimulation of cardiac tissue through a unipolar electrode. J Cardiovasc Electrophysiol. 1997;8:768–78.

    Article  CAS  PubMed  Google Scholar 

  48. Sidorov VY, Woods MC, Wikswo JP. Effects of elevated extracellular potassium on the stimulation mechanism of diastolic cardiac tissue. Biophys J. 2003;84(5):3470–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sidorov VY, Woods MC, Baudenbacher P, Baudenbacher F. Examination of stimulation mechanism and strength-interval curve in cardiac tissue. Am J Physiol Heart Circ Physiol. 2005;289(6):H2602–H15.

    Article  CAS  PubMed  Google Scholar 

  50. Roth BJ, Patel SG. Effects of elevated extracellular potassium ion concentration on anodal excitation of cardiac tissue. J Cardiovasc Electrophysiol. 2003;14(12):1351–5.

    Article  PubMed  Google Scholar 

  51. Nikolski VP, Sambelashvili AT, Efimov IR. Mechanisms of make and break excitation revisited: paradoxical break excitation during diastolic stimulation. Am J Physiol Heart Circ Physiol. 2002;282(2):H565–H75.

    Article  CAS  PubMed  Google Scholar 

  52. Nikolski VP, Sambelashvili AT, Efimov IR. Anode break excitation during end-diastolic stimulation is explained by half-cell double layer discharge. IEEE Trans Biomed Eng. 2002;49(10):1217–20.

    Article  PubMed  Google Scholar 

  53. Ranjan R, Chiamvimonvat N, Thakor NV, Tomaselli GF, Marban E. Mechanism of anode break stimulation in the heart. Biophys J. 1998;74:1850–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ranjan R, Tomaselli GF, Marban E. A novel mechanism of anode-break stimulation predicted by bidomain modeling. Circ Res. 1999;84(2):153–6.

    Article  CAS  PubMed  Google Scholar 

  55. Roth BJ, Chen J. Mechanism of anode break excitation in the heart: the relative influence of membrane and electrotonic factors. J Biol Syst. 1999;7(4):541–52.

    Article  Google Scholar 

  56. Kandel SM, Roth BJ. Intracellular calcium and the mechanism of the dip in the anodal strength-interval curve in cardiac tissue. Circ J. 2014;78(5):1127–35.

    Article  PubMed  PubMed Central  Google Scholar 

  57. van Dam RT, Durrer D, Strackee J, van der Twell LH. The excitability cycle of the dog's left ventricle determined by anodal, carthodal and bipolar stimulation. Cardiovasc Res. 1956;4:196–204.

    Google Scholar 

  58. Cranefield PF, Hoffman BF, Siebens AA. Anodal excitation of cardiac muscle. Am J Physiol. 1957;190(2):383–90.

    Google Scholar 

  59. Roth BJ. Strength-interval curves for cardiac tissue predicted using the bidomain model. J Cardiovasc Electrophysiol. 1996;7:722–37.

    Article  CAS  PubMed  Google Scholar 

  60. Kandel SM, Roth BJ. The strength-interval curve in cardiac tissue. Comput Math Methods Med. 2013;2013:134163.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Galappaththige SK, Gray RA, Roth BJ. Cardiac strength-interval curves calculated using a bidomain tissue with a parsimonious ionic current. PLoS One. 2017;12(2):e0171144.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Rodriguez B, Tice BM, Eason JC, Aguel F, Trayanova N. Cardiac vulnerability to electric shocks during phase 1A of acute global ischemia. Heart Rhythm. 2004;1(6):695–703.

    Article  PubMed  Google Scholar 

  63. Bray M-A, Roth BJ. The effect of electroporation on the strength-interval curve during unipolar stimulation of cardiac tissue. 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Oct 30 – Nov 2, 1997. p. 15–8.

    Google Scholar 

  64. Janks DL, Roth BJ. The bidomain theory of pacing. In: Efimov I, Ng FS, Laughner JI, editors. Cardiac bioelectric therapy: mechanisms and practical implications. 2nd ed. New York: Springer; 2021.

    Google Scholar 

  65. Mehra R, McMullen M, Furman S. Time-dependence of unipolar cathodal and anodal strength-interval curves. Pacing Clin Electrophysiol. 1980;3(5):526–30.

    Article  CAS  PubMed  Google Scholar 

  66. Bennett JA, Roth BJ. Time dependence of anodal and cathodal refractory periods in cardiac tissue. Pacing Clin Electrophysiol. 1999;22(7):1031–8.

    Article  CAS  PubMed  Google Scholar 

  67. El-Sherif N, Mehra R, Gough WB, Zeiler RH. Reentrant ventricular arrhythmias in the late myocardial infarction period. Circulation. 1983;68(3):644–56.

    Article  CAS  PubMed  Google Scholar 

  68. Davidenko JM, Pertsov AM, Salomonsz R, Baxter W, Jalife J. Stationary and drifting spiral waves of excitation in isolated cardiac muscle. Nature. 1992;355:349–51.

    Article  CAS  PubMed  Google Scholar 

  69. Pertsov AM, Davidenko JM, Salomonsz R, Baxter W, Jalife J. Spiral waves of excitation underlie reentrant activity in isolated cardiac muscle. Cardiovasc Res. 1993;72(3):631–50.

    CAS  Google Scholar 

  70. Gray RA, Jalife J, Panfilov AV, Baxter WT, Cabo C, Davidenko JM, et al. Nonstationary vortexlike reentrant activity as a mechanism of polymorphic ventricular tachycardia in the isolated rabbit heart. Circulation. 1995;91(9):2454–69.

    Article  CAS  PubMed  Google Scholar 

  71. Gray RA, Jalife J, Panfilov AV, Baxter WT, Cabo C, Davidenko JM, et al. Mechanisms of cardiac fibrillation. Science. 1995;270:1222–5.

    Article  CAS  PubMed  Google Scholar 

  72. Frazier DW, Wolf PD, Wharton JM, Tang ASL, Smith WM, Ideker RE. Stimulus-induced critical point: mechanism for electrical initiation of reentry in normal canine myocardium. J Clin Invest. 1989;83(3):1039–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Winfree AT. When time breaks down: the three-dimensional dynamics of electrochemical waves and cardiac arrhythmias. Princeton: Princeton University Press; 1987.

    Google Scholar 

  74. Shibata N, Chen P-S, Dixon EG, Wolf PD, Danieley ND, Smith WM, et al. Influence of shock strength and timing on induction of ventricular arrhythmias in dogs. Am J Physiol Heart Circ Physiol. 1988;255(4 (pt.2)):H891–H901.

    Article  CAS  Google Scholar 

  75. Matta RJ, Verrier RL, Lown B. Repetitive extrasystole as an index of vulnerability to ventricular fibrillation. Am J Physiol. 1976;230(6):1469–73.

    Google Scholar 

  76. Winfree AT. Ventricular reentry in three dimensions. In: Zipes DP, Jalife J, editors. Cardiac electrophysiology: from cell to bedside. Philadelphia: W.B. Saunders Co.; 1990. p. 224–34.

    Google Scholar 

  77. Saypol JM, Roth BJ. A mechanism for anisotropic reentry in electrically active tissue. J Cardiovasc Electrophysiol. 1992;3:558–66.

    Article  Google Scholar 

  78. Lin SF, Roth BJ, Wikswo JP Jr. Quatrefoil reentry in myocardium: an optical imaging study of the induction mechanism. J Cardiovasc Electrophysiol. 1999;10(4):574–86.

    Article  CAS  PubMed  Google Scholar 

  79. Sidorov VY, Aliev RR, Woods MC, Baudenbacher F, Baudenbacher P, Wikswo JP. Spatiotemporal dynamics of damped propagation in excitable cardiac tissue. Phys Rev Lett. 2003;91(20):208104.

    Article  PubMed  CAS  Google Scholar 

  80. Gotoh M, Uchida T, Mandel WJ, Fishbein MC, Chen P-S, Karagueuzian HS. Cellular graded responses and ventricular vulnerability to reentry by a premature stimulus in isolated canine ventricle. Circulation. 1997;95(8):2141–54.

    Article  CAS  PubMed  Google Scholar 

  81. Trayanova NA, Gray RA, Bourn DW, Eason JC. Virtual electrode-induced positive and negative graded responses: new insights into fibrillation induction and defibrillation. J Cardiovasc Electrophysiol. 2003;14(7):756–63.

    Article  PubMed  Google Scholar 

  82. Bray MA, Lin SF, Aliev RR, Roth BJ, Wikswo JP Jr. Experimental and theoretical analysis of phase singularity dynamics in cardiac tissue. J Cardiovasc Electrophysiol. 2001;12(6):716–22.

    Article  CAS  PubMed  Google Scholar 

  83. Bray MA, Wikswo JP Jr. Considerations in phase plane analysis for non-stationary reentrant cardiac behavior. Phys Rev E. 2002;65:051902.

    Article  CAS  Google Scholar 

  84. Bray MA, Wikswo JP. Interaction dynamics of a pair of vortex filament rings. Phys Rev Lett. 2003;90(23):238303.

    Article  PubMed  CAS  Google Scholar 

  85. Gray RA, Iyer A, Bray MA, Wikswo JP. Voltage-calcium state-space dynamics during initiation of reentry. Heart Rhythm. 2006;3(2):247–8.

    Article  PubMed  Google Scholar 

  86. Choi BR, Burton F, Salama G. Cytosolic Ca2+ triggers early afterdepolarizations and torsade de pointes in rabbit hearts with type 2 long QT syndrome. J Physiol. 2002;543(2):615–31.

    Google Scholar 

  87. Verrier RL, Brooks WW, Lown B. Protective zone and determination of vulnerability to ventricular-fibrillation. Am J Physiol. 1978;234(5):H592–H6.

    Google Scholar 

  88. Bonometti C, Hwang C, Hough D, Lee JJ, Fishbein MC, Karagueuzian HS, et al. Interaction between strong electrical stimulation and reentrant wavefronts in canine ventricular fibrillation. Circ Res. 1995;77:407–16.

    Article  CAS  PubMed  Google Scholar 

  89. Hwang C, Fan W, Chen PS. Recurrent appearance of protective zones after an unsuccessful defibrillation shock. Am J Physiol Heart Circ Physiol. 1996;40(4):H1491–H7.

    Article  Google Scholar 

  90. Hildebrandt MC, Roth BJ. Simulation of protective zones during quatrefoil reentry in cardiac tissue. J Cardiovasc Electrophysiol. 2001;12(9):1062–7.

    Article  CAS  PubMed  Google Scholar 

  91. Roth BJ. Art Winfree and the bidomain model of cardiac tissue. J Theor Biol. 2004;230(4):445–9.

    Article  PubMed  Google Scholar 

  92. Winfree AT. Various ways to make phase singularities by electric shock. J Cardiovasc Electrophysiol. 2000;11(3):286–9.

    Article  CAS  PubMed  Google Scholar 

  93. Winfree AT. The geometry of biological time. New York: Springer; 2001.

    Book  Google Scholar 

  94. Roth BJ. An S1 gradient of refractoriness is not essential for reentry induction by an S2 stimulus. IEEE Trans Biomed Eng. 2000;47(6):820–1.

    Article  CAS  PubMed  Google Scholar 

  95. Cheng YN, Nikolski V, Efimov IR. Reversal of repolarization gradient does not reverse the chirality of shock-induced reentry in the rabbit heart. J Cardiovasc Electrophysiol. 2000;11(9):998–1007.

    Article  CAS  PubMed  Google Scholar 

  96. Sidorov VY, Woods MC, Baudenbacher F. Cathodal stimulation in the recovery phase of a propagating planar wave in the rabbit heart reveals four stimulation mechanisms. J Physiol. 2007;583(1):237–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lindblom AE, Roth BJ, Trayanova NA. Role of virtual electrodes in arrhythmogenesis: pinwheel experiment revisited. J Cardiovasc Electrophysiol. 2000;11(3):274–85.

    Article  CAS  PubMed  Google Scholar 

  98. Lindblom AE, Aguel F, Trayanova NA. Virtual electrode polarization leads to reentry in the far field. J Cardiovasc Electrophysiol. 2001;12(8):946–56.

    Article  CAS  PubMed  Google Scholar 

  99. Roth BJ. The pinwheel experiment revisited. J Theor Biol. 1998;190:389–93.

    Article  CAS  PubMed  Google Scholar 

  100. Sambelashvili A, Efimov IR. The pinwheel experiment re-revisited. J Theor Biol. 2002;214(2):147–53.

    Article  PubMed  Google Scholar 

  101. Efimov IR, Aguel F, Cheng Y, Wollenzier B, Trayanova N. Virtual electrode polarization in the far field: implications for external defibrillation. Am J Physiol Heart Circ Physiol. 2000;279(3):H1055–H70.

    Article  CAS  PubMed  Google Scholar 

  102. Efimov IR, Cheng YN, Biermann M, VanWagoner DR, Mazgalev TN, Tchou PJ. Transmembrane voltage changes produced by real and virtual electrodes during monophasic defibrillation shock delivered by an implantable electrode. J Cardiovasc Electrophysiol. 1997;8(9):1031–45.

    Article  CAS  PubMed  Google Scholar 

  103. Efimov IR, Cheng Y, Van Wagoner DR, Mazgalev TN, Tchou PJ. Virtual electrode-induced phase singularity: a basic mechanism of defibrillation failure. Cardiovasc Res. 1998;82:918–25.

    Google Scholar 

  104. Cheng Y, Mowrey KA, Van Wagoner DR, Tchou PJ, Efimov IR. Virtual electrode-induced reexcitation: a mechanism of defibrillation. Circ Res. 1999;85:1056–66.

    Google Scholar 

  105. Efimov IR, Cheng Y, Yamanouchi Y, Tchou PJ. Direct evidence of the role of virtual electrode-induced phase singularity in success and failure of defibrillation. J Cardiovasc Electrophysiol. 2000;11(8):861–8.

    Article  CAS  PubMed  Google Scholar 

  106. Efimov IR, Gray RA, Roth BJ. Virtual electrodes and deexcitation: new insights into fibrillation induction and defibrillation. J Cardiovasc Electrophysiol. 2000;11(3):339–53.

    Article  CAS  PubMed  Google Scholar 

  107. Trayanova NA, Skouibine KB, Moore PB. Virtual electrode effects in defibrillation. Prog Biophys Mol Biol. 1998;69:387–403.

    Article  CAS  PubMed  Google Scholar 

  108. Skouibine KB, Trayanova NA. Anode/cathode make and break phenomena in a model of defibrillation. IEEE Trans Biomed Eng. 1999;46(7):769–77.

    Article  CAS  PubMed  Google Scholar 

  109. Skouibine K, Trayanova N, Moore P. Success and failure of the defibrillation shock: insights from a simulation study. J Cardiovasc Electrophysiol. 2000;11(7):785–96.

    Article  CAS  PubMed  Google Scholar 

  110. Trayanova N. Induction of reentry and defibrillation: the role of virtual electrodes. In: Virag N, Blanc O, Kappenberger L, editors. Computer simulation and experimental assessment of cardiac electrophysiology. Armonk: Futura; 2001. p. 165–72.

    Google Scholar 

  111. Ashihara T, Constantino J, Trayanova NA. Tunnel propagation of postshock activations as a hypothesis for fibrillation induction and isoelectric window. Circ Res. 2008;102(6):737–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Cheng Y, Mowrey KA, Nikolski V, Tchou PJ, Efimov IR. Mechanisms of shock-induced arrhythmogenesis during acute global ischemia. Am J Physiol Heart Circ Physiol. 2002;282(6):H2141–H51.

    Article  CAS  PubMed  Google Scholar 

  113. Rodriguez B, Tice BM, Eason JC, Aguel F, Ferrero JM, Trayanova N. Effect of acute global ischemia on the upper limit of vulnerability: a simulation study. Am J Physiol Heart Circ Physiol. 2004;286(6):H2078–H88.

    Article  CAS  PubMed  Google Scholar 

  114. Hillebrenner MG, Eason JC, Trayanova NA. Mechanistic inquiry into decrease in probability of defibrillation success with increase in complexity of preshock reentrant activity. Am J Physiol Heart Circ Physiol. 2004;286(3):H909–H17.

    Article  CAS  PubMed  Google Scholar 

  115. Anderson C, Trayanova N, Skouibine K. Termination of spiral waves with biphasic shocks: role of virtual electrode polarization. J Cardiovasc Electrophysiol. 2000;11(12):1386–96.

    Article  CAS  PubMed  Google Scholar 

  116. Rodriguez B, Li L, Eason JC, Efimov IR, Trayanova NA. Differences between left and right ventricular chamber geometry affect cardiac vulnerability to electric shocks. Circ Res. 2005;97(2):168–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Entcheva E, Eason J, Efimov IR, Cheng Y, Malkin RA, Claydon F. Virtual electrode effects in transveneous defibrillation-modulation by structure and interface: evidence from bidomain simulations and optical mapping. J Cardiovasc Electrophysiol. 1998;9(9):949–61.

    Article  CAS  PubMed  Google Scholar 

  118. Trayanova NA, Roth BJ, Malden LJ. The response of a spherical heart to a uniform electric field: a bidomain analysis of cardiac stimulation. IEEE Trans Biomed Eng. 1993;40(9):899–908.

    Article  CAS  PubMed  Google Scholar 

  119. Entcheva E, Trayanova NA, Claydon FJ. Patterns of and mechanisms for shock-induced polarization in the heart: a bidomain analysis. IEEE Trans Biomed Eng. 1999;46(3):260–70.

    Article  CAS  PubMed  Google Scholar 

  120. Knisley SB, Trayanova NA, Aguel F. Roles of electric field and fiber structure in cardiac electric stimulation. Biophys J. 1999;77:1404–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Latimer DC, Roth BJ. Effect of a bath on the epicardial transmembrane potential during internal defibrillation shocks. IEEE Trans Biomed Eng. 1999;46(5):612–4.

    Article  CAS  PubMed  Google Scholar 

  122. Lin SF, Wikswo JP Jr. New perspectives in electrophysiology from the cardiac bidomain. In: Rosenbaum DS, Jalife J, editors. Optical mapping of cardiac excitation and arrhythmias. Armonk: Futura Publishing; 2001. p. 335–59.

    Google Scholar 

  123. Fishler MG, Vepa K. Spatiotemporal effects of syncytial heterogeneities on cardiac far-field excitations during monophasic and biphasic shocks. J Cardiovasc Electrophysiol. 1998;9(12):1310–24.

    Article  CAS  PubMed  Google Scholar 

  124. Hooks DA, Tomlinson KA, Marsden SG, LeGrice IJ, Smaill BH, Pullan AJ, et al. Cardiac microstructure: implications for electrical propagation and defibrillation in the heart. Circ Res. 2002;91(4):331–8.

    Article  CAS  PubMed  Google Scholar 

  125. Fast VG, Sharifov OF, Cheek ER, Newton JC, Ideker RE. Intramural virtual electrodes during defibrillation shocks in left ventricular wall assessed by optical mapping of membrane potential. Circulation. 2002;106(8):1007–14.

    Article  PubMed  Google Scholar 

  126. Sharifov OF, Fast VG. Optical mapping of transmural activation induced by electrical shocks in isolated left ventricular wall wedge preparations. J Cardiovasc Electrophysiol. 2003;14(11):1215–22.

    Article  PubMed  Google Scholar 

  127. Sharifov OF, Ideker RE, Fast VG. High-resolution optical mapping of intramural virtual electrodes in porcine left ventricular wall. Cardiovasc Res. 2004;64(3):448–56.

    Article  PubMed  CAS  Google Scholar 

  128. Sharifov OF, Fast VG. Role of intramural virtual electrodes in shock-induced activation of left ventricle: optical measurements from the intact epicardial surface. Heart Rhythm. 2006;3(9):1063–73.

    Article  PubMed  Google Scholar 

  129. Maleckar MM, Woods MC, Sidorov VY, Holcomb MR, Mashburn DN, Wikswo JP, et al. Polarity reversal lowers activation time during diastolic field stimulation of the rabbit ventricles: insights into mechanisms. Am J Physiol Heart Circ Physiol. 2008;295:H1626–H33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Holcomb MR. Measurement and analysis of cardiac tissue during electrical stimulation [PhD Dissertation, Physics]. Vanderbilt University; 2007.

    Google Scholar 

  131. Zemlin CW, Mironov S, Pertsov AM. Near-threshold field stimulation: intramural versus surface activation. Cardiovasc Res. 2006;69(1):98–106.

    Article  CAS  PubMed  Google Scholar 

  132. Woods MC, Maleckar MM, Sidorov VY, Holcomb MR, Mashburn DN, Trayanova NA, et al. Negative virtual electrode polarization in the rabbit left ventricle delays activation during diastolic field stimulation. Heart Rhythm. 2006;3(Supp.1(5)):S181–S2.

    Article  Google Scholar 

  133. Chen P-S, Shibata N, Dixon EG, Martin RO, Ideker RE. Comparison of the defibrillation threshold and the upper limit of ventricular vulnerability. Circulation. 1986;73(5):1022–8.

    Article  CAS  PubMed  Google Scholar 

  134. Banville I, Gray RA, Ideker RE, Smith WM. Shock-induced figure-of-eight reentry in the isolated rabbit heart. Circ Res. 1999;85:742–52.

    Article  CAS  PubMed  Google Scholar 

  135. Rodriguez B, Trayanova N. Upper limit of vulnerability in a defibrillation model of the rabbit ventricles. J Electrocardiol. 2003;36:51–6.

    Article  PubMed  Google Scholar 

  136. Langrill Beaudoin D, Roth BJ. The effect of the fiber curvature gradient on break excitation in cardiac tissue. Pacing Clin Electrophysiol. 2006;29(5):496–501.

    Article  Google Scholar 

  137. Mazeh N, Roth BJ. A mechanism for the upper limit of vulnerability. Heart Rhythm. 2009;6(3):361–7.

    Article  PubMed  Google Scholar 

  138. Langrill DM, Roth BJ. The effect of plunge electrodes during electrical stimulation of cardiac tissue. IEEE Trans Biomed Eng. 2001;48(10):1207–12.

    Article  CAS  PubMed  Google Scholar 

  139. Langrill Beaudoin D, Roth BJ. Effect of plunge electrodes in active cardiac tissue with curving fibers. Heart Rhythm. 2004;1(4):476–81.

    Article  Google Scholar 

  140. Woods MC, Sidorov VY, Holcomb MR, Langrill Beaudoin D, Roth BJ, Wikswo JP. Virtual electrode effects around an artificial heterogeneity during field stimulation of cardiac tissue. Heart Rhythm. 2006;3(6):751–2.

    Google Scholar 

  141. Chattipakorn N, Fotuhi PC, Chattipakorn SC, Ideker RE. Three-dimensional mapping of earliest activation after near-threshold ventricular defibrillation shocks. J Cardiovasc Electrophysiol. 2003;14(1):65–9.

    Article  PubMed  Google Scholar 

  142. Luther S, Fenton FH, Kornreich BG, Squires A, Bittihn P, Hornung D, et al. Low-energy control of electrical turbulence in the heart. Nature. 2011;475(7355):235–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Patel SG, Roth BJ. How epicardial electrodes influence the transmembrane potential during a strong shock. Ann Biomed Eng. 2001;29(11):1028–31.

    Article  CAS  PubMed  Google Scholar 

  144. Knisley SB, Pollard AE. Use of translucent indium tin oxide to measure stimulatory effects of a passive conductor during field stimulation of rabbit hearts. Am J Physiol Heart Circ Physiol. 2005;289(3):H1137–H46.

    Article  CAS  PubMed  Google Scholar 

  145. Trayanova N, Skouibine K, Aguel F. The role of cardiac tissue structure in defibrillation. Chaos. 1998;8(1):221–33.

    Article  PubMed  Google Scholar 

  146. Trayanova NA, Skouibine KB. Modeling defibrillation: effects of fiber curvature. J Electrocardiol. 1998;31(Supp):23–9.

    Article  PubMed  Google Scholar 

  147. Roth BJ, Langrill Beaudoin D. Approximate analytical solutions of the bidomain equations for electrical stimulation of cardiac tissue with curving fibers. Phys Rev E. 2003;67(5):051925.

    Article  CAS  Google Scholar 

  148. Roth BJ. Electrical conductivity values used with the bidomain model of cardiac tissue. IEEE Trans Biomed Eng. 1997;44(4):326–8.

    Article  CAS  PubMed  Google Scholar 

  149. Tung L, Kleber AG. Virtual sources associated with linear and curved strands of cardiac cells. Am J Physiol Heart Circ Physiol. 2000;279(4):H1579–H90.

    Article  CAS  PubMed  Google Scholar 

  150. Colli Franzone P, Pavarino LF, Scacchi S. Mathematical cardiac electrophysiology. New York: Springer; 2014.

    Google Scholar 

  151. Plonsey R, Barr RC. Effect of microscopic and macroscopic discontinuities on the response of cardiac tissue to defibrillation (stimulating) currents. Med Biol Eng Comput. 1986;24(2):130–6.

    Article  CAS  PubMed  Google Scholar 

  152. Krassowska W, Pilkington TC, Ideker RE. Periodic conductivity as a mechanism for cardiac stimulation and defribrillation. IEEE Trans Biomed Eng. 1987;BME-34:555–60.

    Article  Google Scholar 

  153. Keener JP. Direct activation and defibrillation of cardiac tissue. J Theor Biol. 1996;178:313–24.

    Article  CAS  PubMed  Google Scholar 

  154. Krinsky VI, Pumir A. Models of defibrillation of cardiac tissue. Chaos. 1998;8(1):188–203.

    Article  PubMed  Google Scholar 

  155. Gillis AM, Fast VG, Rohr S, Kleber AG. Spatial changes in transmembrane potential during extracellular electrical shocks in cultured monolayers of neonatal rat ventricular myocytes. Circ Res. 1996;79(4):676–90.

    Article  CAS  PubMed  Google Scholar 

  156. Zhou XH, Knisley SB, Smith WM, Rollins D, Pollard AE, Ideker RE. Spatial changes in the transmembrane potential during extracellular electric stimulation. Circ Res. 1998;83(10):1003–14.

    Article  CAS  PubMed  Google Scholar 

  157. Krassowska W, Kumar MS. The role of spatial interactions in creating the dispersion of transmembrane potential by premature electric shocks. Ann Biomed Eng. 1997;25(6):949–63.

    Article  CAS  PubMed  Google Scholar 

  158. Fishler MG. Syncytial heterogeneity as a mechanism underlying cardiac far-field stimulation during defibrillation-level shocks. J Cardiovasc Electrophysiol. 1998;9(4):384–94.

    Article  CAS  PubMed  Google Scholar 

  159. Connolly AJ, Vigmond E, Bishop MJ. Bidomain predictions of virtual electrode-induced make and break excitations around blood vessels. Front Bioeng Biotechnol. 2017;5:18.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Connolly A, Vigmond E, Bishop M. Virtual electrodes around anatomical structures and their roles in defibrillation. PLoS One. 2017;12(3):e0173324.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Connolly A, Robson MD, Schneider J, Burton R, Plank G, Bishop MJ. Highly trabeculated structure of the human endocardium underlies asymmetrical response to low-energy monophasic shocks. Chaos. 2017;27(9):093912.

    Article  Google Scholar 

  162. Caldwell BJ, Trew ML, Pertsov AM. Cardiac response to low-energy field pacing challenges the standard theory of defibrillation. Circ Arrhythm Electrophysiol. 2015;8(3):685–93.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Langrill Beaudoin D, Roth BJ. How the spatial frequency of polarization influences the induction of reentry in cardiac tissue. J Cardiovasc Electrophysiol. 2005;16(7):748–52.

    Article  Google Scholar 

  164. Woods MC. The response of the cardiac bidomain to electrical stimulation [PhD Dissertation, Biomedical Engineering]. Vanderbilt University; 2005.

    Google Scholar 

  165. Woods MC, Uzelac I, Holcomb MR, Wikswo JP, Sidorov VY. Diastolic field stimulation: the role of shock duration in epicardial activation and propagation. Biophys J. 2013;105(2):523–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Cysyk J, Tung L. Electric field perturbations of spiral waves attached to millimeter-size obstacles. Biophys J. 2008;94(4):1533–41.

    Article  CAS  PubMed  Google Scholar 

  167. Boccia E, Luther S, Parlitz U. Modelling far field pacing for terminating spiral waves pinned to ischaemic heterogeneities in cardiac tissue. Philos Trans A Math Phys Eng Sci. 2017;375(2096):20160289.

    PubMed  PubMed Central  Google Scholar 

  168. Trew M, Sands GB. Shock-induced transmembrane potential fields in a model of cardiac microstructure. J Cardiovasc Electrophysiol. 2005;16(9):1024.

    Article  PubMed  Google Scholar 

  169. Plank G, Prassl AJ, Vigmond EJ, Burton RAB, Schneider J, Trayanova NA, et al. Development of a microanatomically accurate rabbit ventricular wedge model. Heart Rhythm. 2006;3(Supp.1(5)):S111–S2.

    Article  Google Scholar 

  170. Gray RA, Wikswo JP. Several small shocks beat one big one. Nature. 2011;475(7355):181–2.

    Article  CAS  PubMed  Google Scholar 

  171. Carmeliet E. Cardiac ionic currents and acute ischemia: from channels to arrhythmias. Physiol Rev. 1999;79(3):917–1017.

    Article  CAS  PubMed  Google Scholar 

  172. Hill JL, Gettes LS. Effect of acute coronary-artery occlusion on local myocardial extracellular K+ activity in swine. Circulation. 1980;61(4):768–78.

    Article  CAS  PubMed  Google Scholar 

  173. Hirche H, Franz C, Bös L, Bissig R, Lang R, Schramm M. Myocardial extracellular K+ and H+ increase and noradrenaline release as possible cause of early arrhythmias following acute coronary artery occlusion in pigs. J Mol Cell Cardiol. 1980;12(6):579–93.

    Google Scholar 

  174. Cascio WE, Yan GX, Kleber AG. Early changes in extracellular potassium in ischemic rabbit myocardium – the role of extracellular carbon-dioxide accumulation and diffusion. Cardiovasc Res. 1992;70(2):409–22.

    CAS  Google Scholar 

  175. Coronel R, Fiolet JWT, Wilmsschopman FJG, Schaapherder AFM, Johnson TA, Gettes LS, et al. Distribution of extracellular potassium and its relation to electrophysiologic changes during acute myocardial ischemia in the isolated perfused porcine heart. Circulation. 1988;77(5):1125–38.

    Article  CAS  PubMed  Google Scholar 

  176. Johnson TA, Engle CL, Boyd LM, Koch GG, Gwinn M, Gettes LS. Magnitude and time course of extracellular potassium inhomogeneities during acute-ischemia in pigs. Effect of verapamil. Circulation. 1991;83(2):622–34.

    Google Scholar 

  177. Sidorov VY, Uzelac I, Wikswo JP. Regional increase of extracellular potassium leads to electrical instability and reentry occurrence through the spatial heterogeneity of APD restitution. Am J Physiol Heart Circ Physiol. 2011;301(1):H209–H20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Luo C-H, Rudy Y. A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Cardiovasc Res. 1994;74(6):1071–96.

    Google Scholar 

  179. Kandel SM, Roth BJ. Electrical instability due to regional increase in extracellular potassium ion concentration. J Nat Sci. 2015;1(8):e160.

    PubMed  PubMed Central  Google Scholar 

  180. Gray RA. What exactly are optically recorded “action potentials”? J Cardiovasc Electrophysiol. 1999;10(11):1463–6.

    Article  CAS  PubMed  Google Scholar 

  181. Efimov IR, Sidorov V, Cheng Y, Wollenzier B. Evidence of three-dimensional scroll waves with ribbon-shaped filament as a mechanism of ventricular tachycardia in the isolated rabbit heart. J Cardiovasc Electrophysiol. 1999;10:1452–62.

    Article  CAS  PubMed  Google Scholar 

  182. Bray MA, Wikswo JP. Examination of optical depth effects on fluorescence imaging of cardiac propagation. Biophys J. 2003;85(6):4134–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Janks DL, Roth BJ. Averaging over depth during optical mapping of electroporation. IEEE Trans Biomed Eng. 2002;49(9):1051–4.

    Article  PubMed  Google Scholar 

  184. Neunlist M, Tung L. Dose-dependent reduction of cardiac transmembrane potential by high-intensity electrical shocks. Am J Physiol Heart Circ Physiol. 1997;42(6):H2817–H25.

    Article  Google Scholar 

  185. Kodama I, Sakuma I, Shibata N, Honjo H, Toyama J. Arrhythmogenic changes in action potential configuration in the ventricle induced by DC shocks. J Electrocardiol. 1999;32(Supp.1):92–9.

    Article  PubMed  Google Scholar 

  186. Al Khadra A, Nikolski V, Efimov IR. The role of electroporation in defibrillation. Cardiovasc Res. 2000;87(9):797–804.

    Google Scholar 

  187. Janks DL, Roth BJ. Simulations of optical mapping during electroporation. EMBC 2004, 26th Annual International Conference of the Engineering in Medicine and Biology Society; 2004; San Francisco: IEEE.

    Google Scholar 

  188. Hyatt CJ, Mironov SF, Wellner M, Berenfeld O, Popp AK, Weitz DA, et al. Synthesis of voltage-sensitive fluorescence signals from three-dimensional myocardial activation patterns. Biophys J. 2003;85(4):2673–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Bernus O, Wellner M, Mironov SF, Pertsov AM. Simulation of voltage-sensitive optical signals in three-dimensional slabs of cardiac tissue: application to transillumination and coaxial imaging methods. Phys Med Biol. 2005;50(2):215–29.

    Article  CAS  PubMed  Google Scholar 

  190. Bishop MJ, Rodriguez B, Eason J, Whiteley JP, Trayanova N, Gavaghan DJ. Synthesis of voltage-sensitive optical signals: application to panoramic optical mapping. Biophys J. 2006;90(8):2938–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Mironov SF, Vetter FJ, Pertsov AM. Fluorescence imaging of cardiac propagation: spectral properties and filtering of optical action potentials. Am J Physiol Heart Circ Physiol. 2006;291(1):H327–H35.

    Article  CAS  PubMed  Google Scholar 

  192. Prior P, Roth BJ. Calculation of optical signal using 3-D bidomain/diffusion model reveals distortion of the transmembrane potential. Biophys J. 2008;94(4):2097–102.

    Article  CAS  Google Scholar 

  193. Roth BJ, Pertsov AM. Hybrid modeling of electrical and optical behavior in the heart. Physica D-Nonlinear Phenomena. 2009;238(11–12):1019–27.

    Article  CAS  Google Scholar 

  194. Prior P, Roth BJ. Development of an imaging modality utilizing 2D optical signals during an EPI-fluorescent optical mapping experiment. Phys Med Biol. 2009;54(10):3015–30.

    Article  PubMed  Google Scholar 

  195. Walton RD, Benoist D, Hyatt CJ, Gilbert SH, White E, Bernus O. Dual excitation wavelength epifluorescence imaging of transmural electrophysiological properties in intact hearts. Heart Rhythm. 2010;7(12):1843–9.

    Article  PubMed  Google Scholar 

  196. Christoph J, Chebbok M, Richter C, Schroder-Schetelig J, Bittihn P, Stein S, et al. Electromechanical vortex filaments during cardiac fibrillation. Nature. 2018;555(7698):667–72.

    Article  CAS  PubMed  Google Scholar 

  197. Nitsan I, Drori S, Lewis YE, Cohen S, Tzlil S. Mechanical communication in cardiac cell synchronized beating. Nat Phys. 2016;12(5):472–7.

    Google Scholar 

  198. Krassowska W, Neu JC. Effective boundary conditions for syncytial tissues. IEEE Trans Biomed Eng. 1994;41(2):143–50.

    Article  CAS  PubMed  Google Scholar 

  199. Roth BJ. A comparison of two boundary-conditions used with the bidomain model of cardiac tissue. Ann Biomed Eng. 1991;19(6):669–78.

    Article  CAS  PubMed  Google Scholar 

  200. Latimer DC, Roth BJ. Electrical stimulation of cardiac tissue by a bipolar electrode in a conductive bath. IEEE Trans Biomed Eng. 1998;45(12):1449–58.

    Article  CAS  PubMed  Google Scholar 

  201. Knisley SB, Pollard AE, Fast VG. Effects of electrode-myocardial separation on cardiac stimulation in conductive solution. J Cardiovasc Electrophysiol. 2000;11(10):1132–43.

    Article  CAS  PubMed  Google Scholar 

  202. Trayanova NA. Effects of the tissue-bath interface on the induced transmembrane potential: a modeling study in cardiac stimulation. Ann Biomed Eng. 1997;25(5):783–92.

    Article  CAS  PubMed  Google Scholar 

  203. Otani NF. Deep entry of defibrillating effects into homogeneous cardiac tissue. IEEE Trans Biomed Eng. 2004;51(3):401–7.

    Article  PubMed  Google Scholar 

  204. Roth BJ. Mechanism for polarisation of cardiac tissue at a sealed boundary. Med Biol Eng Comput. 1999;37(4):523–5.

    Article  CAS  PubMed  Google Scholar 

  205. Roth BJ, Patel SG, Murdick RA. The effect of the cut surface during electrical stimulation of a cardiac wedge preparation. IEEE Trans Biomed Eng. 2006;53(6):1187–90.

    Article  PubMed  Google Scholar 

  206. Corbin LV II, Scher AM. The canine heart as an electrocardiographic generator. Dependence on cardiac cell orientation. Circ Res. 1977;41(1):58–67.

    Article  PubMed  Google Scholar 

  207. Roberts DE, Hersh LT, Scher AM. Influence of cardiac fiber orientation on wavefront voltage, conduction velocity, and tissue resistivity in the dog. Cardiovasc Res. 1979;44(5):701–12.

    CAS  Google Scholar 

  208. Roberts DE, Scher AM. Effect of tissue anisotropy on extracellular potential fields in canine myocardium in situ. Circ Res. 1982;50(3):342–51.

    Article  CAS  PubMed  Google Scholar 

  209. Barry WH, Fairbank WM, Harrison DC, Lehrman KL, Malmivuo JAV, Wikswo JP Jr. Measurement of the human magnetic heart vector. Science. 1977;198(4322):1159–62.

    Article  CAS  PubMed  Google Scholar 

  210. Wikswo JP Jr, Barach JP. Possible sources of new information in the magnetocardiogram. J Theor Biol. 1982;95:721–9.

    Article  PubMed  Google Scholar 

  211. Wikswo JP Jr, Barach JP, Gundersen SC, McLean MJ, Freeman JA. First magnetic measurements of action currents in isolated cardiac purkinje fibers. IL Nuovo Cimento. 1983;2D(2):368–78.

    Article  Google Scholar 

  212. Roth BJ, Wikswo JP Jr. Electrically silent magnetic fields. Biophys J. 1986;50(4):739–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Barach JP. A simulation of cardiac action currents having curl. IEEE Trans Biomed Eng. 1993;40(1):49–58.

    Article  CAS  PubMed  Google Scholar 

  214. Barach JP, Wikswo JP Jr. Magnetic fields from simulated cardiac action currents. IEEE Trans Biomed Eng. 1994;41(10):969–74.

    Article  CAS  PubMed  Google Scholar 

  215. Staton DJ, Friedman RN, Wikswo JP Jr. High-resolution SQUID imaging of octupolar currents in anisotropic cardiac tissue. IEEE Trans Appl Supercond. 1993;3(1):1934–6.

    Article  Google Scholar 

  216. Baudenbacher FJ, Peters NT, Baudenbacher P, Wikswo JP Jr. High resolution imaging of biomagnetic fields generated by action currents in cardiac tissue using a LTS-SQUID microscope. Physica C. 2002;368(1–4):24–31.

    Article  CAS  Google Scholar 

  217. Staton DJ. Magnetic imaging of applied and propagating action current in cardiac tissue slices: determination of anisotropic electrical conductivities in a two dimensional bidomain [PhD Dissertation, Physics]. Vanderbilt University; 1994.

    Google Scholar 

  218. Fong LE, Holzer JR, McBride KK, Lima EA, Baudenbacher F, Radparvar M. High-resolution room-temperature sample scanning superconducting quantum interference device microscope configurable for geological and biomagnetic applications. Rev Sci Instrum. 2005;76(5):053703.

    Article  CAS  Google Scholar 

  219. Fong LE, Holzer JR, McBride K, Lima EA, Baudenbacher F, Radparvar M. High-resolution imaging of cardiac biomagnetic fields using a low-transition-temperature superconducting quantum interference device microscope. Appl Phys Lett. 2004;84(16):3190–2.

    Article  CAS  Google Scholar 

  220. Holzer JR, Fong LE, Sidorov VY, Wikswo JP Jr, Baudenbacher F. High resolution magnetic images of planar wave fronts reveal bidomain properties of cardiac tissue. Biophys J. 2004;87(6):4326–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Baudenbacher F, Peters NT, Wikswo JP Jr. High resolution low-temperature superconductivity superconducting quantum interference device microscope for imaging magnetic fields of samples at room temperatures. Rev Sci Instrum. 2002;73(3):1247–54.

    Article  CAS  Google Scholar 

  222. Roth BJ, Woods MC. The magnetic field associated with a plane wave front propagating through cardiac tissue. IEEE Trans Biomed Eng. 1999;46(11):1288–92.

    Article  CAS  PubMed  Google Scholar 

  223. Barbosa CRH. Simulation of a plane wavefront propagating in cardiac tissue using a cellular automata model. Phys Med Biol. 2003;48(24):4151–64.

    Article  PubMed  Google Scholar 

  224. dos Santos RW, Koch H. Interpreting biomagnetic fields of planar wave fronts in cardiac muscle. Biophys J. 2005;88(5):3731–3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  225. Murdick RA, Roth BJ. A comparative model of two mechanisms from which a magnetic field arises in the heart. J Appl Phys. 2004;95(9):5116–22.

    Article  CAS  Google Scholar 

  226. Baudenbacher F, Fong LE, Holzer JR, Radparvar M. Monolithic low-transition-temperature superconducting magnetometers for high resolution imaging magnetic fields of room temperature samples. Appl Phys Lett. 2003;82(20):3487–9.

    Article  CAS  Google Scholar 

  227. Kim YJ, Savukov I. Ultra-sensitive magnetic microscopy with an optically pumped magnetometer. Sci Rep. 2016;6:24773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Barry JF, Turner MJ, Schloss JM, Glenn DR, Song Y, Lukin MD, et al. Optical magnetic detection of single-neuron action potentials using quantum defects in diamond. Proc Natl Acad Sci. 2016;113(49):14133–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Cohen D, Kaufman LA. Magnetic determination of the relationship between the S-T segment shift and the injury current produced by coronary artery occlusion. Cardiovasc Res. 1975;36:414–24.

    CAS  Google Scholar 

  230. van Egeraat JM, Wikswo JP Jr. A model for axonal propagation incorporating both radial and axial ionic transport. Biophys J. 1993;64(4):1287–98.

    Article  PubMed  PubMed Central  Google Scholar 

  231. van Egeraat JM, Stasaski R, Barach JP, Friedman RN, Wikswo JP Jr. The biomagnetic signature of a crushed axon: a comparison of theory and experiment. Biophys J. 1993;64(4):1299–305.

    Article  PubMed  PubMed Central  Google Scholar 

  232. Ideker RE, Chattipakorn N, Gray RA. Defibrillation mechanisms: the parable of the blind men and the elephant. J Cardiovasc Electrophysiol. 2000;11(9):1008–12.

    Article  CAS  PubMed  Google Scholar 

  233. Sidorov VY, Samson PC, Sidorova TN, Davidson JM, Lim CC, Wikswo JP. I-wire heart-on-a-chip I: three-dimensional cardiac tissue constructs for physiology and pharmacology. Acta Biomater. 2017;48:68–78.

    Article  CAS  PubMed  Google Scholar 

  234. Schroer AK, Shotwell MS, Sidorov VY, Wikswo JP, Merryman WD. I-wire heart-on-a-chip II: biomechanical analysis of contractile, three-dimensional cardiomyocyte tissue constructs. Acta Biomater. 2017;48:79–87.

    Article  CAS  PubMed  Google Scholar 

  235. Roth BJ, Guo W-Q, Wikswo JP Jr. The effects of spiral anisotropy on the electric potential and the magnetic field at the apex of the heart. Math Biosci. 1988;88(2):191–221.

    Article  Google Scholar 

  236. McBride KK, Roth BJ, Sidorov VY, Wikswo JP, Baudenbacher FJ. Measurements of transmembrane potential and magnetic field at the apex of the heart. Biophys J. 2010;99(10):3113–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Roth BJ. The electrical potential produced by a strand of cardiac muscle: a bidomain analysis. Ann Biomed Eng. 1988;16:609–37.

    Article  CAS  PubMed  Google Scholar 

  238. Knisley SB, Maruyama T, Buchanan JW. Interstitial potential during propagation in bathed ventricular muscle. Biophys J. 1991;59:509–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Plonsey R, Henriquez CS, Trayanova NA. Extracellular (volume conductor) effect on adjoining cardiac muscle electrophysiology. Med Biol Eng Comput. 1988;26(2):126–9.

    Article  CAS  PubMed  Google Scholar 

  240. Wu J, Johnson EA, Kootsey JM. A quasi-one-dimensional theory for anisotropic propagation of excitation in cardiac muscle. Biophys J. 1996;71(5):2427–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Wu J, Wikswo JP Jr. Effects of bath resistance on action potentials in the squid giant axon: myocardial implications. Biophys J. 1997;73(5):2347–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Roth BJ. Effect of a perfusing bath on the rate of rise of an action potential propagating through a slab of cardiac tissue. Ann Biomed Eng. 1996;24(6):639–46.

    Article  CAS  PubMed  Google Scholar 

  243. Roth BJ. Influence of a perfusing bath on the foot of the cardiac action potential. Circ Res. 2000;86(2):E19–22.

    Article  CAS  PubMed  Google Scholar 

  244. Roth BJ, Saypol JM. The formation of a re-entrant action potential wave front in tissue with unequal anisotropy ratios. IJBC. 1991;1(4):927–8.

    Google Scholar 

  245. Roth BJ. A mechanism for the "no-response" phenomenon during anodal stimulation of cardiac tissue. In: Jaeger RJ, editor. Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Oct 30–Nov 2, Chicago. 1. Piscataway, NJ: IEEE; 1997. p. 176–9.

    Google Scholar 

  246. Roth BJ. Frequency locking of meandering spiral waves in cardiac tissue. Phys Rev E. 1998;57(4):R3735–R8.

    Article  CAS  Google Scholar 

  247. Roth BJ. Meandering of spiral waves in anisotropic cardiac tissue. Physica D: Nonlinear Phenomena. 2001;150(1–2):127–36.

    Article  Google Scholar 

  248. Gray RA, Mashburn DN, Sidorov VY, Roth BJ, Pathmanathan P, Wikswo JP. Transmembrane current imaging in the heart during pacing and fibrillation. Biophys J. 2013;105(7):1710–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Woods MC, Holcomb MR, Sidorov VY, Gray RA, Wikswo JP. Transient virtual anodes during strong field shock of rabbit hearts. BMES Annual Fall Meeting; Los Angeles, 2007.

    Google Scholar 

  250. Janks DL, Roth BJ. Quatrefoil reentry caused by burst pacing. J Cardiovasc Electrophysiol. 2006;17(12):1362–8.

    Article  PubMed  Google Scholar 

  251. Spach MS, Miller WT III, Geselowitz DB, Barr RC, Kootsey JM, Johnson EA. The discontinuous nature of propagation in normal canine cardiac muscle. Cardiovasc Res. 1981;48(1):39–54.

    CAS  Google Scholar 

  252. Sidorov VY, Woods MC, Wikswo JP, Jr. Elevated potassium concentration converts excitation mechanism from make to break. Proceedings of the second joint EMBS-BMES conference, Oct 23–26, Houston. Piscataway: IEEE; 2002. p. 1377–8.

    Google Scholar 

  253. Roth BJ, Lin SF, Wikswo JP Jr. Unipolar stimulation of cardiac tissue. J Electrocardiol. 1998;31(Supp):6–12.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are indebted to Allison Price and Don Berry for their painstaking bibliographic, editorial, and graphical assistance in preparing this manuscript. We thank Richard Gray and Franz Baudenbacher for answering innumerable questions in the first edition of this chapter. We gratefully acknowledge the many contributions that our students and collaborators have made to the research that we describe in this chapter. This work was supported originally by the National Institutes of Health grants R01 HL57207 and HL58241. The preparation of this second edition was supported in part by the NIH National Center for Advancing Translational Sciences (NCATS), National Institute of Neurological Disorders and Stroke (NINDS), and Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) under Award UH3TR002097.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Wikswo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roth, B.J., Sidorov, V.Y., Wikswo, J.P. (2021). Virtual Electrode Theory of Pacing. In: Efimov, I.R., Ng, F.S., Laughner, J.I. (eds) Cardiac Bioelectric Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-63355-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63355-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63354-7

  • Online ISBN: 978-3-030-63355-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics