Skip to main content
Log in

A bidomain model for anisotropic cardiac muscle

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Cardiac muscle is considered to consist of an intracellular domain and an exracellular or interstitial domain. Current passes from one domain to the other through the cell membrane. Electric potentials in interstitial space are shown to be associated with current sources proportional to the spatial gradient of the cellular transmembrane action potential, φ m . Hence, given the distribution of φ m throughout the myocardium, one can calculate the surface electrocardiogram and extracorporeal magnetocardiogram. The problem is considerably complicated when anisotropy is considered. If interstitial space is approximately isotropic, however, the sources are still proportional to ∇φ m . It is shown that the effects of intracellular anisotropy on the surface electrocardiogram may be relatively small. The inverse problem is discussed briefly, with consideration of the relationship of the magnetocardiogram to the electrocardiogram. Finally, it is shown that if the heart can be considered to be bounded by a closed surface, then the value of φ m on this surface is uniquely related to the surface electrocardiogram to within a constant, provided there are no internal discontinuities. Such discontinuities, however, would be expected to occur in cases of ischemia and necrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arthur, R.M., D.B. Geselowitz, S.A. Briller, and R.F. Trost. Quadrupole components of the human surface electrocardiogram.Am. Heart J. 83:663–667, 1972.

    Article  CAS  PubMed  Google Scholar 

  2. Barr, L., and E. Jakobsson. The spread of current in electrical syncytia. InPhysiology of Smooth Muscle, edited by E. Bulbring and M.F. Shuba. New York: Raven Press, 1974, pp. 41–48.

    Google Scholar 

  3. Baule, G.M., and R. McFee. Theory of magnetic detection of the heart's electrical activity.J. Appl. Phys. 36:2066–2074, 1965.

    Article  Google Scholar 

  4. Clerc, L. Directional differences of impulse spread in trabecular muscle from mammalian heart.J. Physiol. 255:335–346, 1976.

    CAS  PubMed  Google Scholar 

  5. Geselowitz, D.B. On bioelectric potentials in an inhomogeneous volume conductor.Biophys. J. 7:1–11, 1967.

    Google Scholar 

  6. Geselowitz, D.B. On the magnetic field generated outside an inhomogeneous volume conductor by internal current sources.IEEE Trans. Magn. MAG-6:346–347, 1970.

    Article  Google Scholar 

  7. Geselowitz, D.B. Representation of cardiac sources in anisotropic cardiac muscle.IEEE 1980 Frontiers of Engineering in Health Care. Proceedings of the 2nd American Conference EMBS, 1980, pp. 6–8.

  8. Geselowitz, D.B., R.C. Barr, M.S. Spach, and W.T. Miller, III. The impact of adjacent isotropic fluids on electrograms from anisotropic cardiac muscle.Circ. Res. 51:602–613, 1982.

    CAS  PubMed  Google Scholar 

  9. Geselowitz, D.B., and W.T. Miller, III. Active electric properties of cardiac muscle.Bioelectromagn. 3:127–132, 1982.

    CAS  Google Scholar 

  10. Holland, R.P., and M.F. Arnsdorf. Non-spatial determinants of electrograms in guinea pig ventricle.Am. J. Physiol. 240:C148-C160, 1981.

    CAS  PubMed  Google Scholar 

  11. Lepeschkin, E. Physiological influences on transfer factors between heart currents and body-surface potentials. InThe Theoretical Basis of Electrocardiology, edited by C. V. Nelson and D.B. Geselowitz. London: Oxford University Press, 1976, pp. 135–161.

    Google Scholar 

  12. McFee, R. and F.D. Johnston. Electrocardiographic leads: I. Introduction.Circulation 8:554–568, 1953.

    CAS  PubMed  Google Scholar 

  13. Miller, W. T., III and D.B. Geselowitz. Simulation studies of the electrocardiogram. I. The normal heart. II. Ischemia and infarction.Circ. Res. 43:301–323, 1978.

    CAS  PubMed  Google Scholar 

  14. Plonsey, R., and Y. Rudy. Electrocardiogram sources in a 2-dimensional anisotropic activation model.Med. Biol. Eng. Comput. 18:87–94, 1980.

    CAS  PubMed  Google Scholar 

  15. Roberts, D.E., L.T. Hersh, and A.M. Scher. Influence of cardiac fiber orientation on wavefront voltage, conduction velocity and tissue resistivity in the dog.Circ. Res. 44:701–712, 1979.

    CAS  PubMed  Google Scholar 

  16. Rush, S. A principle for solving a class of anisotropic current flow problems and applications to electrocardiography.IEEE Trans. Biomed. Eng. BME-14:18–22, 1967.

    Google Scholar 

  17. Rush, S. On the independence of magnetic and electric body surface recordings.IEEE Trans. Biomed. Eng. BME-22:157–167, 1975.

    CAS  PubMed  Google Scholar 

  18. Rush, S., J.A. Abildshov, and R. McFee. Resistivity of body tissue at low frequencies.Circ. Res. 12:40–50, 1963.

    CAS  PubMed  Google Scholar 

  19. Schmitt, O.H. Averaging techniques employing several simultaneous physiological variables.Ann. N.Y. Acad. Sci. 115:952–975, 1964.

    CAS  PubMed  Google Scholar 

  20. Schmitt, O.H. Biological information processing using the concept of interpenetrating domains. InInformation Processing in the Nervous System, edited by K.N. Leibovic, New York: Springer-Verlag, 1969, p. 329.

    Google Scholar 

  21. Spach, M.S. and R.C. Barr. Origin of epicardial ST-T wave potentials in the intact dog.Circ. Res. 39:475–487, 1976.

    CAS  PubMed  Google Scholar 

  22. Spach, M.S., W.T. Miller, III, E. Miller-Jones, R.B. Warren, and R.C. Barr. Extracellular potentials related to intracellular action potentials during impulse conduction in anisotropic cardiac muscle.Circ. Res. 45:188–204, 1979.

    CAS  PubMed  Google Scholar 

  23. Streeter, D.D., H.M. Spotnitz, D.P. Patel, J. Ross, and E.H. Sonnenblick. Fiber orientation in the canine left ventricle during diastole and systole.Circ. Res. 24:339–347, 1969.

    PubMed  Google Scholar 

  24. Tasaki, I. and S. Hagiwara. Capacity of muscle fiber membrane.Am. J. Physiol. 188:423–429, 1957.

    CAS  PubMed  Google Scholar 

  25. Weidmann, S. Electrical constants of trabecular muscle from mammalian heart.J. Physiol. 210:1041–1054, 1970.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geselowitz, D.B., Miller, W.T. A bidomain model for anisotropic cardiac muscle. Ann Biomed Eng 11, 191–206 (1983). https://doi.org/10.1007/BF02363286

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02363286

Keywords

Navigation