Skip to main content

Reddening-Free Q Indices to Identify Be Star Candidates

  • Conference paper
  • First Online:
Cloud Computing, Big Data & Emerging Topics (JCC-BD&ET 2020)

Abstract

Astronomical databases currently provide high-volume spectroscopic and photometric data. While spectroscopic data is better suited to the analysis of many astronomical objects, photometric data is relatively easier to obtain due to shorter telescope usage time. Therefore, there is a growing need to use photometric information to automatically identify objects for further detailed studies, specially H\(\alpha \) emission line stars such as Be stars. Photometric color-color diagrams (CCDs) are commonly used to identify this kind of objects. However, their identification in CCDs is further complicated by the reddening effect caused by both the circumstellar and interstellar gas. This effect prevents the generalization of candidate identification systems. Therefore, in this work we evaluate the use of neural networks to identify Be star candidates from a set of OB-type stars. The networks are trained using a labeled subset of the VPHAS+ and 2MASS databases, with filters ugr,  H\(\alpha , i, J, H\), and K. In order to avoid the reddening effect, we propose and evaluate the use of reddening-free Q indices to enhance the generalization of the model to other databases and objects. To test the validity of the approach, we manually labeled a subset of the database, and use it to evaluate candidate identification models. We also labeled an independent dataset for cross dataset evaluation. We evaluate the recall of the models at a 99% precision level on both test sets. Our results show that the proposed features provide a significant improvement over the original filter magnitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A color index is defined as the difference of two magnitudes at different wavelengths (\(m_{\lambda _1} - m_{\lambda _2}\)). Magnitude is a unitless measure of the brightness of an object on a logarithmic scale in a defined passband. The brighter an object, the more negative the value of its magnitude.

  2. 2.

    Filter V corresponds to Johnson’s photometric system.

  3. 3.

    The selective absorption coefficient relates the absorption coefficient in the visual, \(A_\mathrm{v}\), with the excess color \(E(B-V)\), through the ratio \(A_\mathrm{v} = R_\mathrm{v}\, E(B-V)\).

  4. 4.

    We note that Purity and Completeness are commonly used as synonyms for Precision and Recall, respectively. These terms are more prevalent in astronomy.

References

  1. Aidelman, Y., Cidale, L.S., Zorec, J., Panei, J.A.: Open clusters. III. Fundamental parameters of B stars in NGC 6087, NGC 6250, NGC 6383, and NGC 6530 B-type stars with circumstellar envelopes. A&A 610, A30F(February 2018). https://doi.org/10.1051/0004-6361/201730995

  2. Akras, S., Leal-Ferreira, M.L., Guzman-Ramirez, L., Ramos-Larios, G.: A machine learning approach for identification and classification of symbiotic stars using 2MASS and WISE. MNRAS 483(4), 5077–5104 (2019). https://doi.org/10.1093/mnras/sty3359

    Article  Google Scholar 

  3. Alam, S., et al.: The eleventh and twelfth data releases of the Sloan digital sky survey: final data from SDSS-iii. Astrophys. J. Suppl. Ser. 219(1), 12 (2015)

    Article  MathSciNet  Google Scholar 

  4. Barentsen, G., et al.: The second data release of the INT photometric h\(\alpha \) survey of the northern galactic plane (IPHAS DR2). Mon. Not. R. Astron. Soc. 444(4), 3230–3257 (2014)

    Article  Google Scholar 

  5. Catanzaro, G.: Spectroscopic atlas of H\(\alpha \) and H\(\beta \) in a sample of northern Be stars. A&A 550, A79 (2013). https://doi.org/10.1051/0004-6361/201220357

    Article  Google Scholar 

  6. Cochetti, Y.R., Arcos, C., Kanaan, S., Meilland, A., Cidale, L.S., Curé, M.: Spectro-interferometric observations of a sample of Be stars. Setting limits to the geometry and kinematics of stable Be disks. A&A 621, A123 (2019). https://doi.org/10.1051/0004-6361/201833551

    Article  Google Scholar 

  7. Collins, II, G.W.: The use of terms and definitions in the study of Be stars. In: Slettebak, A., Snow, T.P. (eds.) IAU Colloq. 92: Physics of Be Stars, pp. 3–19 (1987)

    Google Scholar 

  8. Cui, X.Q., et al.: The large sky area multi-object fiber spectroscopic telescope (LAMOST). Res. Astron. Astrophys. 12(9), 1197–1242 (2012). https://doi.org/10.1088/1674-4527/12/9/003

    Article  Google Scholar 

  9. Dimitrov, D.P., Kjurkchieva, D.P., Ivanov, E.I.: A study of the H\(\alpha \) variability of Be stars. AJ 156(2), 61 (2018). https://doi.org/10.3847/1538-3881/aacbd8

    Article  Google Scholar 

  10. Drew, J.E., et al.: The VST photometric H\(\alpha \) survey of the southern galactic plane and bulge (VPHAS+). MNRAS 440(3), 2036–2058 (2014). https://doi.org/10.1093/mnras/stu394

    Article  Google Scholar 

  11. Gies, D.R., et al.: CHARA array K’-band measurements of the angular dimensions of Be star disks. ApJ 654, 527–543 (2007). https://doi.org/10.1086/509144

    Article  Google Scholar 

  12. Goldberger, J., Hinton, G.E., Roweis, S.T., Salakhutdinov, R.R.: Neighbourhood components analysis. In: Advances in Neural Information Processing Systems, pp. 513–520 (2005)

    Google Scholar 

  13. Hirata, R.: Interpretation of the long-term variation in late-type active Be stars. PASJ 47, 195–218 (1995)

    Google Scholar 

  14. Huang, S.S.: Profiles of emission lines in Be stars. ApJ 171, 549 (1972). https://doi.org/10.1086/151309

    Article  Google Scholar 

  15. Jaschek, M., Slettebak, A., Jaschek, C.: Be star terminology. Be Star Newsl. 4, 9–11 (1981)

    Google Scholar 

  16. Johnson, H.L., Morgan, W.W.: Some evidence for a regional variation in the law of interstellar reddening. ApJ 122, 142 (1955). https://doi.org/10.1086/146063

    Article  Google Scholar 

  17. Liu, Z., Cui, W., Liu, C., Huang, Y., Zhao, G., Zhang, B.: A catalog of OB stars from LAMOST spectroscopic survey. ApJs 241(2), 32 (2019). https://doi.org/10.3847/1538-4365/ab0a0d

    Article  Google Scholar 

  18. Meilland, A., et al.: First direct detection of a Keplerian rotating disk around the Be star \(\alpha \) Arae using AMBER/VLTI. A&A 464, 59–71 (2007). https://doi.org/10.1051/0004-6361:20064848

    Article  Google Scholar 

  19. Mohr-Smith, M., et al.: New OB star candidates in the Carina Arm around Westerlund 2 from VPHAS+. MNRAS 450(4), 3855–3873 (2015). https://doi.org/10.1093/mnras/stv843

    Article  Google Scholar 

  20. Mohr-Smith, M., et al.: The deep OB star population in Carina from the VST photometric H\(\alpha \) survey (VPHAS+). MNRAS 465(2), 1807–1830 (2017). https://doi.org/10.1093/mnras/stw2751

    Article  Google Scholar 

  21. Pérez-Ortiz, M.F., García-Varela, A., Quiroz, A.J., Sabogal, B.E., Hernández, J.: Machine learning techniques to select Be star candidates. An application in the OGLE-IV Gaia south ecliptic pole field. A&A 605, A123 (2017). https://doi.org/10.1051/0004-6361/201628937

    Article  Google Scholar 

  22. Peters, M., et al.: The hubble space telescope advanced camera for surveys emission line survey of andromeda. I. classical Be stars. AJ 159(3), 119 (2020). https://doi.org/10.3847/1538-3881/ab6d74

    Article  Google Scholar 

  23. Quirrenbach, A.: Seven Be stars resolved by optical interferometry. In: American Astronomical Society Meeting Abstracts #182. Bulletin of the American Astronomical Society, vol. 25, p. 916 (May 1993)

    Google Scholar 

  24. Quirrenbach, A., Buscher, D.F., Mozurkewich, D., Hummel, C.A., Armstrong, J.T.: Maximum-entropy maps of the Be shell star zeta Tauri from optical long-baseline interferometry. A&A 283, L13–L16 (1994)

    Google Scholar 

  25. Rivinius, T., Carciofi, A.C., Martayan, C.: Classical Be stars. Astron. Astrophys. Rev. 21(1), 1–86 (2013). https://doi.org/10.1007/s00159-013-0069-0

    Article  Google Scholar 

  26. Schlafly, E.F., Finkbeiner, D.P.: Measuring reddening with Sloan digital sky survey stellar spectra and recalibrating SFD. ApJ 737(2), 103 (2011). https://doi.org/10.1088/0004-637X/737/2/103

    Article  Google Scholar 

  27. Skrutskie, M.F., et al.: The two micron all sky survey (2MASS). AJ 131(2), 1163–1183 (2006). https://doi.org/10.1086/498708

    Article  Google Scholar 

  28. Struve, O.: On the origin of bright lines in spectra of stars of class B. ApJ 73, 94 (1931). https://doi.org/10.1086/143298

    Article  Google Scholar 

  29. Udalski, A., Szymański, M., Szymański, G.: Ogle-iv: fourth phase of the optical gravitational lensing experiment (2015). arXiv preprint arXiv:1504.05966

  30. Vioque, M., Oudmaijer, R., Baines, D., Pérez-Martínez, R.: New catalogue of intermediate mass Pre-main sequence objects in Gaia DR2 using machine learning. In: The Gaia Universe, p. 52 (April 2019). https://doi.org/10.5281/zenodo.3237084

  31. Zorec, J., et al.: Critical study of the distribution of rotational velocities of Be stars. I. Deconvolution methods, effects due to gravity darkening, macroturbulence and binarity. A&A 595, A132 (2016). https://doi.org/10.1051/0004-6361/201628760

    Article  Google Scholar 

  32. Zorec, J., et al.: Critical study of the distribution of rotational velocities of Be stars. II: Differential rotation and some hidden effects interfering with the interpretation of the V sin I parameter. A&A 602, A83 (2017). https://doi.org/10.1051/0004-6361/201628761

    Article  Google Scholar 

Download references

Acknowledgements

This work is based on data obtained as part of the INT H\(\alpha \) photometric study of the northern galactic plane (IPHAS; https://www.iphas.org), VST Photometric H\(\alpha \) Survey of the Southern Galactic Plane and Bulge (VPHAS+; https://www.vphasplus.org), Two Micron All Sky Survey (2MASS, https://irsa.ipac.caltech.edu/Missions/2mass.html), Sloan Digital Sky Survey (SDSS; https://www.sdss.org) and The Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST; http://www.lamost.org).

YA is grateful to L. Cidale, G. Baume and A. Smith Castelli for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Facundo Quiroga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aidelman, Y., Escudero, C., Ronchetti, F., Quiroga, F., Lanzarini, L. (2020). Reddening-Free Q Indices to Identify Be Star Candidates. In: Rucci, E., Naiouf, M., Chichizola, F., De Giusti, L. (eds) Cloud Computing, Big Data & Emerging Topics. JCC-BD&ET 2020. Communications in Computer and Information Science, vol 1291. Springer, Cham. https://doi.org/10.1007/978-3-030-61218-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61218-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61217-7

  • Online ISBN: 978-3-030-61218-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics