Skip to main content
Log in

Classical Be stars

Rapidly rotating B stars with viscous Keplerian decretion disks

  • Review Article
  • Published:
The Astronomy and Astrophysics Review Aims and scope

Abstract

In the past decade, a consensus has emerged regarding the nature of classical Be stars: They are very rapidly rotating main sequence B stars, which, through a still unknown, but increasingly constrained process, form an outwardly diffusing gaseous, dust-free Keplerian disk. In this work, first the definition of Be stars is contrasted to similar classes, and common observables obtained for Be stars are introduced and the respective formation mechanisms explained. We then review the current state of knowledge concerning the central stars as non-radially pulsating objects and non-magnetic stars, as far as it concerns large-scale, i.e., mostly dipolar, global fields. Localized, weak magnetic fields remain possible, but are as of yet unproven. The Be-phenomenon, linked with one or more mass-ejection processes, acts on top of a rotation rate of about 75 % of critical or above. The properties of the process can be well constrained, leaving only few options, most importantly, but not exclusively, non-radial pulsation and small-scale magnetic fields. Of these, it is well possible that all are realized: In different stars, different processes may be acting. Once the material has been lifted into Keplerian orbit, memory of the details of the ejection process is lost, and the material is governed by viscosity. The disks are fairly well understood in the theoretical framework of the viscous decretion disk model. This is not only true for the disk structure, but as well for its variability, both cyclic and secular. Be binaries are reviewed under the aspect of the various types of interactions a companion can have with the circumstellar disk. Finally, extragalactic Be stars, at lower metallicities, seem more common and more rapidly rotating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. The brightest Be star, α Eri (B3 V), is the ninth of all stars when sorted by V-magnitude. Widely discrepant values for spectral type and temperature have been published (see SIMBAD database, and Table 4 of Kaiser 1989), emphasizing the need for further understanding.

  2. The word “decretion” is uncommon in the English language, and originally means “a decrease”. However, it has become a generally accepted expression in the community as rather meaning “the act of decreasing”, and it is felt that “decretion disk” properly conveys the picture of being the opposite of an accretion disk, at least in terms of the direction of mass transport (Pringle 1991, 1992).

  3. No proceedings published, presentations at http://ipl.uv.es/bexrb2011/.

  4. http://activebstars.iag.usp.br/, formerly “Be star Working Group”.

  5. ISSN 0296-3140.

  6. http://basebe.obspm.fr/.

  7. In the heyday of nationalism, this was communicated in French language to a German Journal by an Italian astronomer, working at the international organization of the time, the Vatican.

  8. Main sequence understood here in terms of the upper main sequence, where it comprises of the luminosity classes V to III.

  9. Infrared hydrogen lines can have purely photospheric emission in early main sequence B stars due to NLTE effects, see, e.g., Zaal et al. (1999).

  10. Spectra are available from the ESO (http://archive.eso.org/) and IUE (http://archive.stsci.edu/iue/) archives.

  11. We use “primary” to designate the star that dominates the photospheric spectrum in the visible range.

  12. A strongly distorted and thermally inhomogeneous star, i.e. a rapidly rotating one will show intrinsic polarization, too. However, the effect is completely negligible compared to the one caused by the disk.

  13. Often just “Keplerian orbit” is said, but we note non-circular Keplerian orbits are common in Be star disks as well, see Sect. 5.3.

  14. Named in honor of E.A. Roche (1820–1883) for his work on equipotential surfaces.

  15. Often called the von Zeipel theorem, this is actually only a facet; in its complete form the theorem is about the unattainability of radiative equilibrium in a rotating body of gas.

  16. Some line processes, such as resonant scattering, will result in polarized line emission.

  17. Magnetic fields produce Stokes Q and U signatures as well, but typically one or two orders of magnitude smaller than Stokes V.

  18. Strictly speaking LITpro is a tool to reconstruct interferometric observables out of geometric building blocks to reconstruct the on-sky intensity map. Other, similar tools exist, but only LITpro has so far been used for Be stars, to our knowledge.

  19. Here and below we make use of Eqs. (7), (8), and (11) to convert the literature values, typically listed as ω or ϒ, to W. The uncertainties in estimating v crit and v orb are equivalent to each other, as long as the Roche approximation is used.

  20. Values given here are the half-opening angle of the disk, i.e., as measured from the disk equatorial plane. Twice this value is sometimes given, but designations are used incoherently in the literature.

  21. \(c_{s}=[(kT)/(\mu m_{\rm H})]^{1/2}\), where μ is the mean molecular weight of the gas, T the (isothermal) electron temperature and \(m_{\rm H}\) the hydrogen mass.

  22. This quantity actually lacks a definition in the literature, and probably cannot be unambiguously defined. See Sect. 5.4 for one possible definition.

  23. An exception are the studies that make use of the SIMECA code Tycner et al. (2005), which employs a two-component outflowing model for the Be disk.

  24.  Dra being an exception; possible reasons for the discrepancy are discussed in Meilland et al. (2009).

  25. Close to the star there are non-radial components to the radiative force vector Harmanec.

  26. The surface density is defined as the vertically integrated disk density, ρ: \(\varSigma(r) = \int_{-\infty }^{\infty} \rho(r,z) \,\mathrm{d} z\).

  27. “Truncation radius” seems an unfortunate expression because the disk does not cease to exist past that radius.

  28. Okazaki (2007) determined an inclination angle of 95 for  Tau, which means the southern side of the disk faces the Earth.

References

  • Abt HA, Levy SG (1978) Binaries among B2-B5 IV, V absorption and emission stars. Astrophys J Suppl Ser 36:241–258. doi:10.1086/190498

    ADS  Google Scholar 

  • Adams FC, Lada CJ, Shu FH (1987) Spectral evolution of young stellar objects. Astrophys J 312:788–806. doi:10.1086/164924

    ADS  Google Scholar 

  • Aerts C, Christensen-Dalsgaard J, Kurtz DW (2010) Asteroseismology. Springer, Berlin. doi:10.1007/978-1-4020-5803-5

    Google Scholar 

  • Ahmed A, Sigut TAA (2012) The temperature structure of Be star disks in the Small Magellanic Cloud. Astrophys J 744:191. doi:10.1088/0004-637X/744/2/191

    ADS  Google Scholar 

  • Alecian E (2011) Activity of Herbig Be stars and their environment. In: Neiner C, Wade G, Meynet G, Peters G (eds) Active OB stars. IAU symposium, vol 272, pp 354–365. doi:10.1017/S1743921311010775

    Google Scholar 

  • Baade D (1988) Nonradial pulsations and the be phenomenon. In: Cayrel de Strobel G, Spite M (eds) The impact of very high S/N spectroscopy on stellar physics. IAU symposium, vol 132, p 217

    Google Scholar 

  • Baade D (1992) Binary Be-stars and Be-binaries. In: Kondo Y, Sistero R, Polidan RS (eds) Evolutionary processes in interacting binary stars. IAU symposium, vol 151, p 147

    Google Scholar 

  • Baade D, Rivinius T, Štefl S, Kaufer A (2002) A spectroscopic search for variability of Be stars in the SMC. Astron Astrophys 383:L31–L34. doi:10.1051/0004-6361:20020090

    ADS  Google Scholar 

  • Bagnulo S, Szeifert T, Wade GA, Landstreet JD, Mathys G (2002) Measuring magnetic fields of early-type stars with FORS1 at the VLT. Astron Astrophys 389:191–201. doi:10.1051/0004-6361:20020606

    ADS  Google Scholar 

  • Bagnulo S, Landstreet JD, Fossati L, Kochukhov O (2012) Magnetic field measurements and their uncertainties: the FORS1 legacy. Astron Astrophys 538:A129. doi:10.1051/0004-6361/201118098

    ADS  MATH  Google Scholar 

  • Balbus SA (2003) Enhanced angular momentum transport in accretion disks. Annu Rev Astron Astrophys 41:555–597. doi:10.1146/annurev.astro.41.081401.155207

    ADS  Google Scholar 

  • Balbus SA, Hawley JF (1998) Instability, turbulence, and enhanced transport in accretion disks. Rev Mod Phys 70:1–53. doi:10.1103/RevModPhys.70.1

    ADS  Google Scholar 

  • Ballot J, Lignières F, Reese DR, Rieutord M (2010) Gravity modes in rapidly rotating stars. Limits of perturbative methods. Astron Astrophys 518:A30. doi:10.1051/0004-6361/201014426

    ADS  Google Scholar 

  • Balona LA (2013) Rotational modulation in Be stars. In: Suárez JC, Garrido R, Balona LA, Christensen-Dalsgaard J (eds) Stellar pulsations: impact of new instrumentation and new insights. Astrophysics and space science proceedings, vol 31, p 247. doi:10.1007/978-3-642-29630-7_45

    Google Scholar 

  • Balona LA, Cuypers J, Marang F (1992) Intensive photometry of southern Be variables. II—Summer objects. Astron Astrophys Suppl Ser 92:533–563

    ADS  Google Scholar 

  • Balona LA, Henrichs HF, Medupe R (eds) (2003) Magnetic fields in O, B and A stars: origin and connection to pulsation, rotation and mass loss. Astronomical society of the pacific conference series, vol 305

    Google Scholar 

  • Balona LA, Pigulski A, Cat PD, Handler G, Gutiérrez-Soto J, Engelbrecht CA, Frescura F, Briquet M, Cuypers J, Daszyńska-Daszkiewicz J, Degroote P, Dukes RJ, Garcia RA, Green EM, Heber U, Kawaler SD, Lehmann H, Leroy B, Molenda-Zaaowicz J, Neiner C, Noels A, Nuspl J, Østensen R, Pricopi D, Roxburgh I, Salmon S, Smith MA, Suárez JC, Suran M, Szabó R, Uytterhoeven K, Christensen-Dalsgaard J, Kjeldsen H, Caldwell DA, Girouard FR, Sanderfer DT (2011) Kepler observations of the variability in B-type stars. Mon Not R Astron Soc 413:2403–2420. doi:10.1111/j.1365-2966.2011.18311.x

    ADS  Google Scholar 

  • Barnsley RM, Steele IA (2013) A representative sample of Be stars. V: Hα variability. Astron Astrophys 556:A81. doi:10.1051/0004-6361/201220419

    ADS  Google Scholar 

  • Bisikalo DV, Boyarchuk AA, Harmanec P, Kaigorodov PV, Kuznetsov OA (2006) Disc formation in binary Be stars. In: Fridman AM, Marov MY, Kovalenko IG (eds) Astrophysics and space science library, vol 337, p 75

    Google Scholar 

  • Bjorkman JE (1997) Circumstellar disks. In: de Greve JP, Blomme R, Hensberge H (eds) Stellar atmospheres: theory and observations. Lecture notes in physics, vol 497. Springer, Berlin, p 239. doi:10.1007/BFb0113487

    Google Scholar 

  • Bjorkman JE (2000) The formation and structure of circumstellar disks. In: Smith MA, Henrichs HF, Fabregat J (eds) IAU colloq 175: the Be phenomenon in early-type stars. Astronomical society of the pacific conference series, vol 214, p 435

    Google Scholar 

  • Bjorkman JE, Bjorkman KS (1994) The effects of gravity darkening on the ultraviolet continuum polarization produced by circumstellar disks. Astrophys J 436:818–830. doi:10.1086/174958

    ADS  Google Scholar 

  • Bjorkman JE, Carciofi AC (2005) Modeling the structure of hot star disks. In: Ignace R, Gayley KG (eds) The nature and evolution of disks around hot stars. Astronomical society of the pacific conference series, vol 337, p 75

    Google Scholar 

  • Bjorkman JE, Cassinelli JP (1993) Equatorial disk formation around rotating stars due to ram pressure confinement by the stellar wind. Astrophys J 409:429–449. doi:10.1086/172676

    ADS  Google Scholar 

  • Bjorkman KS, Nordsieck KH, Code AD, Anderson CM, Babler BL, Clayton GC, Magalhaes AM, Meade MR, Nook MA, Schulte-Ladbeck RE, Taylor M, Whitney BA (1991) First ultraviolet spectropolarimetry of Be stars from the Wisconsin ultraviolet photo-polarimeter experiment. Astrophys J Lett 383:L67–L70. doi:10.1086/186243

    ADS  Google Scholar 

  • Bjorkman KS, Miroshnichenko AS, McDavid D, Pogrosheva TM (2002) A study of π Aquarii during a quasi-normal star phase: refined fundamental parameters and evidence for binarity. Astrophys J 573:812–824. doi:10.1086/340751

    ADS  Google Scholar 

  • Bonanos AZ, Massa DL, Sewilo M, Lennon DJ, Panagia N, Smith LJ, Meixner M, Babler BL, Bracker S, Meade MR, Gordon KD, Hora JL, Indebetouw R, Whitney BA (2009) Spitzer SAGE infrared photometry of massive stars in the Large Magellanic Cloud. Astron J 138:1003–1021. doi:10.1088/0004-6256/138/4/1003

    ADS  Google Scholar 

  • Bonanos AZ, Lennon DJ, Köhlinger F, van Loon JT, Massa DL, Sewilo M, Evans CJ, Panagia N, Babler BL, Block M, Bracker S, Engelbracht CW, Gordon KD, Hora JL, Indebetouw R, Meade MR, Meixner M, Misselt KA, Robitaille TP, Shiao B, Whitney BA (2010) Spitzer SAGE-SMC infrared photometry of massive stars in the Small Magellanic Cloud. Astron J 140:416–429. doi:10.1088/0004-6256/140/2/416

    ADS  Google Scholar 

  • Bouret JC, Lanz T, Hillier DJ, Heap SR, Hubeny I, Lennon DJ, Smith LJ, Evans CJ (2003) Quantitative spectroscopy of o stars at low metallicity: o dwarfs in NGC 346. Astrophys J 595:1182–1205. doi:10.1086/377368

    ADS  Google Scholar 

  • Bresolin F, Urbaneja MA, Gieren W, Pietrzyński G, Kudritzki RP (2007) VLT spectroscopy of blue supergiants in IC 1613. Astrophys J 671:2028–2039. doi:10.1086/522571

    ADS  Google Scholar 

  • Brown JC, McLean IS (1977) Polarisation by Thomson scattering in optically thin stellar envelopes. I. Source star at centre of axisymmetric envelope. Astron Astrophys 57:141

    ADS  Google Scholar 

  • Brown JC, Telfer D, Li Q, Hanuschik R, Cassinelli JP, Kholtygin A (2004) The effect of rotational gravity darkening on magnetically torqued Be star discs. Mon Not R Astron Soc 352:1061–1072. doi:10.1111/j.1365-2966.2004.07997.x

    ADS  Google Scholar 

  • Brown JC, Cassinelli JP, Maheswaran M (2008) Magnetically fed hot star Keplerian disks with slow outflow. Astrophys J 688:1320–1325. doi:10.1086/592558

    ADS  Google Scholar 

  • Cameron C, Saio H, Kuschnig R, Walker GAH, Matthews JM, Guenther DB, Moffat AFJ, Rucinski SM, Sasselov D, Weiss WW (2008) MOST detects SPBe pulsations in HD 127756 and HD 217543: asteroseismic rotation rates independent of vsini. Astrophys J 685:489–507. doi:10.1086/590369

    ADS  Google Scholar 

  • Cantiello M, Braithwaite J (2011) Magnetic spots on hot massive stars. Astron Astrophys 534:A140. doi:10.1051/0004-6361/201117512

    ADS  Google Scholar 

  • Cantiello M, Yoon SC, Langer N, Livio M (2007) Binary star progenitors of long gamma-ray bursts. Astron Astrophys 465:L29–L33. doi:10.1051/0004-6361:20077115

    ADS  Google Scholar 

  • Carciofi AC, Bjorkman JE (2006) Non-LTE Monte Carlo radiative transfer. I. The thermal properties of Keplerian disks around classical Be stars. Astrophys J 639:1081–1094. doi:10.1086/499483

    ADS  Google Scholar 

  • Carciofi AC, Bjorkman JE (2008) Non-LTE Monte Carlo radiative transfer. II. Nonisothermal solutions for viscous Keplerian disks. Astrophys J 684:1374–1383. doi:10.1086/589875

    ADS  Google Scholar 

  • Carciofi AC, Rivinius T (eds) (2012) Circumstellar dynamics at high resolution. Astronomical society of the pacific conference series, vol 464

    Google Scholar 

  • Carciofi AC, Miroshnichenko AS, Kusakin AV, Bjorkman JE, Bjorkman KS, Marang F, Kuratov KS, García-Lario P, Calderón JVP, Fabregat J, Magalhães AM (2006) Properties of the δ Scorpii circumstellar disk from continuum modeling. Astrophys J 652:1617–1625. doi:10.1086/507935

    ADS  Google Scholar 

  • Carciofi AC, Magalhães AM, Leister NV, Bjorkman JE, Levenhagen RS (2007) Achernar: rapid polarization variability as evidence of photospheric and circumstellar activity. Astrophys J Lett 671:L49–L52. doi:10.1086/524772

    ADS  Google Scholar 

  • Carciofi AC, Domiciano de Souza A, Magalhães AM, Bjorkman JE, Vakili F (2008) On the determination of the rotational oblateness of Achernar. Astrophys J Lett 676:L41–L44. doi:10.1086/586895

    ADS  Google Scholar 

  • Carciofi AC, Okazaki AT, Le Bouquin JB, Štefl S, Rivinius T, Baade D, Bjorkman JE, Hummel CA (2009) Cyclic variability of the circumstellar disk of the Be star  Tauri. II. Testing the 2D global disk oscillation model. Astron Astrophys 504:915–927. doi:10.1051/0004-6361/200810962

    ADS  Google Scholar 

  • Carciofi AC, Bjorkman JE, Otero SA, Okazaki AT, Štefl S, Rivinius T, Baade D, Haubois X (2012) The first determination of the viscosity parameter in the circumstellar disk of a Be star. Astrophys J Lett 744:L15. doi:10.1088/2041-8205/744/1/L15

    ADS  Google Scholar 

  • Casini R, Landi Degl’Innocenti E (1994) Properties of the first-order moments of the polarization profiles of hydrogen lines. Astron Astrophys 291:668–678

    ADS  Google Scholar 

  • Cassinelli JP, Brown JC, Maheswaran M, Miller NA, Telfer DC (2002) A magnetically torqued disk model for Be stars. Astrophys J 578:951–966. doi:10.1086/342654

    ADS  Google Scholar 

  • Chauville J, Zorec J, Ballereau D, Morrell N, Cidale L, Garcia A (2001) High and intermediate-resolution spectroscopy of Be stars. Astron Astrophys 378:861–882. doi:10.1051/0004-6361:20011202

    ADS  Google Scholar 

  • Che X, Monnier JD, Tycner C, Kraus S, Zavala RT, Baron F, Pedretti E, ten Brummelaar T, McAlister H, Ridgway ST, Sturmann J, Sturmann L, Turner N (2012) Imaging disk distortion of Be binary system δ Scorpii near periastron. Astrophys J 757:29. doi:10.1088/0004-637X/757/1/29

    ADS  Google Scholar 

  • Chesneau O, Meilland A, Rivinius T, Stee P, Jankov S, Domiciano de Souza A, Graser U, Herbst T, Janot-Pacheco E, Koehler R, Leinert C, Morel S, Paresce F, Richichi A, Robbe-Dubois S (2005) First VLTI/MIDI observations of a Be star: alpha Arae. Astron Astrophys 435:275–287. doi:10.1051/0004-6361:20041954

    ADS  Google Scholar 

  • Chiappini C, Hirschi R, Meynet G, Ekström S, Maeder A, Matteucci F (2006) A strong case for fast stellar rotation at very low metallicities. Astron Astrophys 449:L27–L30. doi:10.1051/0004-6361:20064866

    ADS  Google Scholar 

  • Coe MJ, Bird AJ, Buckley DAH, Corbet RHD, Dean AJ, Finger M, Galache JL, Haberl F, McBride VA, Negueruela I, Schurch M, Townsend LJ, Udalski A, Wilms J, Zezas A (2010) INTEGRAL deep observations of the Small Magellanic Cloud. Mon Not R Astron Soc 406:2533–2539. doi:10.1111/j.1365-2966.2010.16844.x

    ADS  Google Scholar 

  • Collins GW II (1963) Continuum emission from a rapidly rotating stellar atmosphere. Astrophys J 138:1134. doi:10.1086/147712

    ADS  Google Scholar 

  • Collins GW II (1987) The use of terms and definitions in the study of Be stars. In: IAU Colloq 92: physics of Be stars, p 3

    Google Scholar 

  • Collins GW II, Harrington JP (1966) Theoretical H-beta line profiles and related parameters for rotating B stars. Astrophys J 146:152. doi:10.1086/148866

    ADS  Google Scholar 

  • Conti PS, Leep EM (1974) Spectroscopic observations of O-type stars. V. The hydrogen lines and λ4686 He ii. Astrophys J 193:113–124. doi:10.1086/153135

    ADS  Google Scholar 

  • Cranmer SR (1996) Dynamical models of winds from rotating hot stars. Dissertation, Bartol Research Institute, University of Delaware. Available at https://www.cfa.harvard.edu/~scranmer/cranmer_thesis.html

  • Cranmer SR (2005) A statistical study of threshold rotation rates for the formation of disks around Be stars. Astrophys J 634:585–601. doi:10.1086/491696

    ADS  Google Scholar 

  • Cranmer SR (2009) A pulsational mechanism for producing Keplerian disks around Be stars. Astrophys J 701:396–413. doi:10.1088/0004-637X/701/1/396

    ADS  Google Scholar 

  • Curtiss RH (1926) Statistical studies of stars with spectra in class Be. J R Astron Soc Can 20:19

    MathSciNet  ADS  Google Scholar 

  • Cuypers J, Balona LA, Marang F (1989) Intensive photometry of southern Be variables. I—Winter objects. Astron Astrophys Suppl Ser 81:151–186

    ADS  Google Scholar 

  • Delaa O, Stee P, Meilland A, Zorec J, Mourard D, Bério P, Bonneau D, Chesneau O, Clausse JM, Cruzalebes P, Perraut K, Marcotto A, Roussel A, Spang A, McAlister H, ten Brummelaar T, Sturmann J, Sturmann L, Turner N, Farrington C, Goldfinger PJ (2011) Kinematics and geometrical study of the Be stars 48 Persei and ψ Persei with the VEGA/CHARA interferometer. Astron Astrophys 529:A87. doi:10.1051/0004-6361/201015639

    ADS  Google Scholar 

  • de Mink SE, Langer N, Izzard RG, Sana H, de Koter A (2013) The rotation rates of massive stars: the role of binary interaction through tides, mass transfer, and mergers. Astrophys J 764:166. doi:10.1088/0004-637X/764/2/166

    ADS  Google Scholar 

  • de Wit WJ, Lamers HJGLM, Marquette JB, Beaulieu JP (2006) The remarkable light and colour variability of Small Magellanic Cloud Be stars. Astron Astrophys 456:1027–1035. doi:10.1051/0004-6361:20065137

    ADS  Google Scholar 

  • Diago PD, Gutiérrez-Soto J, Fabregat J, Martayan C (2008) Pulsating B and Be stars in the Small Magellanic Cloud. Astron Astrophys 480:179–186. doi:10.1051/0004-6361:20078754

    ADS  Google Scholar 

  • Diago PD, Gutiérrez-Soto J, Auvergne M, Fabregat J, Hubert AM, Floquet M, Frémat Y, Garrido R, Andrade L, de Batz B, Emilio M, Espinosa Lara F, Huat AL, Janot-Pacheco E, Leroy B, Martayan C, Neiner C, Semaan T, Suso J, Catala C, Poretti E, Rainer M, Uytterhoeven K, Michel E, Samadi R (2009a) Pulsations in the late-type Be star HD 50209 detected by CoRoT. Astron Astrophys 506:125–131. doi:10.1051/0004-6361/200911901

    ADS  Google Scholar 

  • Diago PD, Gutiérrez-Soto J, Fabregat J, Martayan C (2009b) More on pulsating B-type stars in the Magellanic Clouds. Commun Asteroseismol 158:184

    ADS  Google Scholar 

  • Doazan V, Marlborough JM, Morossi C, Peters GJ, Rusconi L, Sedmak G, Stalio R, Thomas RN, Willis A (1986) Ultraviolet and visual variability of ϑ CrB during a normal B-phase following a shell phase (1980–1985). Astron Astrophys 158:1–13

    ADS  Google Scholar 

  • Doazan V, Bourdonneau B, Rusconi L, Sedmak G, Thomas RN (1987) Long-term variability of the far-UV high-velocity components in γ Cas (1978–1986). Astron Astrophys 182:L25–L28

    ADS  Google Scholar 

  • Domiciano de Souza A, Kervella P, Jankov S, Abe L, Vakili F, di Folco E, Paresce F (2003) The spinning-top Be star Achernar from VLTI-VINCI. Astron Astrophys 407:L47–L50. doi:10.1051/0004-6361:20030786

    ADS  Google Scholar 

  • Domiciano de Souza A, Hadjara M, Vakili F, Bendjoya P, Millour F, Abe L, Carciofi AC, Faes DM, Kervella P, Lagarde S, Marconi A, Monin JL, Niccolini G, Petrov RG, Weigelt G (2012a) Beyond the diffraction limit of optical/IR interferometers. I. Angular diameter and rotation parameters of Achernar from differential phases. Astron Astrophys 545:A130. doi:10.1051/0004-6361/201218782

    ADS  Google Scholar 

  • Domiciano de Souza A, Zorec J, Vakili F (2012b) CHARRON: code for high angular resolution of rotating objects in nature. In: Boissier S, de Laverny P, Nardetto N, Samadi R, Valls-Gabaud D, Wozniak H (eds) SF2A-2012: proceedings of the annual meeting of the French society of astronomy and astrophysics, pp 321–324

    Google Scholar 

  • Donati JF, Semel M, Carter BD, Rees DE, Collier Cameron A (1997) Spectropolarimetric observations of active stars. Mon Not R Astron Soc 291:658

    ADS  Google Scholar 

  • Dougherty SM, Taylor AR (1992) Resolution of the circumstellar gas around the Be star ψ Persei. Nature 359:808–810. doi:10.1038/359808a0

    ADS  Google Scholar 

  • Draper ZH, Wisniewski JP, Bjorkman KS, Haubois X, Carciofi AC, Bjorkman JE, Meade MR, Okazaki A (2011) A new diagnostic of the radial density structure of Be disks. Astrophys J Lett 728:L40. doi:10.1088/2041-8205/728/2/L40

    ADS  Google Scholar 

  • Dunstall PR, Brott I, Dufton PL, Lennon DJ, Evans CJ, Smartt SJ, Hunter I (2011) The VLT-FLAMES survey of massive stars: nitrogen abundances for Be-type stars in the Magellanic Clouds. Astron Astrophys 536:A65. doi:10.1051/0004-6361/201117588

    ADS  Google Scholar 

  • Ekström S, Meynet G, Maeder A, Barblan F (2008) Evolution towards the critical limit and the origin of Be stars. Astron Astrophys 478:467–485. doi:10.1051/0004-6361:20078095

    ADS  Google Scholar 

  • Emilio M, Andrade L, Janot-Pacheco E, Baglin A, Gutiérrez-Soto J, de Suárez JC, Batz B, Diago P, Fabregat J, Floquet M, Frémat Y, Huat AL, Hubert AM, Espinosa Lara F, Leroy B, Martayan C, Neiner C, Semaan T, Suso J (2010) Photometric variability of the Be star CoRoT-ID 102761769. Astron Astrophys 522:A43. doi:10.1051/0004-6361/201014081

    ADS  Google Scholar 

  • Espinosa Lara F, Rieutord M (2011) Gravity darkening in rotating stars. Astron Astrophys 533:A43. doi:10.1051/0004-6361/201117252

    ADS  Google Scholar 

  • Faes DM, Carciofi AC, Rivinius T, Štefl S, Baade D, Domiciano de Souza A (2013) Differential interferometric phases at high spectral resolution as a sensitive physical diagnostic of circumstellar disks. Astron Astrophys 555:A76. doi:10.1051/0004-6361/201321313

    ADS  Google Scholar 

  • Floquet M, Hubert AM, Huat AL, Frémat Y, Janot-Pacheco E, Gutiérrez-Soto J, Neiner C, de Batz B, Leroy B, Poretti E, Amado P, Catala C, Rainer M, Diaz D, Uytterhoeven K, Andrade L, Diago PD, Emilio M, Espinosa Lara F, Fabregat J, Martayan C, Semaan T, Suso J (2009) The B0.5 IVe CoRoT target HD 49330. II. Spectroscopic ground-based observations. Astron Astrophys 506:103–110. doi:10.1051/0004-6361/200911927

    ADS  Google Scholar 

  • Fox GK (1991) Stellar occultation of polarized light from circumstellar electrons. III—General axisymmetric envelopes. Astrophys J 379:663–675. doi:10.1086/170540

    ADS  Google Scholar 

  • Frémat Y, Zorec J, Hubert AM, Floquet M (2005) Effects of gravitational darkening on the determination of fundamental parameters in fast-rotating B-type stars. Astron Astrophys 440:305–320. doi:10.1051/0004-6361:20042229

    ADS  Google Scholar 

  • Gehrz RD, Hackwell JA, Jones TW (1974) Infrared observations of Be stars from 2.3 to 19.5 microns. Astrophys J 191:675–684. doi:10.1086/153008

    ADS  Google Scholar 

  • Georgy C, Meynet G, Walder R, Folini D, Maeder A (2009) The different progenitors of type Ib, Ic SNe, and of GRB. Astron Astrophys 502:611–622. doi:10.1051/0004-6361/200811339

    ADS  Google Scholar 

  • Gies DR, Bagnuolo WG Jr, Ferrara EC, Kaye AB, Thaller ML, Penny LR, Peters GJ (1998) Hubble space telescope Goddard high resolution spectrograph observations of the Be + sdO binary φ Persei. Astrophys J 493:440. doi:10.1086/305113

    ADS  Google Scholar 

  • Gies DR, Bagnuolo WG Jr, Baines EK, ten Brummelaar TA, Farrington CD, Goldfinger PJ, Grundstrom ED, Huang W, McAlister HA, Mérand A, Sturmann J, Sturmann L, Touhami Y, Turner NH, Wingert DW, Berger DH, McSwain MV, Aufdenberg JP, Ridgway ST, Cochran AL, Lester DF, Sterling NC, Bjorkman JE, Bjorkman KS, Koubský P (2007) CHARA array K’-band measurements of the angular dimensions of Be star disks. Astrophys J 654:527–543. doi:10.1086/509144

    ADS  Google Scholar 

  • Goss KJF, Karoff C, Chaplin WJ, Elsworth Y, Stevens IR (2011) Variations of the amplitudes of oscillation of the Be star Achernar. Mon Not R Astron Soc 411:162–166. doi:10.1111/j.1365-2966.2010.17665.x

    ADS  Google Scholar 

  • Grady CA, Bjorkman KS, Snow TP (1987) Highly ionized stellar winds in Be stars—the evidence for aspect dependence. Astrophys J 320:376–397. doi:10.1086/165551

    ADS  Google Scholar 

  • Grady CA, Bjorkman KS, Snow TP, Sonneborn G, Shore SN, Barker PK (1989) Highly ionized stellar winds in Be stars. II—Winds in B6-B9.5e stars. Astrophys J 339:403–419. doi:10.1086/167306

    ADS  Google Scholar 

  • Granada A, Ekström S, Georgy C, Krticka J, Owocki S, Meynet G, Maeder A (2013) Populations of rotating stars II. Rapid rotators and their link to Be-type stars. Astron Astrophys 553:A25. doi:10.1051/0004-6361/201220559

    ADS  Google Scholar 

  • Groh JH, Damineli A, Hillier DJ, Barbá R, Fernández-Lajús E, Gamen RC, Moisés AP, Solivella G, Teodoro M (2009) Bona fide, strong-variable galactic luminous blue variable stars are fast rotators: detection of a high rotational velocity in HR Carinae. Astrophys J Lett 705:L25–L30. doi:10.1088/0004-637X/705/1/L25

    ADS  Google Scholar 

  • Grundstrom ED, Gies DR (2006) Estimating Be star disk radii using Hα emission equivalent widths. Astrophys J Lett 651:L53–L56. doi:10.1086/509635

    ADS  Google Scholar 

  • Grunhut JH, Rivinius T, Wade GA, Townsend RHD, Marcolino WLF, Bohlender DA, Szeifert T, Petit V, Matthews JM, Rowe JF, Moffat AFJ, Kallinger T, Kuschnig R, Guenther DB, Rucinski SM, Sasselov D, Weiss WW (2012) HR 5907: discovery of the most rapidly rotating magnetic early B-type star by the MiMeS collaboration. Mon Not R Astron Soc 419:1610–1627. doi:10.1111/j.1365-2966.2011.19824.x

    ADS  Google Scholar 

  • Guinan EF, Hayes DP (1984) The abrupt onset of a major ω Orionis mass loss episode. Astrophys J Lett 287:L39–L42. doi:10.1086/184393

    ADS  Google Scholar 

  • Gutiérrez-Soto J, Fabregat J, Suso J, Suárez JC, Moya A, Garrido R, Hubert AM, Floquet M, Neiner C, Frémat Y (2007) Multiperiodic pulsations in the Be stars NW Serpentis and V1446 Aquilae. Astron Astrophys 472:565–570. doi:10.1051/0004-6361:20077414

    ADS  Google Scholar 

  • Gutiérrez-Soto J, Floquet M, Samadi R, Neiner C, Garrido R, Fabregat J, Frémat Y, Diago PD, Huat AL, Leroy B, Emilio M, Hubert AM, de Andrade OTL, Batz B, Janot-Pacheco E, Espinosa Lara F, Martayan C, Semaan T, Suso J, Auvergne M, Chaintreuil S, Michel E, Catala C (2009) Low-amplitude variations detected by CoRoT in the B8 IIIe star HD 175869. Astron Astrophys 506:133–141. doi:10.1051/0004-6361/200911915

    ADS  Google Scholar 

  • Gutiérrez-Soto J, Semaan T, Garrido R, Baudin F, Hubert AM, Neiner C (2010) Amplitude variations of the CoRoT Be star 102719279. Astron Nachr 331:P51

    Google Scholar 

  • Gutiérrez-Soto J, Neiner C, Fabregat J, Lanza AF, Semaan T, Rainer M, Poretti E (2011) Short-term variations in Be stars observed by the CoRoT and Kepler space missions. In: Neiner C, Wade G, Meynet G, Peters G (eds) Active OB stars. IAU symposium, vol 272, pp 451–456. doi:10.1017/S1743921311011094

    Google Scholar 

  • Haberl F, Sturm R, Ballet J, Bomans DJ, Buckley DAH, Coe MJ, Corbet R, Ehle M, Filipovic MD, Gilfanov M, Hatzidimitriou D, La Palombara N, Mereghetti S, Pietsch W, Snowden S, Tiengo A (2012) The XMM-Newton survey of the Small Magellanic Cloud. Astron Astrophys 545:A128. doi:10.1051/0004-6361/201219758

    ADS  Google Scholar 

  • Halonen RJ, Jones CE (2013) On the intrinsic continuum linear polarization of classical Be stars during disk growth and dissipation. Astrophys J 765:17. doi:10.1088/0004-637X/765/1/17

    ADS  Google Scholar 

  • Hanuschik RW (1995) Shell lines in disks around Be stars. 1: Simple approximations for Keplerian disks. Astron Astrophys 295:423–434

    ADS  Google Scholar 

  • Hanuschik RW (1996) On the structure of Be star disks. Astron Astrophys 308:170–179

    ADS  Google Scholar 

  • Hanuschik RW, Vrancken M (1996) Shell lines in 48 Lib: the discovery of narrow optical absorption components (NOACs). Astron Astrophys 312:L17–L20

    ADS  Google Scholar 

  • Hanuschik RW, Dachs J, Baudzus M, Thimm G (1993) Hα outbursts of μ Centauri—a clue to the Be phenomenon. Astron Astrophys 274:356

    ADS  Google Scholar 

  • Harmanec P (1983) Review of observational facts about Be stars. Hvar Obs Bull 7:55–88

    ADS  Google Scholar 

  • Harmanec P, Bisikalo DV, Boyarchuk AA, Kuznetsov OA (2002a) On the role of duplicity in the Be phenomenon. I. General considerations and the first attempt at a 3-D gas-dynamical modelling of gas outflow from hot and rapidly rotating OB stars in binaries. Astron Astrophys 396:937–948. doi:10.1051/0004-6361:20021534

    ADS  Google Scholar 

  • Harmanec P, Bozić H, Percy JR, Yang S, Ruzdjak D, Sudar D, Wolf M, Iliev L, Huang L, Buil C, Eenens P (2002b) Properties and nature of Be stars. XXI. The long-term and the orbital variations of V832 Cyg=59 Cyg. Astron Astrophys 387:580–594. doi:10.1051/0004-6361:20020453

    ADS  Google Scholar 

  • Harrington DM, Kuhn JR (2009a) Spectropolarimetric observations of herbig Ae/Be stars. II. Comparison of spectropolarimetric surveys: HAeBe, Be and other emission-line stars. Astrophys J Suppl Ser 180:138–181. doi:10.1088/0067-0049/180/1/138

    ADS  Google Scholar 

  • Harrington DM, Kuhn JR (2009b) Ubiquitous Hα-polarized line profiles: absorptive spectropolarimetric effects and temporal variability in post-AGB, herbig Ae/Be, and other stellar types. Astrophys J 695:238–247. doi:10.1088/0004-637X/695/1/238

    ADS  Google Scholar 

  • Hartmann L, Calvet N, Gullbring E, D’Alessio P (1998) Accretion and the evolution of T Tauri disks. Astrophys J 495:385. doi:10.1086/305277

    ADS  Google Scholar 

  • Haubois X, Carciofi AC, Rivinius T, Okazaki AT, Bjorkman JE (2012) Dynamical evolution of viscous disks around Be stars. I. Photometry. Astrophys J 756:156. doi:10.1088/0004-637X/756/2/156

    ADS  Google Scholar 

  • Henrichs HF, de Jong JA, Donati JF, Catala C, Wade GA, Shorlin SLS, Veen PM, Nichols JS, Kaper L (2000) The magnetic field of β Cep and the Be phenomenon. In: Smith MA, Henrichs HF, Fabregat J (eds) IAU colloq 175: the Be phenomenon in early-type stars. Astronomical society of the pacific conference series, vol 214, p 324

    Google Scholar 

  • Henry GW, Smith MA (2012) Rotational and cyclical variability in γ Cassiopeiae. II. Fifteen seasons. Astrophys J 760:10. doi:10.1088/0004-637X/760/1/10

    ADS  Google Scholar 

  • Hirata R (2007) Disk precession in Pleione. In: Štefl S, Owocki SP, Okazaki AT (eds) Active OB-stars: laboratories for stellar and circumstellar physics. Astronomical society of the pacific conference series, vol 361, p 267

    Google Scholar 

  • Hoffleit D, Jaschek C (1991) The bright star catalogue. Yale University Observatory, New Haven

    Google Scholar 

  • Hoffman JL, Bjorkman J, Whitney B (eds) (2012) Stellar polarimetry: from birth to death. American institute of physics conference series, vol 1429

    Google Scholar 

  • Howarth ID (2007) Rotation and the circumstellar environment. In: Štefl S, Owocki SP, Okazaki AT (eds) Active OB-stars: laboratories for stellar and circumstellar physics. Astronomical society of the pacific conference series, vol 361, p 15

    Google Scholar 

  • Huang W, Gies DR, McSwain MV (2010) A stellar rotation census of B stars: from ZAMS to TAMS. Astrophys J 722:605–619. doi:10.1088/0004-637X/722/1/605

    ADS  Google Scholar 

  • Huat AL, Hubert AM, Baudin F, Floquet M, Neiner C, Frémat Y, Gutiérrez-Soto J, Andrade L, de Batz B, Diago PD, Emilio M, Espinosa Lara F, Fabregat J, Janot-Pacheco E, Leroy B, Martayan C, Semaan T, Suso J, Auvergne M, Catala C, Michel E, Samadi R (2009) The B0.5 IVe CoRoT target HD 49330. I. Photometric analysis from CoRoT data. Astron Astrophys 506:95–101. doi:10.1051/0004-6361/200911928

    ADS  Google Scholar 

  • Hubert AM, Floquet M (1998) Investigation of the variability of bright Be stars using HIPPARCOS photometry. Astron Astrophys 335:565–572

    ADS  Google Scholar 

  • Hubrig S, Yudin RV, Pogodin M, Schöller M, Peters GJ (2007) Evidence for weak magnetic fields in early-type emission stars. Astron Nachr 328:1133. doi:10.1002/asna.200710877

    ADS  Google Scholar 

  • Hubrig S, Schöller M, Savanov I, Yudin RV, Pogodin MA, Štefl S, Rivinius T, Curé M (2009) Magnetic survey of emission line B-type stars with FORS 1 at the VLT. Astron Nachr 330:708. doi:10.1002/asna.200911236

    ADS  Google Scholar 

  • Hummel W (1994) Line formation in Be star envelopes. 1: inhomogeneous density distributions. Astron Astrophys 289:458–468

    ADS  Google Scholar 

  • Hummel W (1998) On the spectacular variations of Be stars. Evidence for a temporarily tilted circumstellar disk. Astron Astrophys 330:243–252

    ADS  Google Scholar 

  • Hummel W, Štefl S (2001) The circumstellar structure of the Be shell star φ Persei. II. Modeling. Astron Astrophys 368:471–483. doi:10.1051/0004-6361:20000559

    ADS  Google Scholar 

  • Hummel W, Vrancken M (2000) Line formation in Be star circumstellar disks Shear broadening, shell absorption, stellar obscuration and rotational parameter. Astron Astrophys 359:1075–1084

    ADS  Google Scholar 

  • Hunter I, Brott I, Lennon DJ, Langer N, Dufton PL, Trundle C, de Smartt SJ, Koter A, Evans CJ, Ryans RSI (2008) The VLT FLAMES survey of massive stars: rotation and nitrogen enrichment as the key to understanding massive star evolution. Astrophys J Lett 676:L29–L32. doi:10.1086/587436

    ADS  Google Scholar 

  • Hunter I, Brott I, Langer N, Lennon DJ, Dufton PL, Howarth ID, Ryans RSI, Trundle C, de Evans CJ, Koter A, Smartt SJ (2009) The VLT-FLAMES survey of massive stars: constraints on stellar evolution from the chemical compositions of rapidly rotating galactic and Magellanic cloud B-type stars. Astron Astrophys 496:841–853. doi:10.1051/0004-6361/200809925

    ADS  Google Scholar 

  • Ignace R, Gayley KG (eds) (2005) The nature and evolution of disks around hot stars. Astronomical society of the pacific conference series, vol 337

    Google Scholar 

  • Jackson S, MacGregor KB, Skumanich A (2004) Models for the rapidly rotating Be star Achernar. Astrophys J 606:1196–1199. doi:10.1086/383197

    ADS  Google Scholar 

  • Jaschek M, Slettebak A, Jaschek C (1981) Be star terminology. Be Star Newsl 4:9

    ADS  Google Scholar 

  • Jones CE, Sigut TAA, Marlborough JM (2004) Iron line cooling of Be star circumstellar discs. Mon Not R Astron Soc 352:841–846. doi:10.1111/j.1365-2966.2004.07970.x

    ADS  Google Scholar 

  • Jones CE, Sigut TAA, Porter JM (2008a) The circumstellar envelopes of Be stars: viscous disc dynamics. Mon Not R Astron Soc 386:1922–1930. doi:10.1111/j.1365-2966.2008.13206.x

    ADS  Google Scholar 

  • Jones CE, Tycner C, Sigut TAA, Benson JA, Hutter DJ (2008b) A parameter study of classical Be star disk models constrained by optical interferometry. Astrophys J 687:598–607. doi:10.1086/591726

    ADS  Google Scholar 

  • Jones CE, Tycner C, Smith AD (2011) The variability of Hα equivalent widths in Be stars. Astron J 141:150. doi:10.1088/0004-6256/141/5/150

    ADS  Google Scholar 

  • Jones CE, Wiegert P, Tycner C, Henry GW, Halonen R, Muterspaugh MW (2013) Using photometry to probe the environment of δ Scorpii. Astron J 145:142. doi:10.1088/0004-6256/145/5/142

    ADS  Google Scholar 

  • Kaiser D (1989) Spectral energy distributions of Be stars. II—Determination of Be star parameters by comparison between measured and model spectra. Astron Astrophys 222:187–199

    ADS  Google Scholar 

  • Kanaan S, Meilland A, Stee P, Zorec J, Domiciano de Souza A, Frémat Y, Briot D (2008) Disk and wind evolution of Achernar: the breaking of the fellowship. Astron Astrophys 486:785–798. doi:10.1051/0004-6361:20078868

    ADS  Google Scholar 

  • Kato S (1983) Low-frequency, one-armed oscillations of Keplerian gaseous disks. Publ Astron Soc Jpn 35:249–261

    ADS  Google Scholar 

  • Kaufer A, Stahl O, Prinja RK, Witherick D (2006) Multi-periodic photospheric pulsations and connected wind structures in HD 64760. Astron Astrophys 447:325–341. doi:10.1051/0004-6361:20053847

    ADS  Google Scholar 

  • Keller SC (2004) Rotation of early B-type stars in the Large Magellanic Cloud: the role of evolution and metallicity. Publ Astron Soc Aust 21:310–317. doi:10.1071/AS04024

    ADS  Google Scholar 

  • Keller SC, Bessell MS, Cook KH, Geha M, Syphers D (2002) Blue variable stars from the MACHO database. I. Photometry and spectroscopy of the Large Magellanic Cloud sample. Astron J 124:2039–2044. doi:10.1086/342548

    ADS  Google Scholar 

  • Kervella P, Domiciano de Souza A (2006) The polar wind of the fast rotating Be star Achernar. VINCI/VLTI interferometric observations of an elongated polar envelope. Astron Astrophys 453:1059–1066. doi:10.1051/0004-6361:20054771

    ADS  Google Scholar 

  • King AR, Pringle JE, Livio M (2007) Accretion disc viscosity: how big is alpha? Mon Not R Astron Soc 376:1740–1746. doi:10.1111/j.1365-2966.2007.11556.x

    ADS  Google Scholar 

  • Kochukhov O, Sudnik N (2013) Detectability of small-scale magnetic fields in early-type stars. Astron Astrophys 554:A93. doi:10.1051/0004-6361/201321583

    ADS  Google Scholar 

  • Kogure T, Hirata R (1982) The Be star phenomena I. General properties. Bull Astron Soc India 10:281

    ADS  Google Scholar 

  • Koubský P, Harmanec P, Kubát J, Hubert AM, Božić H, Floquet M, Hadrava P, Hill G, Percy JR (1997) Properties and nature of Be stars. XVIII. Spectral, light and colour variations of 4 Herculis. Astron Astrophys 328:551–564

    ADS  Google Scholar 

  • Koubský P, Hummel CA, Harmanec P, Tycner C, van Leeuwen F, Yang S, Šlechta M, Božić H, Zavala RT, Ruždjak D, Sudar D (2010) Properties and nature of Be stars. 28. Implications of systematic observations for the nature of the multiple system with the Be star o Cassiopeæ and its circumstellar environment. Astron Astrophys 517:A24. doi:10.1051/0004-6361/201014477

    ADS  Google Scholar 

  • Kraus S, Monnier JD, Che X, Schaefer G, Touhami Y, Gies DR, Aufdenberg JP, Baron F, Thureau N, ten Brummelaar TA, McAlister HA, Turner NH, Sturmann J, Sturmann L (2012) Gas distribution, kinematics, and excitation structure in the disks around the classical Be stars β Canis Minoris and  Tauri. Astrophys J 744:19. doi:10.1088/0004-637X/744/1/19

    ADS  Google Scholar 

  • Kříž S, Harmanec P (1975) A hypothesis of the binary origin of Be stars. Bull Astron Inst Czechoslov 26:65–81

    ADS  Google Scholar 

  • Kroll P (1995) Dreidimensionale Simulationen zirkumstellarer Strukturen in Symbiotischen Doppelsternen und Be-Sternen mit der Methode der Smoothed-Particle-Hydrodynamics auf Parallelrechnern. Dissertation, Univ. Tübingen

  • Kroll P, Hanuschik RW (1997) Dynamics of self-accreting disks in Be stars. In: Wickramasinghe DT, Bicknell GV, Ferrario L (eds) IAU Colloq 163: accretion phenomena and related outflows. Astronomical society of the pacific conference series, vol 121, p 494

    Google Scholar 

  • Krtička J, Owocki SP, Meynet G (2011) Mass and angular momentum loss via decretion disks. Astron Astrophys 527:A84. doi:10.1051/0004-6361/201015951

    ADS  Google Scholar 

  • Lachaume R (2003) On marginally resolved objects in optical interferometry. Astron Astrophys 400:795–803. doi:10.1051/0004-6361:20030072

    ADS  Google Scholar 

  • Lamers HJGLM, de Zickgraf FJ, Winter D, Houziaux L, Zorec J (1998) An improved classification of B[e]-type stars. Astron Astrophys 340:117–128

    ADS  Google Scholar 

  • Landstreet JD, Borra EF (1978) The magnetic field of Sigma Orionis E. Astrophys J Lett 224:L5–L8. doi:10.1086/182746

    ADS  Google Scholar 

  • Lee U (2012) Amplitudes of low-frequency modes in rotating B-type stars. Mon Not R Astron Soc 420:2387–2398. doi:10.1111/j.1365-2966.2011.20204.x

    ADS  Google Scholar 

  • Lee U, Osaki Y, Saio H (1991) Viscous excretion discs around Be stars. Mon Not R Astron Soc 250:432–437

    ADS  Google Scholar 

  • Levenhagen RS, Leister NV, Künzel R (2011) Spectroscopic variabilities in λ Pavonis. Astron Astrophys 533:A75. doi:10.1051/0004-6361/201116590

    ADS  Google Scholar 

  • Lubow SH, Seibert M, Artymowicz P (1999) Disk accretion onto high-mass planets. Astrophys J 526:1001–1012. doi:10.1086/308045

    ADS  Google Scholar 

  • Lucy LB (1967) Gravity-darkening for stars with convective envelopes. Z Astrophys 65:89

    ADS  Google Scholar 

  • Maeder A (2009) Physics, formation and evolution of rotating stars. Astronomy and astrophysics library. Springer, Berlin. doi:10.1007/978-3-540-76949-1

    Google Scholar 

  • Maeder A, Meynet G (2000) Stellar evolution with rotation. VI. The Eddington and Omega limits, the rotational mass loss for OB and LBV stars. Astron Astrophys 361:159–166

    ADS  Google Scholar 

  • Maeder A, Meynet G (2001) Stellar evolution with rotation. VII. Low metallicity models and the blue to red supergiant ratio in the SMC. Astron Astrophys 373:555–571. doi:10.1051/0004-6361:20010596

    ADS  Google Scholar 

  • Maeder A, Meynet G (2010) Evolution of massive stars with mass loss and rotation. New Astron Rev 54:32–38. doi:10.1016/j.newar.2010.09.017

    ADS  Google Scholar 

  • Maeder A, Meynet G (2012) Rotating massive stars: from first stars to gamma ray bursts. Rev Mod Phys 84:25–63. doi:10.1103/RevModPhys.84.25

    ADS  Google Scholar 

  • Maeder A, Grebel EK, Mermilliod JC (1999) Differences in the fractions of Be stars in galaxies. Astron Astrophys 346:459–464

    ADS  Google Scholar 

  • Maheswaran M (2003) Magnetic rotator winds and Keplerian disks of hot stars. Astrophys J 592:1156–1172. doi:10.1086/375797

    ADS  Google Scholar 

  • Maintz M, Rivinius T, Štefl S, Baade D, Wolf B, Townsend RHD (2003) Stellar and circumstellar activity of the Be star ω CMa. III. Multiline non-radial pulsation modeling. Astron Astrophys 411:181–191. doi:10.1051/0004-6361:20031375

    ADS  Google Scholar 

  • Martayan C, Frémat Y, Hubert AM, Floquet M, Zorec J, Neiner C (2006a) Effects of metallicity, star-formation conditions, and evolution in B and Be stars. I. Large Magellanic Cloud, field of NGC 2004. Astron Astrophys 452:273–284. doi:10.1051/0004-6361:20053859

    ADS  Google Scholar 

  • Martayan C, Hubert AM, Floquet M, Fabregat J, Frémat Y, Neiner C, Stee P, Zorec J (2006b) A study of the B and Be star population in the field of the LMC open cluster NGC 2004 with VLT-FLAMES. Astron Astrophys 445:931–937. doi:10.1051/0004-6361:20052760

    ADS  Google Scholar 

  • Martayan C, Floquet M, Hubert AM, Gutiérrez-Soto J, Fabregat J, Neiner C, Mekkas M (2007a) Be stars and binaries in the field of the SMC open cluster NGC 330 with VLT-FLAMES. Astron Astrophys 472:577–586. doi:10.1051/0004-6361:20077390

    ADS  Google Scholar 

  • Martayan C, Frémat Y, Hubert AM, Floquet M, Zorec J, Neiner C (2007b) Effects of metallicity, star-formation conditions, and evolution in B and Be stars. II. Small Magellanic Cloud, field of NGC 330. Astron Astrophys 462:683–694. doi:10.1051/0004-6361:20065076

    ADS  Google Scholar 

  • Martayan C, Floquet M, Hubert AM, Neiner C, Frémat Y, Baade D, Fabregat J (2008) Early-type objects in NGC 6611 and the eagle nebula. Astron Astrophys 489:459–480. doi:10.1051/0004-6361:200809358

    ADS  Google Scholar 

  • Martayan C, Baade D, Fabregat J (2010a) A slitless spectroscopic survey for Hα emission-line objects in SMC clusters. Astron Astrophys 509:A11. doi:10.1051/0004-6361/200911672

    ADS  Google Scholar 

  • Martayan C, Zorec J, Frémat Y, Ekström S (2010b) Can massive Be/Oe stars be progenitors of long gamma ray bursts? Astron Astrophys 516:A103. doi:10.1051/0004-6361/200913079

    ADS  Google Scholar 

  • Martayan C, Rivinius T, Baade D, Hubert AM, Zorec J (2011) Populations of Be stars: stellar evolution of extreme stars. In: Neiner C, Wade G, Meynet G, Peters G (eds) Active OB stars. IAU symposium, vol 272, pp 242–253. doi:10.1017/S1743921311010489

    Google Scholar 

  • Martin RG, Pringle JE, Tout CA, Lubow SH (2011) Tidal warping and precession of Be star decretion discs. Mon Not R Astron Soc 416:2827–2839. doi:10.1111/j.1365-2966.2011.19231.x

    ADS  Google Scholar 

  • Mathew B, Subramaniam A, Bhatt BC (2008) Be phenomenon in open clusters: results from a survey of emission-line stars in young open clusters. Mon Not R Astron Soc 388:1879–1888. doi:10.1111/j.1365-2966.2008.13533.x

    ADS  Google Scholar 

  • Mathis S, Neiner C, Tran Minh N (2013) Impact of rotation on stochastic excitation of gravity and gravito-inertial waves in stars. Astron Astrophys (in press)

  • McAlister HA, ten Brummelaar TA, Gies DR, Huang W, Bagnuolo WG Jr, Shure MA, Sturmann J, Sturmann L, Turner NH, Taylor SF, Berger DH, Baines EK, Grundstrom E, Ogden C, Ridgway ST, van Belle G (2005) First results from the CHARA array. I. An interferometric and spectroscopic study of the fast rotator α Leonis (Regulus). Astrophys J 628:439–452. doi:10.1086/430730

    ADS  Google Scholar 

  • McBride VA, Coe MJ, Negueruela I, Schurch MPE, McGowan KE (2008) Spectral distribution of Be/X-ray binaries in the Small Magellanic Cloud. Mon Not R Astron Soc 388:1198–1204. doi:10.1111/j.1365-2966.2008.13410.x

    ADS  Google Scholar 

  • McBride VA, Bird AJ, Coe MJ, Townsend LJ, Corbet RHD, Haberl F (2010) The Magellanic bridge: evidence for a population of X-ray binaries. Mon Not R Astron Soc 403:709–713. doi:10.1111/j.1365-2966.2009.16178.x

    ADS  Google Scholar 

  • McDavid D, Bjorkman KS, Bjorkman JE, Okazaki AT (2000) A connection between V/R and polarization in Be stars. In: Smith MA, Henrichs HF, Fabregat J (eds) IAU colloq 175: the Be phenomenon in early-type stars. Astronomical society of the pacific conference series, vol 214, p 460

    Google Scholar 

  • McGill MA, Sigut TAA, Jones CE (2011) The thermal structure of gravitationally darkened classical Be star disks. Astrophys J 743:111. doi:10.1088/0004-637X/743/2/111

    ADS  Google Scholar 

  • McGill MA, Sigut TAA, Jones CE (2013) The effect of density on the thermal structure of gravitationally darkened Be star disks. Astrophys J Suppl Ser 204:2. doi:10.1088/0067-0049/204/1/2

    ADS  Google Scholar 

  • McSwain MV, Gies DR (2005) The evolutionary status of Be stars: results from a photometric study of southern open clusters. Astrophys J Suppl Ser 161:118–146. doi:10.1086/432757

    ADS  Google Scholar 

  • McSwain MV, Huang W, Gies DR, Grundstrom ED, Townsend RHD (2008) The B and Be star population of NGC 3766. Astrophys J 672:590–603. doi:10.1086/523934

    ADS  Google Scholar 

  • Meilland A, Millour F, Stee P, Domiciano de Souza A, Petrov RG, Mourard D, Jankov S, Robbe-Dubois S, Spang A, Aristidi E, Antonelli P, Beckmann U, Bresson Y, Chelli A, Dugué M, Duvert G, Gennari S, Glück L, Kern P, Lagarde S, Le Coarer E, Lisi F, Malbet F, Perraut K, Puget P, Rantakyrö F, Roussel A, Tatulli E, Weigelt G, Zins G, Accardo M, Acke B, Agabi K, Altariba E, Arezki B, Baffa C, Behrend J, Blöcker T, Bonhomme S, Busoni S, Cassaing F, Clausse JM, Colin J, Connot C, Delboulbé A, Driebe T, Feautrier P, Ferruzzi D, Forveille T, Fossat E, Foy R, Fraix-Burnet D, Gallardo A, Giani E, Gil C, Glentzlin A, Heiden M, Heininger M, Hernandez Utrera O, Hofmann KH, Kamm D, Kiekebusch M, Kraus S, Le Contel D, Le Contel JM, Lesourd T, Lopez B, Lopez M, Magnard Y, Marconi A, Mars G, Martinot-Lagarde G, Mathias P, Mège P, Monin JL, Mouillet D, Nussbaum E, Ohnaka K, Pacheco J, Perrier C, Rabbia Y, Rebattu S, Reynaud F, Richichi A, Robini A, Sacchettini M, Schertl D, Schöller M, Solscheid W, Stefanini P, Tallon M, Tallon-Bosc I, Tasso D, Testi L, Vakili F, von der Lühe O, Valtier JC, Vannier M, Ventura N (2007a) An asymmetry detected in the disk of κ Canis Majoris with AMBER/VLTI. Astron Astrophys 464:73–79. doi:10.1051/0004-6361:20065410

    ADS  Google Scholar 

  • Meilland A, Stee P, Vannier M, Millour F, Domiciano de Souza A, Malbet F, Martayan C, Paresce F, Petrov RG, Richichi A, Spang A (2007b) First direct detection of a Keplerian rotating disk around the Be star α Arae using AMBER/VLTI. Astron Astrophys 464:59–71. doi:10.1051/0004-6361:20064848

    ADS  Google Scholar 

  • Meilland A, Stee P, Chesneau O, Jones C (2009) VLTI/MIDI observations of 7 classical Be stars. Astron Astrophys 505:687–693. doi:10.1051/0004-6361/200911960

    ADS  Google Scholar 

  • Meilland A, Millour F, Kanaan S, Stee P, Petrov R, Hofmann KH, Natta A, Perraut K (2012) First spectro-interferometric survey of Be stars. I. Observations and constraints on the disk geometry and kinematics. Astron Astrophys 538:A110. doi:10.1051/0004-6361/201117955

    ADS  Google Scholar 

  • Mennickent RE, Sterken C, Vogt N (1997) Coupled long-term photometric and V/R variations in Be stars: evidence for prograde global one-armed disk oscillations. Astron Astrophys 326:1167–1175

    ADS  Google Scholar 

  • Mennickent RE, Pietrzyński G, Gieren W, Szewczyk O (2002) On Be star candidates and possible blue pre-main sequence objects in the Small Magellanic Cloud. Astron Astrophys 393:887–896. doi:10.1051/0004-6361:20020916

    ADS  Google Scholar 

  • Meynet G, Maeder A (2002) Stellar evolution with rotation. VIII. Models at Z=10−5 and CNO yields for early galactic evolution. Astron Astrophys 390:561–583. doi:10.1051/0004-6361:20020755

    ADS  Google Scholar 

  • Meynet G, Georgy C, Revaz Y, Walder R, Ekström S, Maeder A (2010) Models of stars rotating near the critical limit. In: Revista Mexicana de astronomia y astrofisica conference series, vol 38, pp 113–116

    Google Scholar 

  • Millar CE, Marlborough JM (1998) Rates of energy gain and loss in the circumstellar envelopes of Be stars: the Poeckert-Marlborough model. Astrophys J 494:715. doi:10.1086/305229

    ADS  Google Scholar 

  • Millar CE, Marlborough JM (1999) Rates of energy gain and loss in the circumstellar envelopes of Be stars: diffuse radiation. Astrophys J 516:276–279. doi:10.1086/307098

    ADS  Google Scholar 

  • Miroshnichenko AS, Fabregat J, Bjorkman KS, Knauth DC, Morrison ND, Tarasov AE, Reig P, Negueruela I, Blay P (2001) Spectroscopic observations of the δ Scorpii binary during its recent periastron passage. Astron Astrophys 377:485–495. doi:10.1051/0004-6361:20010911

    ADS  Google Scholar 

  • Mokiem MR, de Koter A, Vink JS, Puls J, Evans CJ, Smartt SJ, Crowther PA, Herrero A, Langer N, Lennon DJ, Najarro F, Villamariz MR (2007) The empirical metallicity dependence of the mass-loss rate of O- and early B-type stars. Astron Astrophys 473:603–614. doi:10.1051/0004-6361:20077545

    ADS  Google Scholar 

  • Moujtahid A, Zorec J, Hubert AM, Garcia A, Burki G (1998) Long-term visual spectrophotometric behaviour of Be stars. Astron Astrophys Suppl Ser 129:289–311. doi:10.1051/aas:1998186

    ADS  Google Scholar 

  • Negueruela I, Steele IA, Bernabeu G (2004) On the class of Oe stars. Astron Nachr 325:749–760. doi:10.1002/ansa.200310258

    ADS  Google Scholar 

  • Neiner C, Hubert AM, Frémat Y, Floquet M, Jankov S, Preuss O, Henrichs HF, Zorec J (2003) Rotation and magnetic field in the Be star ω Orionis. Astron Astrophys 409:275–286. doi:10.1051/0004-6361:20031086

    ADS  Google Scholar 

  • Neiner C, Gutiérrez-Soto J, de Baudin F, Batz B, Frémat Y, Huat AL, Floquet M, Hubert AM, Leroy B, Diago PD, Poretti E, Carrier F, Rainer M, Catala C, Thizy O, Buil C, Ribeiro J, Andrade L, Emilio M, Espinosa Lara F, Fabregat J, Janot-Pacheco E, Martayan C, Semaan T, Suso J, Baglin A, Michel E, Samadi R (2009) The pulsations of the B5 IVe star HD 181231 observed with CoRoT and ground-based spectroscopy. Astron Astrophys 506:143–151. doi:10.1051/0004-6361/200911971

    ADS  Google Scholar 

  • Neiner C, de Batz B, Cochard F, Floquet M, Mekkas A, Desnoux V (2011a) The Be star spectra (BeSS) database. Astron J 142:149. doi:10.1088/0004-6256/142/5/149

    ADS  Google Scholar 

  • Neiner C, Wade G, Meynet G, Peters G (eds) (2011b) Active OB stars: structure, evolution, mass loss, and critical limits. IAU symposium, vol 272

    Google Scholar 

  • Neiner C, Floquet M, Samadi R, Espinosa Lara F, Frémat Y, Mathis S, de Leroy B, Batz B, Rainer M, Poretti E, Mathias P, Guarro Fló J, Buil C, Ribeiro J, Alecian E, Andrade L, Briquet M, Diago PD, Emilio M, Fabregat J, Gutiérrez-Soto J, Hubert AM, Janot-Pacheco E, Martayan C, Semaan T, Suso J, Zorec J (2012a) Stochastic gravito-inertial modes discovered by CoRoT in the hot Be star HD 51452. Astron Astrophys 546:A47. doi:10.1051/0004-6361/201219820

    ADS  Google Scholar 

  • Neiner C, Grunhut JH, Petit V, ud-Doula A, Wade GA, Landstreet J, de Batz B, Cochard F, Gutiérrez-Soto J, Huat AL (2012b) An investigation of the magnetic properties of the classical Be star ω Ori by the MiMeS collaboration. Mon Not R Astron Soc 426:2738–2750. doi:10.1111/j.1365-2966.2012.21833.x

    ADS  Google Scholar 

  • Neiner C, Mathis S, Saio H, Lee U (2013) Be star outbursts: transport of angular momentum by waves. In: Shibahashi H, Lynas-Gray AE (eds) Progress in physics of the sun and stars: a new era in helio- and asteroseismology. Astronomical society of the pacific conference series (in press)

    Google Scholar 

  • Nelson RP, Papaloizou JCB, Masset F, Kley W (2000) The migration and growth of protoplanets in protostellar discs. Mon Not R Astron Soc 318:18–36. doi:10.1046/j.1365-8711.2000.03605.x

    ADS  Google Scholar 

  • Nemravová J, Harmanec P, Kubát J, Koubský P, Iliev L, Yang S, Ribeiro J, Šlechta M, Kotková L, Wolf M, Škoda P (2010) Properties and nature of Be stars. 27. Orbital and recent long-term variations of the pleiades Be star Pleione = BU Tauri. Astron Astrophys 516:A80. doi:10.1051/0004-6361/200913885

    ADS  Google Scholar 

  • Ogilvie GI (2008) 3D eccentric discs around Be stars. Mon Not R Astron Soc 388:1372–1380. doi:10.1111/j.1365-2966.2008.13484.x

    ADS  Google Scholar 

  • Okazaki AT (1991) Long-term V/R variations of Be stars due to global one-armed oscillations of equatorial disks. Publ Astron Soc Jpn 43:75–94

    ADS  Google Scholar 

  • Okazaki AT (1997) On the confinement of one-armed oscillations in discs of Be stars. Astron Astrophys 318:548–560

    ADS  Google Scholar 

  • Okazaki AT (2001) Viscous transsonic decretion in disks of Be stars. Publ Astron Soc Jpn 53:119–125

    ADS  Google Scholar 

  • Okazaki AT (2007) Theory vs observation of circumstellar disks and their formation. In: Štefl S, Owocki SP, Okazaki AT (eds) Active OB-stars: laboratories for stellar and circumstellar physics. Astronomical society of the pacific conference series, vol 361, p 230

    Google Scholar 

  • Okazaki AT, Bate MR, Ogilvie GI, Pringle JE (2002) Viscous effects on the interaction between the coplanar decretion disc and the neutron star in Be/X-ray binaries. Mon Not R Astron Soc 337:967–980. doi:10.1046/j.1365-8711.2002.05960.x

    ADS  Google Scholar 

  • Oudmaijer RD, Parr AM (2010) The binary fraction and mass ratio of Be and B stars: a comparative very large Telescope/NACO study. Mon Not R Astron Soc 405:2439–2446. doi:10.1111/j.1365-2966.2010.16609.x

    ADS  Google Scholar 

  • Owocki SP (2006) Formation and evolution of disks around classical Be stars. In: Kraus M, Miroshnichenko AS (eds) Stars with the B[e] phenomenon. Astronomical society of the pacific conference series, vol 355, p 219

    Google Scholar 

  • Owocki SP, Cranmer SR, Gayley KG (1996) Inhibition of wind compressed disk formation by nonradial line-forces in rotating hot-star winds. Astrophys J Lett 472:L115. doi:10.1086/310372

    ADS  Google Scholar 

  • Papaloizou JCB, Lin DNC (1995) Theory of accretion disks I: angular momentum transport processes. Annu Rev Astron Astrophys 33:505–540. doi:10.1146/annurev.aa.33.090195.002445

    ADS  Google Scholar 

  • Papaloizou JCB, Savonije GJ (2006) One-armed oscillations in Be star discs. Astron Astrophys 456:1097–1104. doi:10.1051/0004-6361:20065407

    ADS  Google Scholar 

  • Papaloizou JCB, Savonije GJ, Henrichs HF (1992) On the long-term periodicities in Be stars. Astron Astrophys 265:L45–L48

    ADS  Google Scholar 

  • Pápics PI, Briquet M, Auvergne M, Aerts C, Degroote P, Niemczura E, Vučković M, Smolders K, Poretti E, Rainer M, Hareter M, Baglin A, Baudin F, Catala C, Michel E, Samadi R (2011) CoRoT high-precision photometry of the B0.5 IV star HD 51756. Astron Astrophys 528:A123. doi:10.1051/0004-6361/201016131

    ADS  Google Scholar 

  • Paul KT, Subramaniam A, Mathew B, Mennickent RE, Sabogal B (2012) Study of candidate Be stars in the Magellanic Clouds using near-infrared photometry and optical spectroscopy. Mon Not R Astron Soc 421:3622–3640. doi:10.1111/j.1365-2966.2012.20591.x

    ADS  Google Scholar 

  • Peters GJ (1986) Observation of the onset of an emission episode in the Be star μ Centauri. Astrophys J Lett 301:L61–L65. doi:10.1086/184624

    ADS  Google Scholar 

  • Peters GJ (2001) HR 2142, thirty years after it was hypothesized to be an interacting binary. Publ Astron Inst Czech Acad Sci 89:30–35

    Google Scholar 

  • Peters GJ, Gies DR (2002) The interacting binary Be star HR 2142. In: Tout CA, van Hamme W (eds) Exotic stars as challenges to evolution. Astronomical society of the pacific conference series, vol 279, p 149

    Google Scholar 

  • Peters GJ, Gies DR, Grundstrom ED, McSwain MV (2008) Detection of a hot subdwarf companion to the Be star FY Canis Majoris. Astrophys J 686:1280–1291. doi:10.1086/591145

    ADS  Google Scholar 

  • Peters GJ, Pewett TD, Gies DR, Touhami YN, Grundstrom ED (2013) Far-ultraviolet detection of the suspected subdwarf companion to the Be star 59 Cygni. Astrophys J 765:2. doi:10.1088/0004-637X/765/1/2

    ADS  Google Scholar 

  • Petit V, Owocki SP, Wade GA, Cohen DH, Sundqvist JO, Gagné M, Maíz Apellániz J, Oksala ME, Bohlender DA, Rivinius T, Henrichs HF, Alecian E, Townsend RHD, ud-Doula A (MiMeS Collaboration) (2013) A magnetic confinement versus rotation classification of massive-star magnetospheres. Mon Not R Astron Soc 429:398–422. doi:10.1093/mnras/sts344

    ADS  Google Scholar 

  • Petrov HG, Lagarde S, N’guyen van Ky M (1996) Differential interferometry imaging. In: Strassmeier KG, Linsky JL (eds) Stellar surface structure. IAU symposium, vol 176, p 181

    Google Scholar 

  • Podsiadlowski P, Rappaport S, Han Z (2003) On the formation and evolution of black hole binaries. Mon Not R Astron Soc 341:385–404. doi:10.1046/j.1365-8711.2003.06464.x

    ADS  Google Scholar 

  • Poeckert R (1981) A spectroscopic study of the binary Be star φ Persei. Publ Astron Soc Pac 93:297–317. doi:10.1086/130828

    ADS  Google Scholar 

  • Pollmann E (2012) Period analysis of the Hα line profile variation of the Be binary star π Aqr. Inf Bull Var Stars 6023:1

    ADS  Google Scholar 

  • Pols OR, Cote J, Waters LBFM, Heise J (1991) The formation of Be stars through close binary evolution. Astron Astrophys 241:419–438

    ADS  Google Scholar 

  • Porter JM (1996) On the rotational velocities of Be and Be-shell stars. Mon Not R Astron Soc 280:L31–L35

    ADS  Google Scholar 

  • Porter JM (1997) Continuum IR emission of Be star wind-compressed discs. Astron Astrophys 324:597–605

    ADS  Google Scholar 

  • Porter JM (1999) On outflowing viscous disc models for Be stars. Astron Astrophys 348:512–518

    ADS  Google Scholar 

  • Porter JM, Rivinius T (2003) Classical Be stars. Publ Astron Soc Pac 115:1153–1170. doi:10.1086/378307

    ADS  Google Scholar 

  • Pott JU, Woillez J, Ragland S, Wizinowich PL, Eisner JA, Monnier JD, Akeson RL, Ghez AM, Graham JR, Hillenbrand LA, Millan-Gabet R, Appleby E, Berkey B, Colavita MM, Cooper A, Felizardo C, Herstein J, Hrynevych M, Medeiros D, Morrison D, Panteleeva T, Smith B, Summers K, Tsubota K, Tyau C, Wetherell E (2010) Probing local density inhomogeneities in the circumstellar disk of a Be star using the new spectro-astrometry mode at the Keck interferometer. Astrophys J 721:802–808. doi:10.1088/0004-637X/721/1/802

    ADS  Google Scholar 

  • Pringle JE (1981) Accretion discs in astrophysics. Annu Rev Astron Astrophys 19:137–162. doi:10.1146/annurev.aa.19.090181.001033

    ADS  Google Scholar 

  • Pringle JE (1991) The properties of external accretion discs. Mon Not R Astron Soc 248:754–759

    ADS  Google Scholar 

  • Pringle JE (1992) Circumstellar discs. In: Drissen L, Leitherer C, Nota A (eds) Nonisotropic and variable outflows from stars. Astronomical society of the pacific conference series, vol 22, p 14

    Google Scholar 

  • Puls J, Vink JS, Najarro F (2008) Mass loss from hot massive stars. Astron Astrophys Rev 16:209–325. doi:10.1007/s00159-008-0015-8

    ADS  Google Scholar 

  • Quirrenbach A, Buscher DF, Mozurkewich D, Hummel CA, Armstrong JT (1994) Maximum-entropy maps of the Be shell star Tauri from optical long-baseline interferometry. Astron Astrophys 283:L13–L16

    ADS  Google Scholar 

  • Quirrenbach A, Bjorkman KS, Bjorkman JE, Hummel CA, Buscher DF, Armstrong JT, Mozurkewich D, Elias NM II, Babler BL (1997) Constraints on the geometry of circumstellar envelopes: optical interferometric and spectropolarimetric observations of seven Be stars. Astrophys J 479:477. doi:10.1086/303854

    ADS  Google Scholar 

  • Rauw G, Nazé Y, Spano M, Morel T, ud-Doula A (2013) HD45314: a new γ Cas analog among Oe stars. Astron Astrophys 555:L9. doi:10.1051/0004-6361/201321774

    ADS  Google Scholar 

  • Reese DR, MacGregor KB, Jackson S, Skumanich A, Metcalfe TS (2009) Pulsation modes in rapidly rotating stellar models based on the self-consistent field method. Astron Astrophys 506:189–201. doi:10.1051/0004-6361/200811510

    ADS  Google Scholar 

  • Reese DR, Prat V, Barban C, van ’t Veer-Menneret C, MacGregor KB (2013) Mode visibilities in rapidly rotating stars. Astron Astrophys 550:A77. doi:10.1051/0004-6361/201220506

    ADS  Google Scholar 

  • Reid WA, Parker QA (2012) Emission-line stars discovered in the UKST Hα survey of the Large Magellanic Cloud—I. Hot stars. Mon Not R Astron Soc 425:355–404. doi:10.1111/j.1365-2966.2012.21471.x

    ADS  Google Scholar 

  • Reig P (2011) Be/X-ray binaries. Astrophys Space Sci 332:1–29. doi:10.1007/s10509-010-0575-8

    ADS  Google Scholar 

  • Reig P, Roche P (1999) Discovery of two new persistent Be/X-ray pulsar systems. Mon Not R Astron Soc 306:100–106. doi:10.1046/j.1365-8711.1999.02473.x

    ADS  Google Scholar 

  • Rivinius T, Curé M (eds) (2010) The interferometric view on hot stars. Revista Mexicana de astronomía y astrofísica conference series, vol 38

    Google Scholar 

  • Rivinius T, Baade D, Štefl S et al. (1998b) Predicting the outbursts of the Be star μ Cen. In: Kaper L, Fullerton AW (eds) Cyclical variability in stellar winds, p 207

    Google Scholar 

  • Rivinius T, Baade D, Stefl S, Stahl O, Wolf B, Kaufer A (1998a) Stellar and circumstellar activity of the Be star μ Centauri. I. Line emission outbursts. Astron Astrophys 333:125–140

    ADS  Google Scholar 

  • Rivinius T, Štefl S, Baade D (1999) Central quasi-emission peaks in shell spectra and the rotation of disks of Be stars. Astron Astrophys 348:831–842

    ADS  Google Scholar 

  • Rivinius T, Baade D, Štefl S, Maintz M (2001) Evolution in circumstellar envelopes of Be stars: from disks to rings? Astron Astrophys 379:257–269. doi:10.1051/0004-6361:20011335

    ADS  Google Scholar 

  • Rivinius T, Baade D, Štefl S (2003) Non-radially pulsating Be stars. Astron Astrophys 411:229–247. doi:10.1051/0004-6361:20031285

    ADS  Google Scholar 

  • Rivinius T, Štefl S, Baade D (2006) Bright Be-shell stars. Astron Astrophys 459:137–145. doi:10.1051/0004-6361:20053008

    ADS  Google Scholar 

  • Rivinius T, Szeifert T, Barrera L, Townsend RHD, Štefl S, Baade D (2010) Magnetic field detection in the B2Vn star HR 7355. Mon Not R Astron Soc 405:L46–L50. doi:10.1111/j.1745-3933.2010.00856.x

    ADS  Google Scholar 

  • Rivinius T, Baade D, Townsend RHD, Carciofi AC, Štefl S (2013) Variable rotational line broadening in the Be star Achernar. Astron Astrophys (letter in press). doi:10.1051/0004-6361/201322515

    Google Scholar 

  • Robinson RD, Smith MA, Henry GW (2002) X-ray and optical variations in the classical Be star γ Cassiopeia: the discovery of a possible magnetic dynamo. Astrophys J 575:435–448. doi:10.1086/341141

    ADS  Google Scholar 

  • Rogers TM, Lin DNC, McElwaine JN, Lau HHB (2013) Internal gravity waves in massive stars: angular momentum transport. Astrophys J 772:21. doi:10.1088/0004-637X/772/1/21

    ADS  Google Scholar 

  • Ruždjak D, Božić H, Harmanec P, Fiřt R, Chadima P, Bjorkman K, Gies DR, Kaye AB, Koubský P, McDavid D, Richardson N, Sudar D, Šlechta M, Wolf M, Yang S (2009) Properties and nature of Be stars. 26. Long-term and orbital changes of  Tauri. Astron Astrophys 506:1319–1333. doi:10.1051/0004-6361/200810526

    ADS  Google Scholar 

  • Saad SM, Kubát J, Koubský P, Harmanec P, Škoda P, Korčáková D, Krtička J, Šlechta M, Božić H, Ak H, Hadrava P, Votruba V (2004) Properties and nature of Be stars Dra. XXIII. Long-term variations and physical properties of  Dra. Astron Astrophys 419:607–621. doi:10.1051/0004-6361:20034241

    ADS  Google Scholar 

  • Saad SM, Kubát J, Hadrava P, Harmanec P, Koubský P, Škoda P, Šlechta M, Korčáková D, Yang S (2005) Spectrum disentangling and orbital solution for  Dra. Astrophys Space Sci 296:173–177. doi:10.1007/s10509-005-4438-7

    ADS  Google Scholar 

  • Saio H (2013) Prospects for asteroseismology of rapidly rotating B-type stars. In: Goupil M, Belkacem K, Neiner C, Lignières F, Green JJ (eds) Lecture notes in physics, vol 865. Springer, Berlin, p 159. doi:10.1007/978-3-642-33380-4_8

    Google Scholar 

  • Saio H, Cameron C, Kuschnig R, Walker GAH, Matthews JM, Rowe JF, Lee U, Huber D, Weiss WW, Guenther DB, Moffat AFJ, Rucinski SM, Sasselov D (2007) MOST detects g-modes in the late-type Be star β Canis Minoris (B8 ve). Astrophys J 654:544–550. doi:10.1086/509315

    ADS  Google Scholar 

  • Sana H, de Mink SE, de Koter A, Langer N, Evans CJ, Gieles M, Gosset E, Izzard RG, Le Bouquin JB, Schneider FRN (2012) Binary interaction dominates the evolution of massive stars. Science 337:444. doi:10.1126/science.1223344

    ADS  Google Scholar 

  • Savonije GJ (2005) Unstable quasi g-modes in rotating main-sequence stars. Astron Astrophys 443:557–570. doi:10.1051/0004-6361:20053328

    ADS  Google Scholar 

  • Savonije GJ (2007) Non-radial oscillations of the rapidly rotating Be star HD 163868. Astron Astrophys 469:1057–1062. doi:10.1051/0004-6361:20077377

    ADS  Google Scholar 

  • Schaefer GH, Gies DR, Monnier JD, Richardson ND, Touhami Y, Zhao M, Che X, Pedretti E, Thureau N, ten Brummelaar T, McAlister HA, Ridgway ST, Sturmann J, Sturmann L, Turner NH, Farrington CD, Goldfinger PJ (2010) Multi-epoch near-infrared interferometry of the spatially resolved disk around the Be star  Tau. Astron J 140:1838–1849. doi:10.1088/0004-6256/140/6/1838

    ADS  Google Scholar 

  • Schnerr RS, Henrichs HF, Oudmaijer RD, Telting JH (2006) On the Hα emission from the β Cephei system. Astron Astrophys 459:L21–L24. doi:10.1051/0004-6361:20066392

    ADS  Google Scholar 

  • Secchi A (1866) Schreiben des Herrn Prof. Secchi, Directors der Sternwarte des Collegio Romano, an den Herausgeber. Astron Nachr 68:63. doi:10.1002/asna.18670680405

    ADS  Google Scholar 

  • Semaan T (2012) Caractéristiques spectrales et pulsationelles d’etoiles Be á l’aide de données sol (VLT/GIRAFFE et X-SHOOTER) et espace (CoRoT). Dissertation, École Doctorale d’Astronomie & Astrophysisque d’Île-de-France

  • Semaan T, Martayan C, Frémat Y, Hubert AM, Soto JG, Neiner C, Zorec J (2011) Spectral and photometric study of Be stars in the first exoplanet fields of CoRoT. In: Neiner C, Wade G, Meynet G, Peters G (eds) Active OB stars. IAU symposium, vol 272, pp 547–548. doi:10.1017/S1743921311011409

    Google Scholar 

  • Shakura NI, Sunyaev RA (1973) Black holes in binary systems. Observational appearance. Astron Astrophys 24:337–355

    ADS  Google Scholar 

  • Sigut TAA, Jones CE (2007) The thermal structure of the circumstellar disk surrounding the classical Be star γ Cassiopeiae. Astrophys J 668:481–491. doi:10.1086/521209

    ADS  Google Scholar 

  • Sigut TAA, Patel P (2013) The correlation between Hα emission and visual magnitude during long-term variations in classical Be stars. Astrophys J 765:41. doi:10.1088/0004-637X/765/1/41

    ADS  Google Scholar 

  • Sigut TAA, McGill MA, Jones CE (2009) Be star disk models in consistent vertical hydrostatic equilibrium. Astrophys J 699:1973–1981. doi:10.1088/0004-637X/699/2/1973

    ADS  Google Scholar 

  • Silaj J, Jones CE, Tycner C, Sigut TAA, Smith AD (2010) A systematic study of Hα profiles of Be stars. Astrophys J Suppl Ser 187:228–250. doi:10.1088/0067-0049/187/1/228

    ADS  Google Scholar 

  • Silvester J, Neiner C, Henrichs HF, Wade GA, Petit V, Alecian E, Huat AL, Martayan C, Power J, Thizy O (2009) On the incidence of magnetic fields in slowly pulsating B, β Cephei and B-type emission-line stars. Mon Not R Astron Soc 398:1505–1511. doi:10.1111/j.1365-2966.2009.15208.x

    ADS  Google Scholar 

  • Slettebak A (1986) Hα and near-infrared spectra of late-type Be and A F-type shell stars. Publ Astron Soc Pac 98:867–871. doi:10.1086/131836

    ADS  Google Scholar 

  • Slettebak A (1988) The Be stars. Publ Astron Soc Pac 100:770–784. doi:10.1086/132234

    ADS  Google Scholar 

  • Smith MA (2006) Variations of the He ii λ1640 line in B0e-B2.5e stars. Astron Astrophys 459:215–227. doi:10.1051/0004-6361:20065055

    ADS  Google Scholar 

  • Smith MA, Robinson RD (1999) A multiwavelength campaign on γ Cassiopeiae. III. The case for magnetically controlled circumstellar kinematics. Astrophys J 517:866–882. doi:10.1086/307216

    ADS  Google Scholar 

  • Smith MA, Plett K, Johns-Krull CM, Basri GS, Thomson JR, Aufdenberg JP (1996) Dynamic processes in Be star atmospheres. IV. Common attributes of line profile “Dimples”. Astrophys J 469:336. doi:10.1086/177783

    ADS  Google Scholar 

  • Smith MA, Lopes de Oliveira R, Motch C (2012a) Characterization of the X-ray light curve of the γ Cas-like B1e star HD 110432. Astrophys J 755:64. doi:10.1088/0004-637X/755/1/64

    ADS  Google Scholar 

  • Smith MA, Lopes de Oliveira R, Motch C, Henry GW, Richardson ND, Bjorkman KS, Stee P, Mourard D, Monnier JD, Che X, Bücke R, Pollmann E, Gies DR, Schaefer GH, ten Brummelaar T, McAlister HA, Turner NH, Sturmann J, Sturmann L, Ridgway ST (2012b) The relationship between γ Cassiopeiae’s X-ray emission and its circumstellar environment. Astron Astrophys 540:A53. doi:10.1051/0004-6361/201118342

    ADS  Google Scholar 

  • Sonneborn G, Grady CA, Wu CC, Hayes DP, Guinan EF, Barker PK, Henrichs HF (1988) Mass loss in a B2 IIIe star—ω Orionis 1978-1984. Astrophys J 325:784–794. doi:10.1086/166049

    ADS  Google Scholar 

  • Stee P (2011) Observations of circumstellar disks. In: Neiner C, Wade G, Meynet G, Peters G (eds) Active OB stars. IAU symposium, vol 272, pp 313–324. doi:10.1017/S1743921311010726

    Google Scholar 

  • Stee P, de Araujo FX (1994) Line profiles and intensity maps from an axi-symmetric radiative wind model for Be stars. Astron Astrophys 292:221–238

    ADS  Google Scholar 

  • Stee P, de Araujo FX, Vakili F, Mourard D, Arnold L, Bonneau D, Morand F, Tallon-Bosc I (1995) γ Cassiopeiae revisited by spectrally resolved interferometry. Astron Astrophys 300:219

    ADS  Google Scholar 

  • Stee P, Delaa O, Monnier JD, Meilland A, Perraut K, Mourard D, Che X, Schaefer GH, Pedretti E, Smith MA, Lopes de Oliveira R, Motch C, Henry GW, Richardson ND, Bjorkman KS, Bücke R, Pollmann E, Zorec J, Gies DR, ten Brummelaar T, McAlister HA, Turner NH, Sturmann J, Sturmann L, Ridgway ST (2012) The relationship between γ Cassiopeiae’s X-ray emission and its circumstellar environment. II. Geometry and kinematics of the disk from MIRC and VEGA instruments on the CHARA array. Astron Astrophys 545:A59. doi:10.1051/0004-6361/201219234

    ADS  Google Scholar 

  • Stee P, Meilland A, Bendjoya P, Millour F, Smith M, Spang A, Duvert G, Hofmann KH, Massi F (2013) Evidence of an asymmetrical Keplerian disk in the Brγ and He i emission lines around the Be star HD 110432. Astron Astrophys 550:A65. doi:10.1051/0004-6361/201220302

    ADS  Google Scholar 

  • Štefl S, Baade D, Rivinius T, Stahl O, Wolf B, Kaufer A (1998) Circumstellar quasi-periods accompanying stellar periods of Be stars. In: Bradley PA, Guzik JA (eds) A half century of stellar pulsation interpretation. Astronomical society of the pacific conference series, vol 135, p 348

    Google Scholar 

  • Štefl S, Baade D, Rivinius T, Otero S, Stahl O, Budovičová A, Kaufer A, Maintz M (2003a) Stellar and circumstellar activity of the Be star ω CMa. I. Line and continuum emission in 1996–2002. Astron Astrophys 402:253–265. doi:10.1051/0004-6361:20030224

    ADS  Google Scholar 

  • Štefl S, Baade D, Rivinius T, Stahl O, Budovičová A, Kaufer A, Maintz M (2003b) Stellar and circumstellar activity of the Be star ω CMa. II. Periodic line-profile variability. Astron Astrophys 411:167–180. doi:10.1051/0004-6361:20031179

    ADS  Google Scholar 

  • Štefl S, Okazaki AT, Rivinius T, Baade D (2007) V/R variations of binary Be stars. In: Štefl S, Owocki SP, Okazaki AT (eds) Active OB-stars: laboratories for stellar and circumstellar physics. Astronomical society of the pacific conference series, vol 361, p 274

    Google Scholar 

  • Štefl S, Owocki SP, Okazaki AT (eds) (2007) Active OB-stars: laboratories for stellar and circumstellar physics. Astronomical society of the pacific conference series, vol 361

    Google Scholar 

  • Štefl S, Rivinius T, Carciofi AC, Le Bouquin JB, Baade D, Bjorkman KS, Hesselbach E, Hummel CA, Okazaki AT, Pollmann E, Rantakyrö F, Wisniewski JP (2009) Cyclic variability of the circumstellar disk of the Be star  Tauri. I. Long-term monitoring observations. Astron Astrophys 504:929–944. doi:10.1051/0004-6361/200811573

    ADS  Google Scholar 

  • Štefl S, Le Bouquin JB, Carciofi AC, Rivinius T, Baade D, Rantakyrö F (2012a) New activity in the large circumstellar disk of the Be-shell star 48 Librae. Astron Astrophys 540:A76. doi:10.1051/0004-6361/201118054

    Google Scholar 

  • Štefl S, Le Bouquin JB, Rivinius T, Baade D, Carciofi AC, Haubois X, Corder S, Curé M, Kanaan S (2012b) δ Sco 2011 periastron passage: near-IR interferometry and radio mm observations. In: Carciofi AC, Rivinius T (eds) Astronomical society of the pacific conference series, vol 464, p 197

    Google Scholar 

  • Stoeckley TR (1968) Distribution of rotational velocities in Be stars. Mon Not R Astron Soc 140:141

    ADS  Google Scholar 

  • Struve O (1931) On the origin of bright lines in spectra of stars of class B. Astrophys J 73:94

    ADS  Google Scholar 

  • Sturm R, Haberl F, Rau A, Bartlett ES, Zhang XL, Schady P, Pietsch W, Greiner J, Coe MJ, Udalski A (2012) Discovery of the neutron star spin and a possible orbital period from the Be/X-ray binary IGR J05414-6858 in the LMC. Astron Astrophys 542:A109. doi:10.1051/0004-6361/201219093

    ADS  Google Scholar 

  • Suárez JC, Garrido R, Balona LA, Christensen-Dalsgaard J (eds) (2013) Stellar pulsations. Astrophysics and space science proceedings, vol 31. doi:10.1007/978-3-642-29630-7

    Google Scholar 

  • Tallon-Bosc I, Tallon M, Thiébaut E, Béchet C, Mella G, Lafrasse S, Chesneau O, Domiciano de Souza A, Duvert G, Mourard D, Petrov R, Vannier M (2008) LITpro: a model fitting software for optical interferometry. In: Society of photo-optical instrumentation engineers (SPIE) conference series, vol 7013. doi:10.1117/12.788871

    Google Scholar 

  • Tanaka K, Sadakane K, Narusawa SY, Naito H, Kambe E, Katahira JI, Hirata R (2007) Dramatic spectral and photometric changes of Pleione (28 Tau) between 2005 November and 2007 April. Publ Astron Soc Jpn 59:L35

    ADS  Google Scholar 

  • Telting JH, Kaper L (1994) Long-term periodic variability in UV absorption lines of the Be star γ Cassiopeiae: on the relation with V/R variations in the Hβ line. Astron Astrophys 284:515–529

    ADS  Google Scholar 

  • Telting JH, Heemskerk MHM, Henrichs HF, Savonije GJ (1994) Observational evidence for a prograde one-armed density structure in the equatorial disc of a Be star. Astron Astrophys 288:558–560

    ADS  Google Scholar 

  • Thaller ML, Bagnuolo WG Jr, Gies DR, Penny LR (1995) Tomographic separation of composite spectra. III. Ultraviolet detection of the hot companion of φ Persei. Astrophys J 448:878. doi:10.1086/176016

    ADS  Google Scholar 

  • Torrejón JM, Schulz NS, Nowak MA (2012) Chandra and Suzaku observations of the Be/X-ray star HD110432. Astrophys J 750:75. doi:10.1088/0004-637X/750/1/75

    ADS  Google Scholar 

  • Touhami Y, Gies DR, Schaefer GH (2011) The infrared continuum sizes of Be star disks. Astrophys J 729:17. doi:10.1088/0004-637X/729/1/17

    ADS  Google Scholar 

  • Touhami Y, Gies DR, Schaefer GH, McAlister HA, Ridgway ST, Richardson ND, Matson R, Grundstrom ED, ten Brummelaar TA, Goldfinger PJ, Sturmann L, Sturmann J, Turner NH, Farrington C (2013) A CHARA array survey of circumstellar disks around nearby Be-type stars. Astrophys J 768:128. doi:10.1088/0004-637X/768/2/128

    ADS  Google Scholar 

  • Townsend RHD (2005) κ-mechanism excitation of retrograde mixed modes in rotating B-type stars. Mon Not R Astron Soc 364:573–582. doi:10.1111/j.1365-2966.2005.09585.x

    ADS  Google Scholar 

  • Townsend RHD (2007) The coupling between pulsation and mass loss in massive stars. In: Stancliffe RJ, Houdek G, Martin RG, Tout CA (eds) Unsolved problems in stellar physics: a conference in honor of Douglas Gough. American institute of physics conference series, vol 948, pp 345–356. doi:10.1063/1.2818992

    Google Scholar 

  • Townsend RHD, Owocki SP, Howarth ID (2004) Be-star rotation: how close to critical? Mon Not R Astron Soc 350:189–195. doi:10.1111/j.1365-2966.2004.07627.x

    ADS  Google Scholar 

  • Tutukov AV, Fedorova AV (2007) Formation and evolution of Ae and Be stars. Astron Rep 51:847–862. doi:10.1134/S1063772907100095

    ADS  Google Scholar 

  • Tycner C, Hajian AR, Armstrong JT, Benson JA, Gilbreath GC, Hutter DJ, Lester JB, Mozurkewich D, Pauls TA (2004) The circumstellar envelope of  Tauri through optical interferometry. Astron J 127:1194–1203. doi:10.1086/381068

    ADS  Google Scholar 

  • Tycner C, Lester JB, Hajian AR, Armstrong JT, Benson JA, Gilbreath GC, Hutter DJ, Pauls TA, White NM (2005) Properties of the Hα-emitting circumstellar regions of Be stars. Astrophys J 624:359–371. doi:10.1086/429126

    ADS  Google Scholar 

  • Tycner C, Gilbreath GC, Zavala RT, Armstrong JT, Benson JA, Hajian AR, Hutter DJ, Jones CE, Pauls TA, White NM (2006) Constraining disk parameters of Be stars using narrowband Hα interferometry with the navy prototype optical interferometer. Astron J 131:2710–2721. doi:10.1086/502679

    ADS  Google Scholar 

  • Tycner C, Jones CE, Sigut TAA, Schmitt HR, Benson JA, Hutter DJ, Zavala RT (2008) Constraining the physical parameters of the circumstellar disk of χ Ophiuchi. Astrophys J 689:461–470. doi:10.1086/592097

    ADS  Google Scholar 

  • ud-Doula A, Owocki SP, Townsend RHD (2008) Dynamical simulations of magnetically channelled line-driven stellar winds—II. The effects of field-aligned rotation. Mon Not R Astron Soc 385:97–108. doi:10.1111/j.1365-2966.2008.12840.x

    ADS  Google Scholar 

  • Underhill A, Doazan V (1982) B Stars with and without emission lines. NASA

  • Uytterhoeven K, Poretti E, Rodríguez E, De Cat P, Mathias P, Telting JH, Costa V, Miglio A (2007) Multiperiodicity in the newly discovered mid-late Be star V2104 Cygni. Astron Astrophys 470:1051–1057. doi:10.1051/0004-6361:20077657

    ADS  Google Scholar 

  • Vakili F, Mourard D, Stee P, Bonneau D, Berio P, Chesneau O, Thureau N, Morand F, Labeyrie A, Tallon-Bosc I (1998) Evidence for one-armed oscillations in the equatorial disk of Tauri from GI2T spectrally resolved interferometry. Astron Astrophys 335:261–265

    ADS  Google Scholar 

  • van Belle GT (2012) Interferometric observations of rapidly rotating stars. Astron Astrophys Rev 20:51. doi:10.1007/s00159-012-0051-2

    ADS  Google Scholar 

  • Vanzi L, Chacon J, Helminiak KG, Baffico M, Rivinius T, Štefl S, Baade D, Avila G, Guirao C (2012) PUCHEROS: a cost-effective solution for high-resolution spectroscopy with small telescopes. Mon Not R Astron Soc 424:2770–2777. doi:10.1111/j.1365-2966.2012.21382.x

    ADS  Google Scholar 

  • Vink JS, Harries TJ, Drew JE (2005) Polarimetric line profiles for scattering off rotating disks. Astron Astrophys 430:213–222. doi:10.1051/0004-6361:20041463

    ADS  Google Scholar 

  • Vink JS, Davies B, Harries TJ, Oudmaijer RD, Walborn NR (2009) On the presence and absence of disks around O-type stars. Astron Astrophys 505:743–753. doi:10.1051/0004-6361/200912610

    ADS  Google Scholar 

  • von Zeipel H (1924) The radiative equilibrium of a slightly oblate rotating star. Mon Not R Astron Soc 84:684–701

    ADS  Google Scholar 

  • Wade GA, Grunhut JF (MiMeS Collaboration) (2012) The MiMeS survey of magnetism in massive stars. In: Carciofi AC, Rivinius T (eds) Circumstellar dynamics at high resolution. Astronomical society of the pacific conference series, vol 464, p p 405

    Google Scholar 

  • Walker GAH, Kuschnig R, Matthews JM, Cameron C, Saio H, Lee U, Kambe E, Masuda S, Guenther DB, Moffat AFJ, Rucinski SM, Sasselov D, Weiss WW (2005) MOST detects g-modes in the Be star HD 163868. Astrophys J Lett 635:L77–L80. doi:10.1086/499362

    ADS  Google Scholar 

  • Walker GAH, Kuschnig R, Matthews JM, Reegen P, Kallinger T, Kambe E, Saio H, Harmanec P, Guenther DB, Moffat AFJ, Rucinski SM, Sasselov D, Weiss WW, Bohlender DA, Božić H, Hashimoto O, Koubský P, Mann R, Ruždjak D, Škoda P, Šlechta M, Sudar D, Wolf M, Yang S (2005) Pulsations of the Oe star  Ophiuchi from MOST satellite photometry and ground-based spectroscopy. Astrophys J Lett 623:L145–L148. doi:10.1086/430254

    ADS  Google Scholar 

  • Waters LBFM (1986) The density structure of discs around Be stars derived from IRAS observations. Astron Astrophys 162:121–139

    ADS  Google Scholar 

  • Waters LBFM, van Kerkwijk MH (1989) The relation between orbital and spin periods in massive X-ray binaries. Astron Astrophys 223:196–206

    ADS  Google Scholar 

  • Waters LBFM, Waelkens C (1998) Herbig Ae/Be stars. Annu Rev Astron Astrophys 36:233–266. doi:10.1146/annurev.astro.36.1.233

    ADS  Google Scholar 

  • Waters LBFM, Cote J, Geballe TR (1988) 51 Ophiuchi (B9.5 Ve)—a Be star in the class of Beta Pictoris stars? Astron Astrophys 203:348–354

    ADS  Google Scholar 

  • Waters LBFM, Marlborough JM, van der Veen WEC, Taylor AR, Dougherty SM (1991) The structure of circumstellar discs of Be stars—millimeter observations. Astron Astrophys 244:120–130

    ADS  Google Scholar 

  • Westerlund BE (1997) The Magellanic Clouds. Springer, Berlin

    Google Scholar 

  • Wheelwright HE, Bjorkman JE, Oudmaijer RD, Carciofi AC, Bjorkman KS, Porter JM (2012) Probing the properties of Be star discs with spectroastrometry and NLTE radiative transfer modelling: β CMi. Mon Not R Astron Soc 423:L11–L15. doi:10.1111/j.1745-3933.2012.01241.x

    ADS  Google Scholar 

  • Wisniewski JP, Bjorkman KS (2006) The role of evolutionary age and metallicity in the formation of classical Be circumstellar disks. I. new candidate Be stars in the LMC, SMC, and Milky Way. Astrophys J 652:458–471. doi:10.1086/507260

    ADS  Google Scholar 

  • Wisniewski JP, Bjorkman KS, Magalhães AM, Bjorkman JE, Meade MR, Pereyra A (2007a) The role of evolutionary age and metallicity in the formation of classical Be circumstellar disks. II. Assessing the evolutionary nature of candidate disk systems. Astrophys J 671:2040–2058. doi:10.1086/522293

    ADS  Google Scholar 

  • Wisniewski JP, Kowalski AF, Bjorkman KS, Bjorkman JE, Carciofi AC (2007) Toward mapping the detailed density structure of classical Be circumstellar disks. Astrophys J Lett 656:L21–L24. doi:10.1086/512123

    ADS  Google Scholar 

  • Wisniewski JP, Draper ZH, Bjorkman KS, Meade MR, Bjorkman JE, Kowalski AF (2010) Disk-loss and disk-renewal phases in classical Be stars. I. Analysis of long-term spectropolarimetric data. Astrophys J 709:1306–1320. doi:10.1088/0004-637X/709/2/1306

    ADS  Google Scholar 

  • Wood K, Brown JC, Fox GK (1993) Polarimetric line profiles from optically thin Thomson scattering circumstellar envelopes. Astron Astrophys 271:492

    ADS  Google Scholar 

  • Wood K, Bjorkman JE, Whitney B, Code A (1996a) The effect of multiple scattering on the polarization from axisymmetric circumstellar envelopes. II. Thomson scattering in the presence of absorptive opacity sources. Astrophys J 461:847. doi:10.1086/177106

    ADS  Google Scholar 

  • Wood K, Bjorkman JE, Whitney BA, Code AD (1996b) The effect of multiple scattering on the polarization from axisymmetric circumstellar envelopes. I. Pure Thomson scattering envelopes. Astrophys J 461:828. doi:10.1086/177105

    ADS  Google Scholar 

  • Wood K, Bjorkman KS, Bjorkman JE (1997) Deriving the geometry of Be star circumstellar envelopes from continuum spectropolarimetry. I. The case of Tauri. Astrophys J 477:926. doi:10.1086/303747

    ADS  Google Scholar 

  • Woosley SE (1993) Gamma-ray bursts from stellar mass accretion disks around black holes. Astrophys J 405:273–277. doi:10.1086/172359

    ADS  Google Scholar 

  • Woosley SE, Bloom JS (2006) The supernova gamma-ray burst connection. Annu Rev Astron Astrophys 44:507–556. doi:10.1146/annurev.astro.43.072103.150558

    ADS  Google Scholar 

  • Yoon SC, Langer N, Norman C (2006) Single star progenitors of long gamma-ray bursts. I. Model grids and redshift dependent GRB rate. Astron Astrophys 460:199–208. doi:10.1051/0004-6361:20065912

    ADS  Google Scholar 

  • Yudin RV (2001) Statistical analysis of intrinsic polarization, IR excess and projected rotational velocity distributions of classical Be stars. Astron Astrophys 368:912–931. doi:10.1051/0004-6361:20000577

    ADS  Google Scholar 

  • Zaal PA, de Koter A, Waters LBFM, Marlborough JM, Geballe TR, Oliveira JM, Foing BH (1999) On the nature of the HI infrared emission lines of tau Scorpii. Astron Astrophys 349:573–587

    ADS  Google Scholar 

  • Zorec J, Briot D (1997) Critical study of the frequency of Be stars taking into account their outstanding characteristics. Astron Astrophys 318:443–460

    ADS  Google Scholar 

  • Zorec J, Frémat Y (2005) On the frequency of field galactic Be stars. In: Casoli F, Contini T, Hameury JM, Pagani L (eds) SF2A-2005: Semaine de l’Astrophysique Francaise, p 361

    Google Scholar 

  • Zorec J, Frémat Y, Cidale L (2005) On the evolutionary status of Be stars. I. Field Be stars near the Sun. Astron Astrophys 441:235–248. doi:10.1051/0004-6361:20053051

    ADS  Google Scholar 

  • Zorec J, Arias ML, Cidale L, Ringuelet AE (2007) Be star disc characteristics near the central object. Astron Astrophys 470:239–247. doi:10.1051/0004-6361:20066615

    ADS  Google Scholar 

Download references

Acknowledgements

We dedicate this review to the memory of the late John Porter. John was an outstanding colleague, scientifically as well as personally. He passed away Tuesday, June 7, 2005.

We are grateful to the Organizing Committee of the IAU Working Group on Active B stars for endorsing this review.

Valuable comments on the draft manuscript were provided by Dietrich Baade, Armando Domiciano de Souza, Jason Grunhut, Carol Jones, Ronald Mennickent, Florentin Millour, Coralie Neiner, Atsuo Okazaki, Stan Owocki, Geraldine Peters, Myron Smith, Philippe Stee, Richard Townsend, and Gregg Wade.

We thank Carol Jones, Armando Domiciano de Souza, Cyril Escolano, Daniel M. Faes, Robbie Halonen, Xavier Haubois, Anne-Marie Hubert, Stefan Keller, Bruno C. Mota, Coralie Neiner, Atsuo Okazaki, Stan Owocki, Gail Schaefer, and Richard Townsend for providing data for figures.

For this work we made use of NASA’s ADS, the ESO Science Archive Facility, the AMBER data reduction package of the Jean-Marie Mariotti Center, the pgfplots package by Ch. Feuersänger, and the computing facilities of the Laboratory of Astroinformatics (IAG/USP, NAT/Unicsul), whose purchase was made possible by the Brazilian agency Fapesp (grant 2009/54006-4) and the INCT-A.

TRi acknowledges ESO’s support in the form of a temporary re-assignment to the Office for Science to complete this review. ACa acknowledges support from CNPq (grant 307076/2012-1) and Fapesp (grant 2010/19029-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Rivinius.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivinius, T., Carciofi, A.C. & Martayan, C. Classical Be stars. Astron Astrophys Rev 21, 69 (2013). https://doi.org/10.1007/s00159-013-0069-0

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00159-013-0069-0

Keywords

Navigation