Skip to main content

Application of Phyllosphere Microbiota as Biofertilizers

  • Chapter
  • First Online:
Microbiota and Biofertilizers, Vol 2

Abstract

Phyllosphere microbiota signify global microbial habitat having potential influence on fitness and functions of their host, which subsequently impact plant biogeography and ecosystem functioning. Following this consensus, phyllosphere microbiota of several plant species, including economically important crop plants, have been explored for their critical agro-based functions. It is now well documented that phyllospheric microbial consortia regulate numerous plant traits that have vital roles in plant health as well as in plant production. Owing to their agricultural potential, phyllospheric microbiota serve as imperative alternative to chemical fertilizers, which not only facilitate crops to grow in resource-poor and stressful environments but also provide resistance to fight off dangerous pathogens without disrupting the essential ecosystem balance. This chapter highlights beneficial plant-microbe interaction in nature with special reference to phyllosphere microbiota that can be employed in agricultural sector for boosting global food security in conjunction with the maintenance of environmental sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abril AB, Torres PA, Bucher EH (2005) The importance of phyllosphere microbial populations in nitrogen cycling in the Chaco semi-arid woodland. J Trop Ecol 21(1):103–107

    Article  Google Scholar 

  • Akter S (2015) Application of phyllosphere bacterial antagonist against rice sheath blight. Doctoral thesis, Universiti Putra Malaysia

    Google Scholar 

  • Andreote FD, Gumiere T, Durrer A (2014) Exploring interactions of plant microbiomes. Sci Agric 71:528–539

    Article  Google Scholar 

  • Andrews JH, Harris RF (2000) The ecology and biogeography of microorganisms on plant surfaces. Annu Rev Phytopathol 38:145–180

    Article  PubMed  Google Scholar 

  • Arnold AE et al (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci U S A 100:15649–15654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atamna-Ismaeel N, Finkel OM, Glaser F et al (2012) Bacterial anoxygenic photosynthesis on plant leaf surfaces. Environ Microbiol Rep 4:209–216

    Article  CAS  PubMed  Google Scholar 

  • Attard E, Yang H, Delort AM et al (2012) Effects of atmospheric conditions on ice nucleation activity of Pseudomonas. Atmos Chem Phys 12:10667–10677

    Article  CAS  Google Scholar 

  • Bai Y et al (2015) Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528:364–369

    Article  CAS  PubMed  Google Scholar 

  • Barka EA, Nowak J, Clément C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72:7246–7252

    Article  CAS  Google Scholar 

  • Batool F, Rehman Y, Hasnain S (2016) Phylloplane associated plant bacteria of commercially superior wheat varieties exhibit superior plant growth promoting abilities. Front Life Sci 9:313–322

    Article  CAS  Google Scholar 

  • Beattie GA, Lindow SE (1995) The secret life of foliar bacterial pathogens on leaves. Annu Rev Phytopathol 33:145–172

    Article  CAS  PubMed  Google Scholar 

  • Bentley BL, Carpenter EJ (1984) Direct transfer of newly-fixed nitrogen from free-living epiphyllous microorganisms to their host plant. Oecologia 63:52–55

    Article  PubMed  Google Scholar 

  • Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    Article  CAS  PubMed  Google Scholar 

  • Berendsen RL, Vismans G, Yu K, Song Y, de Jonge R, Burgman WP et al (2018) Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME J 12:1496–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berg M, Koskella B (2018) Nutrient- and dose-dependent microbiome-mediated protection against a plant pathogen. Curr Biol 28:2487–2492

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Grube M, Schloter M, Smalla K (2014) Unraveling the plant microbiome: looking back and future perspectives. Front Microbiol 5:148

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhat RA, Dervash MA, Mehmood MA, Bhat MS, Rashid A, Bhat JIA, Singh DV, Lone R (2017a) Mycorrhizae: a sustainable industry for plant and soil environment. In: Varma A et al (eds) Mycorrhiza-nutrient uptake, biocontrol, ecorestoration. Springer International Publishing, Cham, pp 473–502

    Chapter  Google Scholar 

  • Bhat RA, Shafiq-ur-Rehman, Mehmood MA, Dervash MA, Mushtaq N, Bhat JIA, Dar GH (2017b) Current status of nutrient load in Dal Lake of Kashmir Himalaya. J Pharmacogn Phytochem 6(6):165–169

    CAS  Google Scholar 

  • Bhat RA, Beigh BA, Mir SA, Dar SA, Dervash MA, Rashid A, Lone R (2018a) Biopesticide techniques to remediate pesticides in polluted ecosystems. In: Wani KA, Mamta (eds) Handbook of research on the adverse effects of pesticide pollution in aquatic ecosystems. IGI Global, Hershey, pp 387–407

    Google Scholar 

  • Bhat RA, Dervash MA, Qadri H, Mushtaq N, Dar GH (2018b) Macrophytes, the natural cleaners of toxic heavy metal (THM) pollution from aquatic ecosystems. In: Environmental contamination and remediation. Cambridge Scholars Publishing, Newcastle upon Tyne, pp 189–209

    Google Scholar 

  • Bhatti AA, Haq S, Bhat (2017) Actinomycetes benefaction role in soil and plant health. Microb Pathog 111:458–467

    Google Scholar 

  • Brader G, Compant S, Vescio K, Mitter B, Trognitz F, Ma LJ, Sessitsch A (2017) Ecology and genomic insights into plant-pathogenic and plant-nonpathogenic endophytes. Annu Rev Phytopathol 55:61–83

    Article  CAS  PubMed  Google Scholar 

  • Bragina A, Berg C, Cardinale M et al (2012) Sphagnum mosses harbour highly specific bacterial diversity during their whole lifecycle. ISME J 6:802–813

    Article  CAS  PubMed  Google Scholar 

  • Bringel F, Couee I (2015) Pivotal roles of phyllosphere microorganisms at the interface between plant functioning and atmospheric trace gas dynamics. Front Microbiol 6:486

    Article  PubMed  PubMed Central  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, Ver Loren van Themaat E, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  CAS  PubMed  Google Scholar 

  • Busby PE et al (2017) Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol 15:e2001793

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cao FY, Yoshioka K, Desveau D (2011) The roles of ABA in plant–pathogen interactions. J Plant Res 124:489–499

    Article  CAS  PubMed  Google Scholar 

  • Checcucci A, DiCenzo GC, Ghini V, Bazzicalupo M, Beker A, Decorosi F, Dohlemann J, Fagorzi C, Finan TM, Fondi M et al (2018) Creation and characterization of a genomically hybrid strain in the nitrogen-fixing symbiotic bacterium Sinorhizobium meliloti. ACS Synth Biol 7:296483

    Article  CAS  Google Scholar 

  • Corpe WA, Rheem S (1989) Ecology of the methylotrophic bacteria on living leaf surfaces. FEMS Microbiol Ecol 62:243–249

    Article  CAS  Google Scholar 

  • Costerton JW, Lewandowski Z, DeBeer D et al (1994) Biofilms, the customized microniche. J Bacteriol 176:2137–2142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Da Costa PB, Granada CE, Ambrosini A, Moreira F, de Souza R, dos Passos JFM, Arruda L, Passaglia LM (2014) A model to explain plant growth promotion traits: a multivariate analysis of 2,211 bacterial isolates. PLoS One 9(12):116020

    Google Scholar 

  • Dar S, Bhat RA (2020) Aquatic pollution stress and role of biofilms as environment cleanup technology. In: Qadri H, Bhat RA, Dar GH, Mehmood MA (eds) Freshwater pollution dynamics and remediation. Springer Nature, Singapore, pp 293–318

    Chapter  Google Scholar 

  • Dar GH, Bandh SA, Kamili AN, Nazir R, Bhat RA (2013) Comparative analysis of different types of bacterial colonies from the soils of Yusmarg Forest, Kashmir valley India. Ecol Balkanica 5(1):31–35

    Google Scholar 

  • Dar GH, Kamili AN, Chishti MZ, Dar SA, Tantry TA, Ahmad F (2016) Characterization of Aeromonas sobria isolated from Fish Rohu (Labeo rohita) collected from polluted pond. J Bacteriol Parasitol 7(3):1–5. https://doi.org/10.4172/2155-9597.1000273

    Article  CAS  Google Scholar 

  • De Vrieze M, Germanier F, Vuille N, Weisskopf L (2018) Combining different potato-associated Pseudomonas strains for improved biocontrol of Phytophthora infestans. Front Microbiol 9:2573

    Article  PubMed  PubMed Central  Google Scholar 

  • del Rocío Mora-Ruiz M, Font-Verdera F, Díaz-Gil C et al (2015) Moderate halophilic bacteria colonizing the phylloplane of halophytes of the subfamily Salicornioideae (Amaranthaceae). Syst Appl Microbiol 38:406–441

    Article  CAS  Google Scholar 

  • Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D et al (2016) Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat Commun 7:10541–10548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B, Schlapbach R, von Mering C, Vorholt JA (2009) Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci 106:16428–16433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dervash MA, Bhat RA, Shafiq S, Singh DV, Mushtaq N (2020) Biotechnological intervention as an aquatic clean up tool. In: Qadri H, Bhat RA, Mehmood MA, Dar GH (eds) Freshwater pollution dynamics and remediation. Springer Nature, Singapore, pp 183–196

    Chapter  Google Scholar 

  • Dickinson CH (1976) Fungi on the aerial surfaces of higher plants. In: Microbiology of aerial plant surfaces. Academic Press, New York, pp 293–325

    Google Scholar 

  • Ding T, Melcher U (2016) Influences of plant species, season and location on leaf endophytic bacterial communities of non-cultivated plants. PLoS One 11:e0150895

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elad Y (1996) Mechanisms involved in the biological control of Botrytis cinerea incited diseases. Eur J Plant Pathol 102:719–732

    Article  Google Scholar 

  • El-Gawad HGA, Ibrahim MFM, El-Hafez AAA, El-Yazied AA (2015) Contribution of pink pigmented facultative methylotrophic bacteria in promoting antioxidant enzymes, growth and yield of snap bean. Am Eurasian J Agric Environ Sci 15:1331–1345

    Google Scholar 

  • Enya J, Shinohara H, Yoshida S, Negishi TTH, Suyama K, Tsushima S (2007) Culturable leaf-associated bacteria on tomato plants and their potential as biological control agents. Microb Ecol 53:524–536

    Article  CAS  PubMed  Google Scholar 

  • Finkel OM, Burch AY, Elad T, Huse SM, Lindow SE, Post AF et al (2012) Distance-decay relationship partially determine diversity patterns of phyllosphere bacteria on Tamarix trees across the Sonoran desert. Appl Environ Microbiol 78:6187–6193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu SF, Sun PF, Lu HY, Wei JY, Xiao HS, Fang WT, Cheng BY, Chou JY (2016) Plant growth-promoting traits of yeasts isolated from the phyllosphere and rhizosphere of Drosera spatulata lab. Fungal Biol Rev 120:433–448

    Article  CAS  Google Scholar 

  • Furnkranz M, Wanek W, Richter A, Abell G, Rasche F, Sessitsch A (2008) Nitrogen fixation by phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest of Costa Rica. ISME J 2:561–570

    Article  PubMed  CAS  Google Scholar 

  • Giri S, Pati BR (2004) A comparative study on phyllosphere nitrogen fixation by newly isolated Corynebacterium sp. and Flavobacterium sp. and their potentialities as biofertilizer. Acta Microbiol Immunol Hung 51:47–56

    Article  CAS  PubMed  Google Scholar 

  • Grossman JM, Schipanski ME, Sooksanguan T, Drinkwater LE (2011) Diversity of rhizobia nodulating soybean [Glycine max (Vinton)] varies under organic and conventional management. Appl Soil Ecol 50:14–20

    Article  Google Scholar 

  • Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    Article  CAS  PubMed  Google Scholar 

  • Hirano SS, Upper CD (2000) Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae—a pathogen, ice nucleus, and epiphyte. Microbiol Mol Biol Rev 64:624–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holland MA (2011) Nitrogen: give and take from phylloplane microbes. In: Ecological aspects of nitrogen metabolism in plants. Wiley-Blackwell, London, pp 217–230

    Google Scholar 

  • Hubbard M, Germida JJ, Vujanovic V (2014) Fungal endophytes enhance wheat heat and drought tolerance in terms of grain yield and second-generation seed viability. J Appl Microbiol 116:109–122

    Article  CAS  PubMed  Google Scholar 

  • Inacio J, Pereira P, de Carvalho M, Fonseca A, Amaral-Collaco MT, Spencer-Martins I (2002) Estimation and diversity of phylloplane mycobiota on selected plants in a Mediterranean-type ecosystem in Portugal. Microb Ecol 44:344–353

    Article  CAS  PubMed  Google Scholar 

  • Innerebner G, Knief C, Vorholt JA (2011) Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Appl Environ Microbiol 77:3202–3210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jumpponen A, Jones KL (2009) Massively parallel 454 sequencing indicates hyperdiverse fungal communities in temperate Quercus macrocarpa phyllosphere. New Phytol 184(2):438–448

    Article  CAS  PubMed  Google Scholar 

  • Kefi A, Slimene IB, Karkouch I, Rihouey C, Azaeiz S, Bejaoui M, Belaid R, Cosette P, Jouenne T, Limam F (2015) Characterization of endophytic Bacillus strains from tomato plants (Lycopersicon esculentum) displaying antifungal activity against Botrytis cinerea Pers. World J Microbiol Biotechnol 31:1967–1976

    Article  CAS  PubMed  Google Scholar 

  • Kembel SW, Mueller RC (2014) Plant traits and taxonomy drive host associations in tropical phyllosphere fungal communities. Botany 92:303–311

    Article  Google Scholar 

  • Khanday M, Bhat RA, Haq S, Dervash MA, Bhatti AA, Nissa M, Mir MR (2016) Arbuscular mycorrhizal fungi boon for plant nutrition and soil health. In: Hakeem KR, Akhtar J, Sabir M (eds) Soil science: agricultural and environmental prospectives. Springer International Publishing, Cham, pp 317–332

    Chapter  Google Scholar 

  • Knief C, Delmotte N, Chaffron S, Stark M, Innerebner G, Wassmann R, von Mering C, Vorholt JA (2012) Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J 6:1378–1390

    Article  CAS  PubMed  Google Scholar 

  • Laforest-Lapointe I, Messier C, Kembel SW (2016) Host species identity, site and time drive temperate tree phyllosphere bacterial community structure. Microbiome 4:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Last FT (1955) Seasonal incidence of Sporobolomyces on cereal leaves. Trans Br Mycol Soc 38:221–239

    Article  Google Scholar 

  • Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindow SE, Arny DC, Upper CD (1982a) Bacterial ice nucleation: a factor in frost injury to plants. Plant Physiol 70:1084–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindow SE, Hirano SS, Barchet WR et al (1982b) Relationship between ice nucleation frequency of bacteria and frost injury. Plant Physiol 70:1090–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindow S, McGourty G, Elkins R (1996) Interactions of antibiotics with Pseudomonas fluorescens strain A506 in the control of fire blight and frost injury to pear. Phytopathology 86:841–848

    Article  CAS  Google Scholar 

  • Loiret FG, Ortega E, Kleiner D, Ortega-Rodes P, Rodes R, Dong Z (2004) A putative new endophytic nitrogen-fixing bacterium Pantoea sp. from sugarcane. J Appl Microbiol 97:504–511

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Velasco G, Tydings HA, Boyer RR, Falkinham JO, Ponder MA (2012) Characterization of interactions between Escherichia coli O157: H7 with epiphytic bacteria in vitro and on spinach leaf surfaces. Int J Food Microbiol 153(3):351–357

    Article  PubMed  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Lee HS, Hari K, Sundaram SP, Sa TM (2005) Pink-pigmented facultative methylotrophic bacteria accelerate germination, growth and yield of sugarcane clone Co86032 Saccharum officinarum L. Biol Fertil Soils 41:350–358

    Article  CAS  Google Scholar 

  • Madhaiyan M, Suresh Reddy BV, Anandham R, Senthilkumar M, Poonguzhali S, Sundaram SP, Sa TM (2006) Plant growth–promoting methylobacterium induces defense responses in groundnut Arachis hypogaea L. compared with rot pathogens. Curr Microbiol 53:270–276

    Article  CAS  PubMed  Google Scholar 

  • Maliti CM, Basile DV, Corpe WA (2005) Effects of Methylobacterium spp. strains on rice Oryza sativa L. callus induction, plantlet regeneration, and seedlings growth in vitro 1. J Torrey Bot Soc 132:355–367

    Article  Google Scholar 

  • Manching HC, Balint-Kurti PJ, Stapleton AE (2014) Southern leaf blight disease severity is correlated with decreased maize leaf epiphytic bacterial species richness and the phyllosphere bacterial diversity decline is enhanced by nitrogen fertilization. Front Plant Sci 5:403

    Article  PubMed  PubMed Central  Google Scholar 

  • Marques AP, Pires C, Moreira H, Rangel AO, Castro PM (2010) Assessment of the plant growth promotion abilities of six bacterial isolates using Zea mays as indicator plant. Soil Biol Biochem 42(8):1229–1235

    Google Scholar 

  • Meena KK, Kumar M, Kalyuzhnaya MG, Yandigeri MS, Singh DP, Saxena AK, Arora DK (2012) Epiphytic pink-pigmented methylotrophic bacteria enhance germination and seedling growth of wheat (Triticum aestivum) by producing phytohormone. Anton Leeuw 101:777–786

    Article  CAS  Google Scholar 

  • Mehmood MA, Qadri H, Bhat RA, Rashid A, Ganie SA, Dar GH, Shafiq-ur-Rehman (2019) Heavy metal contamination in two commercial fish species of a trans-Himalayan freshwater ecosystem. Environ Monit Assess 191:104. https://doi.org/10.1007/s10661-019-7245-2

    Article  CAS  PubMed  Google Scholar 

  • Mendes R et al (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100

    Article  CAS  PubMed  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    Article  CAS  PubMed  Google Scholar 

  • Meyer KM, Leveau JH (2012) Microbiology of the phyllosphere: a playground for testing ecological concepts. Oecologia 168:621–629

    Article  PubMed  Google Scholar 

  • Molina-Romero D, Baez A, Quintero-Hernández V, Castañeda-Lucio M, Fuentes-Ramírez LE, Bustillos-Cristales MDR et al (2017) Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth. PLoS One 12:e0187913

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moulas C, Petsoulas C, Rousidou K, Perruchon C, Karas P, Karpouzas DG (2013) Effects of systemic pesticides imidacloprid and metalaxyl on the phyllosphere of pepper plants. Biomed Res Int 2013:969750

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mushtaq N, Bhat RA, Dervash MA, Qadri H, Dar GH (2018) Biopesticides: the key component to remediate pesticide contamination in an ecosystem. In: Environmental contamination and remediation. Cambridge Scholars Publishing, Newcastle upon Tyne, pp 152–178

    Google Scholar 

  • Mwajita MR, Murage H, Tani A, Kahangi EM (2013) Evaluation of rhizosphere, rhizoplane and phyllosphere bacteria and fungi isolated from rice in Kenya for plant growth promoters. Springerplus 2:606

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nadalig T, Greule M, Bringel F, Keppler F, Vuilleumier S (2014) Probing the diversity of chloromethane-degrading bacteria by comparative genomics and isotopic fractionation. Front Microbiol 5:523

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakamiya K, Nakayama T, Ito H, Shibata Y, Morita M (2009) Isolation and properties of a 2-chlorovinylarsonic acid-degrading microorganism. J Hazard Mater 165:388–393

    Article  CAS  PubMed  Google Scholar 

  • Ning J, Gang G, Bai Z et al. (2012) In situ enhanced bioremediation of dichlorvos by a phyllosphere Flavobacterium strain. Front Environ Sci Eng 6:231–237

    Google Scholar 

  • Omer ZS, Tombolini R, Broberg A, Gerhardson B (2004) Indole-3-acetic acid production by pink-pigmented facultative methylotrophic bacteria. Plant Growth Regul 43:93–96

    Article  CAS  Google Scholar 

  • Otte ML, Wilson G, Morris JT, Moran BM (2004) Dimethylsulphoniopropionate (DMSP) and related compounds in higher plants. J Exp Bot 55:1919–1925

    Article  CAS  PubMed  Google Scholar 

  • Papen H, Geβler A, Zumbusch E, Rennenberg H (2002) Chemolithoautotrophic nitrifiers in the phyllosphere of a spruce ecosystem receiving high atmospheric nitrogen input. Curr Microbiol 44:56–60

    Article  CAS  PubMed  Google Scholar 

  • Pattnaik S, Rajkumari J, Parasuraman P, Siddhardha B (2017a) Plant growth promoting activity of pink pigmented facultative Methylotroph–Methylobacterium extorquens MM2 on Lycopersicon esculentum L. J Appl Biol Biotechnol 5:042–046

    Google Scholar 

  • Pattnaik S, Rajkumari J, Paramanandham P, Busi S (2017b) Indole acetic acid production and growth promoting activity of Methylobacterium extorquens MP1 and Methylobacterium zatmanii MS4 in tomato. Int J Veg Sci 23:321–330

    Article  Google Scholar 

  • Peay KG, Kennedy PG, Talbot JM (2016) Dimensions of biodiversity in the Earth mycobiome. Nat Rev Microbiol 14:434–447

    Article  CAS  PubMed  Google Scholar 

  • Pedraza RO, Bellone CH, de Bellone SC et al (2009) Azospirillum inoculation and nitrogen fertilization effect on grain yield and on the diversity of endophytic bacteria in the phyllosphere of rice rainfed crop. Eur J Soil Biol 45:36–43

    Article  CAS  Google Scholar 

  • Peñuelas J, Staudt M (2009) BVOCs and global change. Trends Plant Sci 15:133–144

    Article  CAS  Google Scholar 

  • Peñuelas J, Terradas J (2014) The foliar microbiome. Trends Plant Sci 19:278–280

    Article  PubMed  CAS  Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P et al (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799

    Article  CAS  PubMed  Google Scholar 

  • Qin C, Tao J, Liu T, Liu Y, Xiao N, Li T, Gu Y, Yin H, Meng D (2019) Responses of phyllosphere microbiota and plant health to application of two different biocontrol agents. AMB Express 9:42

    Article  PubMed  PubMed Central  Google Scholar 

  • Quiza L, St-Arnaud M, Yergeau E (2015) Harnessing phytomicrobiome signaling for rhizosphere microbiome engineering. Front Plant Sci 6:507

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramachandran VK, East AK, Karunakaran R, Downie JA, Poole SP (2011) Adaptation of Rhizobium leguminosarum to pea, alfalfa and sugar beet rhizosphere investigated by comparative transcriptomics. Genome Biol 12:106–109

    Article  CAS  Google Scholar 

  • Rashid MH, Schafer H, Gonzalez J, Wink M (2012) Genetic diversity of rhizobia nodulating lentil (Lens culinaris) in Bangladesh. Syst Appl Microbiol 35:98–109

    Article  PubMed  Google Scholar 

  • Rastogi G, Sbodio A, Tech JJ, Suslow TV, Coaker GL, Leveau JHJ (2012) Leaf microbiota in an agroecosystem: spatiotemporal variation in bacterial community composition on field-grown lettuce. ISME J 6:1812–1822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redford AJ, Fierer N (2009) Bacteria succession on the leaf surface: a novel system for studying successional dynamics. Microb Ecol 58:189–198

    Article  PubMed  Google Scholar 

  • Redford AJ, Bowers RM, Knight R, Linhart Y, Fierer N (2010) The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ Microbiol 12:2885–2893

    Article  PubMed  PubMed Central  Google Scholar 

  • Rolli E, Marasco R, Vigani G, Ettoumi B, Mapelli F, Deangelis ML et al (2015) Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environ Microbiol 17:316–331

    Article  PubMed  Google Scholar 

  • Ruinen J (1965) The phyllosphere – III. Nitrogen fixation in the phyllosphere. Plant Soil 22:375–394

    Google Scholar 

  • Sandhu A, Halverson L J, Beattie GA (2007) Bacterial degradation of airborne phenol in the phyllosphere. Environ Microbiol 9:383–392

    Google Scholar 

  • Santos-Medellín C, Edwards J, Liechty Z, Nguyen B, Sundaresan V (2017) Drought stress results in a compartment-specific restructuring of the rice root-associated microbiomes. MBio 8:e00764–e00817

    Article  PubMed  PubMed Central  Google Scholar 

  • Scavino AF, Pedraza RO (2013) The role of siderophores in plant growth-promoting bacteria. In: Bacteria in agrobiology: crop productivity. Springer, Berlin, Heidelberg, pp 265–285

    Chapter  Google Scholar 

  • Schäfer H, Myronova N, Boden R (2010) Microbial degradation of dimethylsulphide and related C1-sulphur compounds: organisms and pathways controlling fluxes of sulphur in the biosphere. J Exp Bot 61:315–334

    Article  PubMed  CAS  Google Scholar 

  • Senthilkumar M, Krishnamoorthy R (2017) Isolation and characterization of tomato leaf phyllosphere Methylobacterium and their effect on plant growth. Int J Curr Microbiol App Sci 6:2121–2136

    Article  CAS  Google Scholar 

  • Sguros PL (1955) Microbial transformations of the tobacco alkaloids. I. Cultural and morphological characteristics of a nicotinophile. J Bacteriol 69:28–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shafi S, Bhat RA, Bandh SA, Shameem N, Nisa H (2018) Microbes: key agents in the sustainable environment and cycling of nutrients. In: Environmental contamination and remediation. Cambridge Scholars Publishing, Newcastle upon Tyne, pp 152–179–188

    Google Scholar 

  • Sharma P, Sardana V, Kandola SS (2011) Response of groundnut (Arachis hypogaea L.) to Rhizobium inoculation. Libyan Agric Res Centre J Int 2:101–104

    Google Scholar 

  • Shigenaga AM, Argueso CT (2016) No hormone to rule them all: interactions of plant hormones during the responses of plants to pathogens. Semin Cell Dev Biol 56:174–189

    Article  CAS  PubMed  Google Scholar 

  • Shiojiri K, Kishimoto K, Ozawa R, Kugimiya S, Urashimo S, Arimura G et al (2006) Changing green leaf volatile biosynthesis in plants: an approach for improving plant resistance against both herbivores and pathogens. Proc Natl Acad Sci U S A 103:16672–16676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh DV, Bhat RA, Dervash MA, Qadri H, Mehmood MA, Dar GH, Hameed M, Rashid N (2020) Wonders of nanotechnology for remediation of polluted aquatic environs. In: Qadri H, Bhat RA, Dar GH, Mehmood MA (eds) Freshwater pollution dynamics and remediation. Springer Nature, Singapore, pp 319–339

    Chapter  Google Scholar 

  • Sofi NA, Bhat RA, Rashid A, Mir NA, Mir SA, Lone R (2017) Rhizosphere mycorrhizae communities an input for organic agriculture. In: Varma A et al (eds) Mycorrhiza-nutrient uptake, biocontrol, ecorestoration. Springer International Publishing, Cham, pp 387–413

    Chapter  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-aceticacidinmicrobial and microorganism-plant signaling. FEMS Microbiol Rev 31:475–448

    Google Scholar 

  • Stockwell VO, Stack JP (2007) Using Pseudomonas spp. for integrated biological control. Phytopathology 97:244–249

    Article  PubMed  Google Scholar 

  • Syranidou E, Christofilopoulos S, Gkavrou G, Thijs S, Weyens N, Vangronsveld J et al (2016) Exploitation of endophytic bacteria to enhance the phytoremediation potential of the wetland helophyte Juncus acutus. Front Microbiol 7:1016

    Article  PubMed  PubMed Central  Google Scholar 

  • Thapa S, Prasanna R, Ranjan K, Velmourougane K, Ramakrishnan B (2017) Nutrients and host attributes modulate the abundance and functional traits of phyllosphere microbiome in rice. Microbiol Res 204:55–64

    Article  CAS  PubMed  Google Scholar 

  • Thapa S, Ranjan K, Ramakrishnan B, Velmourougane K, Prasanna R (2018) Influence of fertilizers and rice cultivation methods on the abundance and diversity of phyllosphere microbiome. J Basic Microbiol 58:172–186

    Article  CAS  PubMed  Google Scholar 

  • Thijs S, van Dillewijn P, Sillen W, Truyens S, Holtappels M, D́haen J et al (2014) Exploring the rhizospheric and endophytic bacterial communities of Acer pseudoplatanus growing on a TNT-contaminated soil: towards the development of a rhizocompetent TNT-detoxifying plant growth promoting consortium. Plant Soil 385:15–36

    Article  CAS  Google Scholar 

  • Thompson IP, Bailey MJ, Fenlon JS, Fermor TR, Lilley AK, Lynch JM, Mccormack PJ, Mcquilken MP, Purdy KJ, Rainey PB, Whipps JM (1993) Quantitative and qualitative seasonal-changes in the microbial community from the phyllosphere of sugar-beet (Beta vulgaris). Plant Soil 150:177–191

    Article  Google Scholar 

  • Tkacz A, Poole P (2015) Role of root microbiota in plant productivity. J Exp Bot 66:2167–2175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Truyens S, Weyens N, Cuypers A et al (2015) Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ Microbiol Rep 7:40–50

    Article  Google Scholar 

  • Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A (2015) The importance of the microbiome of the plant holobiont. New Phytol 206:1196–1206

    Article  PubMed  Google Scholar 

  • Verginer M, Siegmund B, Cardinale M et al (2010) Monitoring the plant epiphyte Methylobacterium extorquens DSM 21961 by real-time PCR and its influence on the strawberry flavor. FEMS Microbiol Ecol 74:136–145

    Article  CAS  PubMed  Google Scholar 

  • Vionnet L, Vrieze MD, Dutartre A, Gfeller A, Lüthi A, L’Haridon F, Weisskopf L (2018) Microbial life in the grapevine: what can we expect from the leaf microbiome. OENO One 52:219–224

    Article  CAS  Google Scholar 

  • Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10:828–840

    Article  CAS  PubMed  Google Scholar 

  • Waight K, Pinyakong O, Luepromchai E (2007) Degradation of phenanthrene on plant leaves by phyllosphere bacteria. J Gen Appl Microbiol 53:265–272

    Google Scholar 

  • Watanabe K, Kohzu A, Suda W et al (2016) Microbial nitrification in through fall of a Japanese cedar associated with archaea from the tree canopy. Springerplus 5:1596

    Article  PubMed  PubMed Central  Google Scholar 

  • Weller DM, Mavrodi DV, van Pelt JA, Pieterse CM, van Loon LC, Bakker PA (2012) Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens. Phytopathology 102:403–412

    Article  CAS  PubMed  Google Scholar 

  • Whipps JM, Hand P, Pink D, Bending GD (2008) Phyllosphere microbiology with special reference to diversity and plant genotype. J Appl Microbiol 105:1744–1755

    Article  CAS  PubMed  Google Scholar 

  • Wisniewski M, Lindow SE, Ashworth EN (1997) Observations of ice nucleation and propagation in plants using infrared video thermography. Plant Physiol 113:327–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie WY, Su JQ, Zhu YG (2014) Arsenite oxidation by the phyllosphere bacterial community associated with Wolffia australiana. Environ Sci Technol 48:9668–9674

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Wang Y, Song J et al. (2011) Promotion of plant growth and in situ degradation of phenol by an engineered Pseudomonas fluorescens strain in different contaminated environments. Soil Biol Biochem 43:915–922

    Google Scholar 

  • Yao L, Wu Z, Zheng Y, Kaleem I, Li C (2010) Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. Eur J Soil Biol 46:49–54

    Article  CAS  Google Scholar 

  • Yutthammo C, Thongthammachat N, Pinphanichakarn P, Luepromchai E (2010) Diversity and activity of PAH-degrading bacteria in the phyllosphere of ornamental plants. Microb Ecol 59:357–368

    Article  CAS  PubMed  Google Scholar 

  • Zabetakis I, Moutevelis-Minakakis P, Gramshaw JW (1999) The role of 2-hydroxypropanal in the biosynthesis of 2,5-dimethyl-4-hydroxy-2H-furan-3-one in strawberry (Fragaria ananassa cv Elsanta) callus cultures. Food Chem 64:311–314

    Article  CAS  Google Scholar 

  • Zeigler R, Barclay A (2008) The relevance of rice. Rice 1:3–10

    Article  Google Scholar 

  • Zipfel C, Robatzek S, Navarro L, Oakeley EJ (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428:764–767

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bashir, I. et al. (2021). Application of Phyllosphere Microbiota as Biofertilizers. In: Dar, G.H., Bhat, R.A., Mehmood, M.A., Hakeem, K.R. (eds) Microbiota and Biofertilizers, Vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-61010-4_15

Download citation

Publish with us

Policies and ethics