Skip to main content

Changes in Substrate Composition During Decomposition

  • Chapter
  • First Online:
Plant Litter

Abstract

The chemical composition of litter changes as decomposition proceeds. The readily decomposed organic compounds such as organic solubles, cellulose and hemicelluloses decrease in concentration or are constant whereas that of lignin or Acid Unhydrolyzable Residue (AUR) increases. The challenge and promise of studying the recalcitrant fractions of litter are addressed. The use of 13C–NMR techniques provides the measurement of changes in particular types of C bonds, allowing greater insight into chemical changes than can determined by analyzing proximate chemical fractions. With the principal nutrient elements, it appears that concentrations of nitrogen (N), phosphorus (P) and sulfur (S) increase. For N the concentration increases irrespective of changes in absolute amount. Also, concentrations of some heavy metals increase e.g. copper (Cu), lead (Pb), and iron (Fe) but there is variation among litter species. In contrast, because potassium (K) is rapidly leached its concentration decreases. The concentration changes for nutrients such as calcium (Ca), and manganese (Mn) appear to have variable patterns while Mn concentration decreases over the early stage whereas it increases in the late stages. Studies on Mn and Ca concentrations as well as nutrient release in pine and spruce litter indicated a clear difference between the two genera.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aber JD, Melillo JM (1982) Nitrogen immobilization in decaying hardwood leaf litter as a function of initial nitrogen and lignin content. Can J Bot 60:2263–2269

    Article  CAS  Google Scholar 

  • Anderson JM, Macfadyen A (eds) (1976) The role of terrestrial and aquatic organisms in decomposition processes. Blackwell, Oxford, p 474

    Google Scholar 

  • Axelsson G, Berg B (1988) Fixation of ammonia (15N) to Scots pine needle litter in different stages of decomposition. Scand J For Res 3:273–280

    Article  Google Scholar 

  • Berg B (1988) Dynamics of nitrogen (15N) in decomposing Scots pine (Pinus silvestris L.) needle litter. Long-term decomposition in a Scots pine forest VI. Can J Bot 66:1539–1546

    Article  CAS  Google Scholar 

  • Berg B, Cortina J (1995) Nutrient dynamics in some decomposing leaf and needle litters in a Pinus sylvestris forest. Scand J For Res 10:1–11

    Article  Google Scholar 

  • Berg B, Ekbohm G (1991) Litter mass loss rates and decomposition patterns in some needle and leaf litter types. Long-term decomposition in a Scots pine forest VII. Can J Bot 69:1449–1456

    Google Scholar 

  • Berg B, Lundmark J-E (1987) Decomposition of needle litter in lodgepole pine and Scots pine monocultures—a comparison. Scand J For Res 2:3–12

    Google Scholar 

  • Berg B, Staaf H (1980a) Decomposition rate and chemical changes in Scots pine needle litter. II. Influence of chemical composition. Ecol Bull (Stockh) 32:373–390

    CAS  Google Scholar 

  • Berg B, Staaf H (1980b) Leaching, accumulation and release of nitrogen from decomposing forest litter. Ecol Bull (Stockh) 32:163–178

    Google Scholar 

  • Berg B, Tamm CO (1991) Decomposition and nutrient dynamics of litter in long-term optimum nutrition experiments. I. Organic matter decomposition in Norway spruce (Picea abies) needle litter. Scand J For Res 6:305–321

    Article  Google Scholar 

  • Berg B, Hannus K, Popoff T, Theander O (1982) Changes in organic-chemical components during decomposition. Long-term decomposition in a Scots pine forest I. Can J Bot 60:1310–1319

    Article  CAS  Google Scholar 

  • Berg B, Ekbohm G, McClaugherty CA (1984) Lignin and holocellulose relations during long-term decomposition of some forest litters. Long-term decomposition in a Scots pine forest. IV. Can J Bot 62:2540–2550

    Article  CAS  Google Scholar 

  • Berg B, Staaf H, Wessén B (1987) Decomposition and nutrient release in needle litter from nitrogen-fertilized Scots pine (Pinus sylvestris) stands. Scand J For Res 2:399–415

    Article  Google Scholar 

  • Berg B, Booltink HGW, Breymeyer A, Ewertsson A, Gallardo A, Holm B, Johansson MB, Koivuoja S, Meentemeyer V, Nyman P, Olofsson J, Pettersson AS, Staaf H, Staaf I, Uba L (1991) Data on needle litter decomposition and soil climate as well as site characteristics for some coniferous forest sites, 2nd edn, sect 2, Data on needle litter decomposition. Swed Univ Agric Sci Dept Ecol Environ Res Rep 42:450

    Google Scholar 

  • Berg B, McClaugherty C, Johansson M (1993) Litter mass-loss rates in late stages of decomposition at some climatically and nutritionally different pine sites. Long-term decomposition in a Scots pine forest VIII. Can J Bot 71:680–692

    Article  Google Scholar 

  • Berg B, McClaugherty C, Johansson M-B (1997) Chemical changes in decomposing plant litter can be systemized with respect to the litter’s initial chemical composition. Dept For Ecol For Soil Swed Univ Agric Sci Rep 74, 85 pp

    Google Scholar 

  • Berg B, Erhagen B, Johansson M-B, Vesterdal L, Faituri M, Sanborn P, Nilsson M (2013) Manganese dynamics in decomposing foliar litter—a synthesis. Can J For Res 43:1127–1136

    Article  CAS  Google Scholar 

  • Berg B, Erhagen B, Nilsson M, Stendahl J, Trum F, Vesterdal L, Johansson M-B (2015) Manganese in the litter fall-forest floor continuum of boreal and temperate pine and spruce forest ecosystems—A review. For Ecol Managt 358:248–260. https://doi.org/10.1016/j.foreco.2015.09.021

    Article  Google Scholar 

  • Berg B, Johansson M-B, Liu C, Faituri M, Sanborn P, Vesterdal L, Ni X, Hansen K, Ukonmaanaho L (2017) Calcium in decomposing foliar litter—A synthesis for boreal and temperate coniferous forests.For Ecol Manage 403:137–144

    Google Scholar 

  • Blair JM (1988a) Nitrogen, sulphur and phosphorus dynamics in decomposing deciduous leaf litter in the southern Appalachians. Soil Biol Biochem 20:693–701

    Article  CAS  Google Scholar 

  • Blair JM (1988b) Nutrient release from decomposing foliar litter of three tree species with special reference to calcium, magnesium and potassium dynamics. Plant Soil 110:49–55

    Article  CAS  Google Scholar 

  • Bockheim JG, Leide JE (1986) Litter and forest-floor dynamics in a Pinus resinosa plantation in Wisconsin. Plant Soil 96:393–406

    Article  CAS  Google Scholar 

  • Bogatyrev L, Berg B, Staaf H (1983) Leaching of plant nutrients and total phenolic substances from some foliage litters—a laboratory study. Swed Conif For Proj Tech Rep 33:59

    Google Scholar 

  • De Marco A, Spaccini R, Vittozzi P, Esposito F, Berg B, Virzo De Santo A (2012) Decomposition of black locust and black pine leaf litter in two coeval forest stands on Mount Vesuvius and dynamics of organic components assessed through proximate analysis and NMR spectroscopy. Soil Biol Biochem 51:1–15

    Article  CAS  Google Scholar 

  • Dwyer LM, Merriam G (1983) Decomposition of natural litter mixtures in a deciduous forest. Can J Bot 62:2340–2344

    Article  Google Scholar 

  • Dziadowiec H (1987) The decomposition of plant litter fall in an oak-linden-hornbeam forest and oak-pine mixed forest of the Bialowieza National Park. Acta Soc Bot Polon 56:169–185

    Article  Google Scholar 

  • Faituri MY (2002) Soil organic matter in Mediterranean and Scandinavian forest ecosystems and dynamics of nutrients and monomeric phenolic compounds. Silvestra 236:136

    Google Scholar 

  • Gautam MK, Lee K-S, Berg B, Song B-Y, Yean J-Y (2019) Trends of major, minor and rare earth elements in decomposing litter in a cool temperate ecosystem. South Korea Chemosphere 222:214–226

    CAS  PubMed  Google Scholar 

  • Grandy AS, Neff JC, Weintraub MN (2007) Carbon structure and enzyme activities in alpine and forest ecosystems. Soil Biol Biochem 39(11):2701–2711

    Article  CAS  Google Scholar 

  • Johansson M-B, Kögel I, Zech W (1986) Changes in the lignin fraction of spruce and pine needle litters during decomposition as studied by some chemical methods. Soil Biol Biochem 18:611–619

    Article  CAS  Google Scholar 

  • Johansson M-B, Berg B, Meentemeyer V (1995) Litter mass-loss rates in late stages of decomposition in a climatic transect of pine forests. Long-term decomposition in a Scots pine forest. IX. Can J Bot 73:1509–1521

    Article  Google Scholar 

  • Kaspari M, Garcia MN, Harms KE (2008) Multiple nutrients limit litterfall and decomposition in a tropical forest. Ecol Lett 11:35–43

    PubMed  Google Scholar 

  • Klotzbücher T, Kaiser K, Guggenberger G, Gatzek C, Kalbitz K (2011) A new conceptual model for the fate of lignin in decomposing plant litter. Ecology 95:1052–1062

    Article  Google Scholar 

  • Knicker N (2004) Stabilization of N-compounds in soil and organic-matter-rich sediments—what is the difference? Mar Chem 92:167–195

    Article  CAS  Google Scholar 

  • Laskowski R, Berg B, Johansson M, McClaugherty C (1995) Release pattern for potassium from decomposing forest leaf litter. Long-term decomposition in a Scots pine forest XI. Can J Bot 73:2019–2027

    Article  CAS  Google Scholar 

  • Manzoni S, Trofymow JA, JacksonRB, Porporate A (2010) Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. Ecol Mono 80(1):89–106

    Google Scholar 

  • Meentemeyer V (1978) Macroclimate and lignin control of litter decomposition rates. Ecology 59:465–472

    Article  CAS  Google Scholar 

  • Melillo JM, Aber JD, Linkins AE, Ricca A, Fry B, Nadelhoffer KJ (1989) Carbon and nitrogen dynamics along the decay continuum: plant litter to soil organic matter. In: Clarholm M, Bergström L (eds) Ecology of arable lands. Kluwer, Dordrecht, pp 53–62

    Google Scholar 

  • Nömmik H, Vahtras K (1982) Retention and fixation of ammonium and ammonia in soils. In: Stevenson FJ (ed) Nitrogen in agricultural soils. Agronomy monographs, no 22. Agron Soc Am, Madison, WI, pp 123–171

    Google Scholar 

  • O’Neill RV, Harris WF, Ausmus BS, Reichle DE (1975) A theoretical basis for ecosystem analysis with particular reference to element cycling. In: Howell FG, Gentry JB, Smith MH (eds) Proceedings of the symposium on mineral cycling in southeastern ecosystems. US Dept Comm, Springfield, pp 28–40

    Google Scholar 

  • Ono K, Hirai K, Morita S, Ohse K, Hiradate S (2009) Organic carbon accumulation processes on a forest floor during an early humification stage in a temperate deciduous forest in Japan: evaluations of chemical compositional changes by C-13 NMR and their decomposition rates from litterbag experiment. Geoderma 151:351–356

    Article  CAS  Google Scholar 

  • Ono K, Hiradate S, Morita S, Ohse K, Hirai K (2011) Humification processes of needle litters on forest floors in Japanese cedar (Cryptomeria japonica) and Hinoki cypress (Chamaecyparis obtusa) plantations in Japan. Plant Soil 338:171–181

    Article  CAS  Google Scholar 

  • Ono K, Hiradate S, Morita S, Hirai K (2013) Fate of organic carbon during decomposition of different litter types in Japan. Biogeochemistry 112:7–21

    Article  Google Scholar 

  • Preston C, Trofymov JA, Sayer B, Niu J (1997) 13C nuclear magnetic resonance spectroscopy with cross-polarization and magic angle spinning investigation of the proximate analysis fractions used to assess litter quality in decomposition studies. Can J Bot 75:1601–1613

    Article  CAS  Google Scholar 

  • Preston CM, Trofymow J, Flanagan L (2006) Decomposition, δ13C, and the “lignin paradox” Can Soil Sci 86(Special Issue):235–245

    Google Scholar 

  • Preston C, Nault JR, Trofymow JA, Smyth C, CIDET Working Group (2009a) Chemical changes during 6 years of decomposition of 11 litters in some Canadian forest sites. Part 1. Elemental composition, tannins, phenolics, and proximate fractions. Ecosystems 12:1053–1077

    Article  CAS  Google Scholar 

  • Preston C, Nault JR, Trofymow JA (2009b) Chemical changes during 6 years of decomposition of 11 litters in some Canadian forest sites. Part 2. 13C abundance, solid-state 13C NMR spectroscopy and the meaning of ‘lignin’. Ecosystems 12:1078–1102

    Article  CAS  Google Scholar 

  • Rapp M, Leornardi S (1988) Litter decomposition during one year in a holm oak (Quercus-Ilex) stand. Pedobiologia 32:177–185

    Google Scholar 

  • Rashid GH, Schaefer R (1988) Seasonal variation in the nitrogen mineralization and mineral nitrogen accumulation in two temperate forest soils. Pedobiologia 31:381–390

    Google Scholar 

  • Schlesinger WH, Hasey MM (1981) Decomposition of chaparral shrub foliage; losses of organic and inorganic nutrients from deciduous and evergreen leaves. Ecology 62:762–774

    Article  CAS  Google Scholar 

  • Staaf H, Berg B (1982) Accumulation and release of plant nutrients in decomposing Scots pine needle litter—Long-term decomposition in a Scots pine forest. Can J Bot 60:1561–1568

    Article  CAS  Google Scholar 

  • Thorn KA, Mikita MA (1992) Ammonia fixation by humic substances: a nitrogen-15 and carbon-13 NMR study. Sci Total Environ 113:67–87

    Article  CAS  Google Scholar 

  • Waksman SA, Reuszer HW (1932) On the origin of the uronic acids in the humus of soil. peat, and composts. Soil Sci 33:135–151

    Article  Google Scholar 

  • Waksman SA, Tenney FG, Stevens KR (1928) The role of microorganisms in the transformation of organic matter in forest soils. Ecology 9:126–144

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Berg .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Berg, B., McClaugherty, C. (2020). Changes in Substrate Composition During Decomposition. In: Plant Litter. Springer, Cham. https://doi.org/10.1007/978-3-030-59631-6_5

Download citation

Publish with us

Policies and ethics