Skip to main content

Estimating Carbon Sequestration Rates on a Regional Scale

  • Chapter
  • First Online:
Plant Litter

Abstract

Two case studies on carbon (C) sequestration rate for the forested lands of Sweden are compared; one is a theoretical one based on calculable stable residue (limit-value approach) and measured data. Actual evapotranspiration (AET) was used to estimate foliar litter fall for different tree species. Estimated limit values were used to calculate the annual contribution of stable fraction (based on limit values), which corresponds to ‘humus’ and a multiplication by 0.5 gave the sequestered amount of C. The second approach was based on direct measurements of the humus layer over 41 years. Humus thickness was converted to amount of humus, then to mass of C and finally to the increase in humus-layer C over time. For both studies the country was subdivided into grid cells and Kriging interpolation was used. For both studies the sequestration rate was positively related to temperature. A country-wide study concluded that Mn concentration in humus layers was negatively related to the amount of humus. With just two dominant tree species a comparison was made. Scots pine stands sequestered C at a higher rate in humus layers than Norway spruce, whereas Norway spruce sequestered more in the mineral soil, suggesting different mechanisms for the two systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akselsson C, Berg B, Meentemeyer V, Westling O (2005) Carbon sequestration rates in organic layers in boreal and temperate forest soils—Sweden as a case study. Global Ecol Biogeogr 14:77–84

    Article  Google Scholar 

  • Albrektsson A (1988) Needle litter fall in stands of pinus sylvestris L in Sweden in relation to site quality, stand age and latitude. Scand J Forest Res 3:333–342

    Article  Google Scholar 

  • Berg B (2004) Sequestration rates for C and N in humus at four N-polluted temperate forest stands. In: Matzner E (ed) Biogeochemistry of forested catchments in a changing environment: a German case study. Ecological studies, vol 172, pp 361–376. Springer Verlag, Berlin

    Google Scholar 

  • Berg B, Laskowski R (2006) Litter decomposition: a guide to carbon and nutrient turnover. Adv Ecol Res 38:428

    Google Scholar 

  • Berg B, McClaugherty C (2003) Plant litter. Decomposition. humus formation. Carbon sequestration, 1st edn. Springer Verlag, Heidelberg, 296 pp

    Google Scholar 

  • Berg B, McClaugherty C (2014) Plant litter. decomposition. Humus formation. Carbon sequestration, 3rd ed. Springer Verlag, Heidelberg, 317 pp. ISBN 978-3-642-38820-0

    Google Scholar 

  • Berg B, Meentemeyer V (2001) Litterfall in European pine and spruce forests as related to climate. Can J For Res 31:292–301

    Article  Google Scholar 

  • Berg B, Meentemeyer V (2002) Litter quality in a north European transect versus carbon storage potential. Plant Soil 242:83–92

    Article  CAS  Google Scholar 

  • Berg B, Calvo de Anta R, Escudero A, Johansson M-B, Laskowski R, Madeira M, McClaugherty C, Meentemeyer V, Reurslag A, Virzo De Santo A (1995) The chemical composition of newly shed needle litter of different pine species and Scots pine in a climatic transect. Long-term decomposition in a Scots pine forest X. Can J Bot 73:1423–1435

    Article  CAS  Google Scholar 

  • Berg B, Albrektsson A, Berg M, Cortina J, Johansson M-B, Gallardo A, Madeira M, Pausas J, Kratz W, Vallejo R, McClaugherty C (1999a) Amounts of litterfall in pine forests in the northern hemisphere, especially Scots pine. Ann For Sci 56:625–639

    Google Scholar 

  • Berg B, Johansson M, Tjarve I, Gaitnieks T, Rokjanis B, Beier C, Rothe A, Bolger T, Göttlein A, Gerstberger P (1999b) Needle litterfall in a north European spruce forest transect. Reports from the Departments of Forest Ecology and Forest Soils, Swedish University of Agricultural Sciences. Report 80, 54 pp

    Google Scholar 

  • Berg B, McClaugherty C, Virzo De Santo A, Johnson D (2001) Humus buildup in boreal forests—effects of litter fall and its N concentration. Can J For Res 31:988–998

    Article  CAS  Google Scholar 

  • Berg B, Steffen KT, McClaugherty C (2007) Litter decomposition rate is dependent on litter Mn concentrations. Biogeochemistry 82:29–39

    Article  CAS  Google Scholar 

  • Berg B, McClaugherty C, Virzo De Santo A. (2008) Practicalities of estimating carbon sequestration. CAB Rev Perspect Agric Vet Sci Nutr Nat Resour 3(084):1–15

    Google Scholar 

  • Berg B, Johansson M-B, Nilsson Å, Gundersen P, Norell L (2009) Sequestration of Carbon in soil organic matter layers in Swedish forests—direct measurements. Can J For Res 39:962–975

    Article  CAS  Google Scholar 

  • Berg B, De Marco A, Davey M, Emmett B, Hobbie S, Liu C, McClaugherty C, Norell L, Johansson M-B, Rutigliano F, Vesterdal L, Virzo De Santo A (2010) Limit values for foliar litter decomposition—pine forests. Biogeochemistry 100:57–73

    Article  CAS  Google Scholar 

  • Berg B, Liu C, Laskowski R, Davey M (2013) Relationships between Nitrogen, AUR, and climate among tree foliar litters. Can J For Res 43:104–107

    Google Scholar 

  • Berg B, Kjønaas J, Johansson M-B, Erhagen B, Åkerblom S (2015) Late stage pine litter decomposition: relationships to litter N, Mn and acid unhydrolyzable residue (AUR) concentrations and climatic factors. For Ecol Manage 358:41–47

    Article  Google Scholar 

  • Billet MF, FitzPatrick EA, Dresser MS (1990) Changes in the carbon and nitrogen status of forest soil organic horizons between 1949/50 and 1987. Environ Pollut 66:67–79. https://doi.org/10.1016/0269-7491(90)90199-M PMID:15092251

    Article  Google Scholar 

  • Bodeker TM, Clemmensen KE, de Boer W, Martin F, Olson A (2014) Ectomycorrhizal Cortinarius species participate in enzymatic oxidation of humus in northern forest ecosystems. New Phytol 203:245–256

    Article  PubMed  CAS  Google Scholar 

  • Botkin DB (1990) Discordant harmonies: a new ecology for the twenty-first century. Oxford University, New York, p 241

    Google Scholar 

  • Butler MJ, Day AW (1998) Destruction of fungal melanins by ligninases of Phanerochaete chrysosporium and other white rot fungi. Int J Plant Sci 159:989–995

    Article  CAS  Google Scholar 

  • Clemmensen KE, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, Stenlid J, Finlay RD, Wardle DA, Lindahl BD (2013) Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339:1615–1618

    Article  CAS  PubMed  Google Scholar 

  • Clemmensen KE, Finlay RD, Dahlberg A, Stenlid J, Wardle DA, Lindahl BD (2015) Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests. New Phytologist 205:1525–1536

    Google Scholar 

  • Dyer ML, Meentemeyer V, Berg B (1990) Apparent controls of mass loss rate of leaf litter on a regional scale. Scand J For Res 5:311–323

    Article  Google Scholar 

  • Flower-Ellis J (1985) Litterfall in an age series of Scots pine stands: summary of results for the period 1973–1983. Dept Ecol Environ Res Swed Univ Agric Sci Rep 19:75–94

    Google Scholar 

  • Gloaguen JC, Touffet J (1976) Production de litiere et apport au sol d’elements mineraux dans quelques peuplements resineaux de Bretagne. Annal Sci Forest 33:87–107. (In French, English summary)

    Google Scholar 

  • Gonzalez de Andres E (2019) Interactions between climate and nutrient cycles on forest response to global change: the role of mixed Forests. Forests 10(8):609 https://doi.org/10.3390/f10080609

  • Gunderson P, Berg B, Currie WS, Dise NB, Emmett BA, Gauci V, Holmberg M, Kjonaas OJ, Mol-Dijkstra J, van der Salm C, Schmidt IK, Tietema A, Wessel WW, Vestgarden LS, Akselsson C, De Vries W, Forsius M, Kros H, Matzner E, Moldan F, Nadelhoffer KJ, Nilsson L-O, Reinds GJ, Rosengren U, Stuanes AO, Wright RF (2006). Carbon–Nitrogen interactions in forest ecosystems—final report. Danish Centre for Forest, Landscape and Planning, Denmark

    Google Scholar 

  • Hofrichter M (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzyme Microbiol Technol 30:454–466

    Article  CAS  Google Scholar 

  • Keiluweit M, Nico P, Harmon ME, Mao JD, Pett-Ridge J, Kleber M (2015) Long-term litter decomposition controlled by manganese redox cycling. Proc Nat Acad Sci USA 112:E5253–E5260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22

    Article  CAS  Google Scholar 

  • Lindahl BD, Tunlid A (2015) Ectomycorrhizal fungi—potential organic matter decomposers, yet not saprotrophs. New Phytol 205(4):1443–1447

    Article  CAS  PubMed  Google Scholar 

  • Lindroth A, Klemedtsson L, Grelle A, Weslien P, Langwall O (2008) Measurement of net ecosystem exchange, productivity and respiration in three spruce forests in Sweden shows unexpectedly large soil carbon losses. Biogeochemistry 89:43–60

    Article  Google Scholar 

  • Liu C, Westman CJ, Berg B, Kutsch W, Wang GZ, Man R, Ilvesniemi H (2004) Variation in litterfall-climate relationships between coniferous and broadleaf forests in Eurasia. Glob Ecol Biogeogr 13:105–114

    Article  CAS  Google Scholar 

  • Liu C, Berg B, Kutsch W, Westman CJ, Ilvesniemi H, Shen X, Shen G, Chen X (2006) Leaf litter nitrogen concentration as related to climatic factors in Eurasian forests. Glob Ecol Biogeogr 15:438–444

    Article  Google Scholar 

  • Mälkönen E (1974) Annual primary production and nutrient cycling in some Scots pine stands. Commun Inst For Fenn 84(5):85

    Google Scholar 

  • Meentemeyer V (1978) Macroclimate and lignin control of litter decomposition rates. Ecology 59:465–472

    Article  CAS  Google Scholar 

  • Meentemeyer V, Box E, Thompson R (1982) World patterns of terrestrial plant litter production. Bioscience 32:125–128

    Article  Google Scholar 

  • Meesenburg H, Meiwes KJ, Bartens H (1999) Veränderung der Elementvorräte im Boden von Buchen- und Fichtenökosystemen in Solling. Berichte Freiburger Forstliche Forschung 7:109–114 (In German)

    Google Scholar 

  • Meiwes KJ, Meesenburg H, Bartens H, Rademacher P, Khanna PK (2002) Accumulation of humus in the litter layer of forest stands at Solling. Possible causes and significance for the nutrient cycling. Forst und Holz 13–14:428–433 (In German, English summary)

    Google Scholar 

  • Nihlgård B (1972) Plant biomass, primary production and distribution of chemical elements in a beech and a planted spruce forest in South Sweden. Oikos 23:69–81

    Article  Google Scholar 

  • Ovington JD (1959) The circulation of minerals in plantations of Pinus sylvestris L. Ann Bot 23:229–239

    Article  CAS  Google Scholar 

  • Prietzel J, Stetter U, Klemmt HJ, Rehfüss KE (2006) Recent carbon and nitrogen accumulation in soils of two Scots pine ecosystems in Southern Germany. Plant Soil 289:153–170

    Article  CAS  Google Scholar 

  • Peltoniemi M, Makipaa R, Liski J, Tamminen P (2004) Changes in soil carbon with stand age—an evaluation of a modelling method with empirical data. Glob Change Biol 10(12):2078–2091

    Article  Google Scholar 

  • Sinsabaugh RL (2010) Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol Biochem 42:391–404

    Google Scholar 

  • Staaf H, Berg B (1977) A structural and chemical description of litter and humus in the mature Scots pine stand at Ivantjärnsheden. Swed Con For Proj Int Rep 65:31

    Google Scholar 

  • Steffen KT, Hatakka A, Hofrichter M (2002) Degradation of humic acids by the litter de-composing basidiomycete Collybia dryophila. Appl Environm Microbiol 68:3442–3448

    Article  CAS  Google Scholar 

  • Stendahl J, Johansson M-B, Eriksson E, Nilsson Å, Langvall O (2010) Soil organic carbon in Swedish spruce and pine forests—differences in stock levels and regional patterns. Silva Fennica 44(1):5–21

    Article  Google Scholar 

  • Stendahl J, Berg B, Lindahl BD (2017) Manganese availability regulates carbon storage in northern coniferous forest humus layers. Nat Geosci 7(15487):1–6. https://doi.org/10.1038/s41598-017-15801-y

    Article  CAS  Google Scholar 

  • Sun T, Hobbie S, Berg B, Zhang H, Wang Z, Hättenschwiler S (2018) Contrasting dynamics and trait controls in first-order root compared to leaf litter decomposition. Proc Nat Acad Sci 115(41):10392–10397. https://doi.org/10.1073/pnas.1716595115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thornthwaite CW, Mather JR (1957) Instructions and tables, for computing potential evapotranspiration and the water balance. Publ Climatol 10:185–311

    Google Scholar 

  • Thuille A, Schulze ED (2006) Carbon dynamics in successional and afforested spruce stands in Thuringia and the Alps. Glob Change Biol 12(2):325–342. https://doi.org/10.1111/j.1365-2486.2005.01078.x

    Article  Google Scholar 

  • Tietema A (2004) WANDA, a regional dynamic nitrogen model (With Aggregated Nitrogen DynAmics) for nitrate leaching from forests. Hydrol Earth Syst Sci 8:803–812

    Article  CAS  Google Scholar 

  • Tupek B, Ortiz CA, Hashimoto S, Stendahl J, Dahlgren J, Karltun E, Lehtonen A (2016) Underestimation of boreal soil carbon stocks by mathematical soil carbon models linked to soil nutrient status. Biogeosciences 13:4439–4459. https://doi.org/10.5194/bg-13-4439-2016

    Article  CAS  Google Scholar 

  • Valentini R, Matteucci G, Dolman AJ et al (2000) Respiration as the main determinant of carbon balance in European forests. Nature 404:861–865

    Article  CAS  PubMed  Google Scholar 

  • Vesterdal L, Raulund-Rasmussen K (1998) Forest floor chemistry under seven tree species along a fertility gradient. Can J For Res 28:1636–1647

    Article  CAS  Google Scholar 

  • Vesterdal L, Ritter E, Gundersen P (2002) Change in organic carbon following afforestation of former arable land. For Ecol Manage 169:137–147

    Article  Google Scholar 

  • Vesterdal L, Schmidt IK, Callesen, I, Nilsson, L-O, Gundersen P (2008) Carbon and nitrogen in forest floor and mineral soil under six common European tree species. Forest Ecol Manage 255:35–48

    Google Scholar 

  • Wardle DA, Zachrisson O, Hörnberg G, Gallet C (1997) The influence of island area on ecosystem properties. Science 277:1296–1299

    Article  CAS  Google Scholar 

  • Whittaker R (1962) Classification of natural communities. Bot Rev 28:1–239

    Article  Google Scholar 

  • Wiesmeier M, Urbanski L, Hobley E, Lang B, von Luetzow M, Marin-Spiotta E, Wesemael B, Rabot E, Ließ M, Garcia-Franco N, Wollschläger U, Vogel H, Kögel-Knabner I (2019) Soil organic carbon storage as a key function of soils—a review of drivers and indicators at various scales. Geoderma 333:149–162

    Article  CAS  Google Scholar 

  • Zhao X, Yang Y, Shen H, Geng X, Fang J (2019) Global soil-climate-biome diagram: linking soil properties to climate and biota. Biogeosciences 16:2857–2871

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Berg .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Berg, B., McClaugherty, C. (2020). Estimating Carbon Sequestration Rates on a Regional Scale. In: Plant Litter. Springer, Cham. https://doi.org/10.1007/978-3-030-59631-6_12

Download citation

Publish with us

Policies and ethics