Skip to main content

User-Friendly Expressions of the Coefficients of Some Exponentially Fitted Methods

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12249))

Included in the following conference series:

Abstract

The purpose of this work consists in reformulating the coefficients of some exponentially-fitted (EF) methods with the aim of avoiding numerical cancellations and loss of precision. Usually the coefficients of an EF method are expressed in terms of \(\nu =\omega h\), where \(\omega \) is the frequency and h is the step size. Often, these coefficients exhibit a 0/0 indeterminate form when \(\nu \rightarrow 0\). To avoid this feature we will use two sets of functions, called C and S, which have been introduced by Ixaru in [61]. We show that the reformulation of the coefficients in terms of these functions leads to a complete removal of the indeterminacy and thus the convergence of the corresponding EF method is restored. Numerical results will be shown to highlight these properties.

The authors Conte, D’Ambrosio, Giordano and Paternoster are members of the GNCS group. This work is supported by GNCS-INDAM project and by PRIN2017-MIUR project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burrage, K., Cardone, A., D’Ambrosio, R., Paternoster, B.: Numerical solution of time fractional diffusion systems. Appl. Numer. Math. 116, 82–94 (2017)

    MathSciNet  MATH  Google Scholar 

  2. Butcher, J., D’Ambrosio, R.: Partitioned general linear methods for separable Hamiltonian problems. Appl. Numer. Math. 117, 69–86 (2017)

    MathSciNet  MATH  Google Scholar 

  3. Calvo, M., Franco, J.M., Montijano, J.I., Rández, L.: Explicit Runge-Kutta methods for initial value problems with oscillating solutions. J. Comput. Appl. Math. 76(1–2), 195–212 (1996)

    MathSciNet  MATH  Google Scholar 

  4. Calvo, M., Montijano, J.I., Rández, L., Van Daele, M.: Exponentially fitted fifth-order two step peer explicit methods. AIP Conf. Proc. 1648, 150015–1–150015–4 (2015)

    Google Scholar 

  5. Capobianco, G., Conte, D.: An efficient and fast parallel method for Volterra integral equations of Abel type. J. Comput. Appl. Math. 189(1-2), 481–493 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Capobianco, G., Conte, D., Del Prete, I.: High performance numerical methods for Volterra equations with weakly singular kernels. J. Comput. Appl. Math. 228, 571–579 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Capobianco, G., Conte, D., Paternoster, B.: Construction and implementation of two-step continuous methods for Volterra integral equations. Appl. Numer. Math. 119, 239–247 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Cardone, A., Conte, D.: Multistep collocation methods for Volterra integro-differential equations. Appl. Math. Comput. 221, 770–785 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Cardone, A., Conte, D., D’Ambrosio, R., Paternoster, B.: Stability issues for selected stochastic evolutionary problems: a review. Axioms (2018). https://doi.org/10.3390/axioms7040091

    Article  MATH  Google Scholar 

  10. Cardone, A., Conte, D., D’Ambrosio, R., Paternoster, B.: Collocation methods for Volterra integral and integro-differential equations: a review. Axioms 7(3), 45 (2018)

    MATH  Google Scholar 

  11. Cardone, A., Conte, D., Paternoster, B.: A family of multistep collocation methods for Volterra integro-differential equations. AIP Conf. Proc. 1168(1), 358 (2009)

    Google Scholar 

  12. Cardone, A., Conte, D., Patenoster, B.: Two-step collocation methods for fractional differential equations. Discr. Cont. Dyn. Sys. B 23(7), 2709–2725 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Cardone, A., D’Ambrosio, R., Paternoster, B.: A spectral method for stochastic fractional differential equations. Appl. Numer. Math. 139, 115–119 (2019)

    MathSciNet  MATH  Google Scholar 

  14. Cardone, A., D’Ambrosio, R., Paternoster, B.: Exponentially fitted IMEX methods for advection-diffusion problems. J. Comput. Appl. Math. 316, 100–108 (2017)

    MathSciNet  MATH  Google Scholar 

  15. Cardone, A., D’Ambrosio, R., Paternoster, B.: High order exponentially fitted methods for Volterra integral equations with periodic solution. Appl. Numer. Math. 114C, 18–29 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Cardone, A., Ixaru, L.G., Paternoster, B.: Exponential fitting direct quadrature methods for Volterra integral equations. Numer. Algor. 55, 467–480 (2010). https://doi.org/10.1007/s11075-010-9365-1

  17. Citro, V., D’Ambrosio, R.: Nearly conservative multivalue methods with extended bounded parasitism. Appl. Numer Math. (2019). https://doi.org/10.1016/j.apnum.2019.12.007

    Article  MATH  Google Scholar 

  18. Citro, V., D’Ambrosio, R., Di Giovacchino, S.: A-stability preserving perturbation of Runge-Kutta methods for stochastic differential equations. Appl. Math. Lett. 102, 106098 (2020)

    MathSciNet  MATH  Google Scholar 

  19. Citro, V., D’Ambrosio, R.: Long-term analysis of stochastic theta-methods for damped stochastic oscillators. Appl. Numer Math. 150, 18–26 (2020)

    MathSciNet  MATH  Google Scholar 

  20. D’Ambrosio, R., Paternoster, B.: P-stable general Nystrom methods for y” = f(x, y). J. Comput. Appl. Math. 262, 271–280 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Conte, D., Califano, G.: Domain decomposition methods for a class of integro-partial differential equations. AIP Conf. Proc. 1776, 090050 (2016)

    Google Scholar 

  22. Conte, D., Califano, G.: Optimal Schwarz waveform relaxation for fractional diffusion-wave equations. Appl. Numer. Math. 127, 125–141 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Conte, D., D’Ambrosio, R., Giordano, G., Paternoster, B.: Regularized exponentially fitted methods for oscillatory problems. J. Phy. Conf. Ser. 1564, 012013 (2020) (in press)

    Google Scholar 

  24. Conte, D., D’Ambrosio, R., Izzo, G., Jackiewicz, Z.: Natural volterra Runge-Kutta methods. Numer. Algor. 65(3), 421–445 (2014)

    MathSciNet  MATH  Google Scholar 

  25. Conte, D., D’Ambrosio, R., Jackiewicz, Z., Paternoster, B.: A pratical approach for the derivation of algebraically stable two-step Runge-Kutta methods. Math. Model. Anal 17(1), 65–77 (2012)

    MathSciNet  MATH  Google Scholar 

  26. Conte, D., D’Ambrosio, R., Jackiewicz, Z., Paternoster, B.: Numerical search for algebraically stable two-step almost collocation methods. J. Comput. Appl. Math. 239, 304–321 (2013)

    MathSciNet  MATH  Google Scholar 

  27. Conte, D., D’Ambrosio, R., Moccaldi, M., Paternoster, B.: Adapted explicit two-step peer methods. J. Numer. Math. 27(2), 69–83 (2019)

    MathSciNet  MATH  Google Scholar 

  28. Conte, D., D’Ambrosio, R., Paternoster, B.: GPU acceleration of waveform relaxation methods for large differential systems. Numer. Algor. 71(2), 293–310 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Conte, D., D’Ambrosio, R., Paternoster, B.: On the stability of \(\vartheta \)-methods for stochastic Volterra integral equations. Discr. Cont. Dyn. Sys. - Series B 23(7), 2695–2708 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Conte, D., Esposito, E., Ixaru, L.G., Paternoster, B.: Some new uses of the \(\eta _m(Z)\) functions. Comput. Phys. Commun. 181, 128–137 (2010)

    Google Scholar 

  31. Conte, D., Ixaru, L.G,. Paternoster, B., Santomauro, G.: Exponentially-fitted Gauss-Laguerre quadrature rule for integrals over an unbounded interval. J. Comput. Appl. Math. 255, 725–736 (2014)

    Google Scholar 

  32. Conte, D., Paternoster, B.: A family of multistep collocation methods for Volterra integral equations. AIP Conf. Proc. 936, 128–131 (2007). https://doi.org/10.1063/1.2790090

  33. Conte, D., Paternoster, B.: Modified Gauss–Laguerre exponential fitting based formulae. J. Sci. Comput. 69(1), 227–243 (2016). https://doi.org/10.1007/s10915-016-0190-0

    Article  MathSciNet  MATH  Google Scholar 

  34. Conte, D., Paternoster, B.: Parallel methods for weakly singular Volterra integral equations on GPUs. Appl. Numer. Math. 114, 30–37 (2017)

    MathSciNet  MATH  Google Scholar 

  35. Conte, D., Paternoster, B., Santomauro, G.: An exponentially fitted quadrature rule over unbounded intervals. AIP Conf. Proc. 1479, 1173–1176 (2012). https://doi.org/10.1063/1.4756359

  36. Conte, D., Shahmorad, S., Talaei, Y.: New fractional Lanczos vector polynomials and their application to system of Abel-Volterra integral equations and fractional differential equations. J. Comput. Appl. Math. 366, 112409 (2020)

    MathSciNet  MATH  Google Scholar 

  37. D’Ambrosio, R., De Martino, G., Paternoster, B.: Numerical integration of Hamiltonian problems by G-symplectic methods. Adv. Comput. Math. 40(2), 553–575 (2014)

    MathSciNet  MATH  Google Scholar 

  38. D’Ambrosio, R., De Martino, G., Paternoster, B.: Order conditions of general Nyström methods. Numer. Algor. 65(3), 579–595 (2014)

    MATH  Google Scholar 

  39. D’Ambrosio, R., De Martino, G., Paternoster, B.: General Nyström methods in Nordsieck form: error analysis. J. Comput. Appl. Math. 292, 694–702 (2016)

    MathSciNet  MATH  Google Scholar 

  40. D’Ambrosio, R., Esposito, E., Paternoster, B.: Exponentially fitted two-step Runge-Kutta methods: construction and parameter selection. Appl. Math. Comp. 218(14), 7468–7480 (2012)

    MathSciNet  MATH  Google Scholar 

  41. D’Ambrosio, R., Hairer, E.: Long-term stability of multi-value methods for ordinary differential equations. J. Sci. Comput. 60(3), 627–640 (2014)

    MathSciNet  MATH  Google Scholar 

  42. D’Ambrosio, R., Hairer, E., Zbinden, C.: G-symplecticity implies conjugate-symplecticity of the underlying one-step method. BIT Numer. Math. 53, 867–872 (2013)

    MathSciNet  MATH  Google Scholar 

  43. D’Ambrosio, R., Ixaru, L.G., Paternoster, B.: Construction of the EF-based Runge- Kutta methods revisited. Comput. Phys. Commun. 182, 322–329 (2011)

    Google Scholar 

  44. D’Ambrosio, R., Izzo, G., Jackiewicz, Z.: Search for highly stable two-step Runge-Kutta methods for ODEs. Appl. Numer. Math. 62(10), 1361–1379 (2012)

    MathSciNet  MATH  Google Scholar 

  45. D’Ambrosio, R., Moccaldi, M., Paternoster, B.: Adapted numerical methods for advection-reaction-diffusion problems generating periodic wavefronts. Comput. Math. Appl. 74(5), 1029–1042 (2017)

    MathSciNet  MATH  Google Scholar 

  46. D’Ambrosio, R., Moccaldi, M., Paternoster, B.: Parameter estimation in IMEX-trigonometrically fitted methods for the numerical solution of reaction-diffusion problems. Comp. Phys. Commun. 226, 55–66 (2018)

    MathSciNet  Google Scholar 

  47. D’Ambrosio, R., Moccaldi, M., Paternoster, B.: Numerical preservation of long-term dynamics by stochastic two-step methods. Discr. Cont. Dyn. Sys. Ser. B 23(7), 2763–2773 (2018)

    MathSciNet  MATH  Google Scholar 

  48. D’Ambrosio, R., Moccaldi, M., Paternoster, B., Rossi, F.: Adapted numerical modelling of the Belousov-Zhabotinsky reaction. J. Math. Chem. (2018). https://doi.org/10.1007/s10910-018-0922-5

    Article  MathSciNet  MATH  Google Scholar 

  49. D’Ambrosio, R., Paternoster, B.: Exponentially fitted singly diagonally implicit Runge-Kutta methods. J. Comput. Appl. Math. 263, 277–287 (2014)

    MathSciNet  MATH  Google Scholar 

  50. D’Ambrosio, R., Paternoster, B.: Numerical solution of a diffusion problem by exponentially fitted finite difference methods. SpringerPlus 3, 425 (2014)

    Google Scholar 

  51. D’Ambrosio, R., Paternoster, B.: A general framework for numerical methods solving second order differential problems. Math. Comput. Simul. 110(1), 113–124 (2015)

    MATH  Google Scholar 

  52. D’Ambrosio, R., Paternoster, B.: Numerical solution of reaction-diffusion systems of \( \lambda \)-\(\omega \) type by trigonometrically fitted methods. J. Comput. Appl. Math. 294, 436–445 (2016)

    MathSciNet  MATH  Google Scholar 

  53. D’Ambrosio, R., Paternoster, B.: Multivalue collocation methods free from order reduction. J. Comput. Appl. Math. 112515 (2019)

    Google Scholar 

  54. D’Ambrosio, R., Paternoster, B., Santomauro, G.: Revised exponentially fitted Runge-Kutta-Nyström methods. Appl. Math. Lett. 30, 56–60 (2014)

    MathSciNet  MATH  Google Scholar 

  55. De Bonis, M.C., Occorsio, D.: On the simultaneous approximation of a Hilbert transform and its derivatives on the real semiaxis. Appl. Numer. Math. 114, 132–153 (2017)

    MathSciNet  MATH  Google Scholar 

  56. Fang, J., Liu, C., Hsu, C.-W., Simos, T.E., Tsitouras, C.: Explicit hybrid six-step, sixth order, fully symmetric methods for solving \(y^{\prime \prime } = f (x, y)\). Math. Meth. Appl. Sci. 42, 3305–3314 (2019)

    MathSciNet  MATH  Google Scholar 

  57. Francomano, E., Paliaga, M.: The smoothed particle hydrodynamics method via residual iteration. Comput. Methods Appl. Mech. Eng. 352, 237–245 (2019)

    MathSciNet  MATH  Google Scholar 

  58. Garvie, M.R., Blowey, J.F.: A reaction-diffusion system of \(\lambda \)-\(\omega \) type Part II: numerical analysis. Euro. J. Appl. Math. 16, 621–646 (2005)

    MATH  Google Scholar 

  59. Greenberg, J.M.: Spiral waves for \(\lambda \)-\(\omega \) systems. Adv. Appl. Math. 2, 450–455 (1981)

    MathSciNet  MATH  Google Scholar 

  60. Ixaru, L.G.: Runge-Kutta method with equation dependent coefficients. Comput. Phys. Commun. 183, 63–69 (2012)

    Google Scholar 

  61. Ixaru, L.G.: Exponential and trigonometrical fittings: user-friendly expressions for the coefficients. Numer. Algor. 82, 1085–1096 (2019)

    Google Scholar 

  62. Ixaru, L.G., Berghe, G.V.: Exponential Fitting. Kluwer Academic Publishers, Dordrecht (2004)

    Google Scholar 

  63. Ixaru, L.G., Paternoster, B.: A conditionally P-stable fourth-order exponential-fitting method for \(y^{\prime \prime } = f(x, y)\). J. Comput. Appl. Math. 106(1), 87–98 (1999)

    Google Scholar 

  64. Ixaru, L.G., Paternoster, B.: A Gauss quadrature rule for oscillatory integrands. Comput. Phys. Commun. 133, 177–188 (2001)

    Google Scholar 

  65. Kim, J.K., Cools, R., Ixaru, L.G:. Extended quadrature rules for oscillatory integrands. Appl. Numer. Math. 46, 59–73 (2003)

    Google Scholar 

  66. Kopell, N., Howard, L.N.: Plane wave solutions to reaction-diffusion equations. Stud. Appl. Math. 52, 291–328 (1973)

    MathSciNet  MATH  Google Scholar 

  67. Liu, C., Hsu, C.W., Simos, T.E., Tsitouras, C.: Phase-fitted, six-step methods for solving \(x^{\prime \prime }=f(t, x)\). Math. Meth. Appl. Sci. 42, 3942–3949 (2019)

    MathSciNet  MATH  Google Scholar 

  68. Montijano, J.I., Rández, L., Van Daele, M., Calvo, M.: Functionally fitted explicit two step peer methods. J. Sci. Comput. 64(3), 938–958 (2014)

    MathSciNet  MATH  Google Scholar 

  69. Ndukum, P.L., Biala, T.A., Jator, S.N., Adeniyi, R.B.: On a family of trigonometrically fitted extended backward differentiation formulas for stiff and oscillatory initial value problems. Numer. Algor. 74, 267–287 (2017)

    MathSciNet  MATH  Google Scholar 

  70. Occorsio, D., Russo, M.G.: Mean convergence of an extended Lagrange interpolation process on \([0,+\infty )\). Acta Math. Hung. 142(2), 317–338 (2014)

    MathSciNet  MATH  Google Scholar 

  71. Occorsio, D., Russo, M.G.: Nyström methods for Fredholm integral equations using equispaced points. Filomat 28(1), 49–63 (2014)

    MathSciNet  MATH  Google Scholar 

  72. Ozawa, K.: A functional fitting Runge-Kutta method with variable coefficients. Jpn. J. Ind. Appl. Math. 18, 107–130 (2001)

    MathSciNet  MATH  Google Scholar 

  73. Paternoster, B.: Present state-of-the-art in exponential fitting. a contribution dedicated to Liviu Ixaru on his 70-th anniversary. Comput. Phys. Commun. 183, 2499–2512 (2012)

    Google Scholar 

  74. Smith, M.J., Rademacher, J.D.M., Sherratt, J.A.: Absolute stability of wavetrains can explain spatiotemporal dynamics in reaction-diffusion systems of lambda-omega type. SIAM J. Appl. Dyn. Syst. 8, 1136–1159 (2009)

    MathSciNet  MATH  Google Scholar 

  75. Simos, T.E.: A fourth algebraic order exponentially-fitted Runge-Kutta method for the numerical solution of the Schrödinger equation. IMA J. Numer. Anal. 21, 919–931 (2001)

    MathSciNet  MATH  Google Scholar 

  76. Simos, T.E.: An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions. Comput. Phys. Comm. 115, 1–8 (1998)

    MathSciNet  MATH  Google Scholar 

  77. Vanden Berghe, G., De Meyer, H., Van Daele, M., Van Hecke, T.: Exponentially fitted explicit Runge-Kutta methods. Comput. Phys. Commun. 123, 7–15 (1999)

    MathSciNet  MATH  Google Scholar 

  78. Van Daele, M., Vanden Berghe, G., Vande Vyver, H.: Exponentially fitted quadrature rules of Gauss type for oscillatory integrands. Appl. Numer. Math. 53, 509–526 (2005)

    MathSciNet  MATH  Google Scholar 

  79. Van Daele, M., Van Hecke, T., Vanden Berghe, G., De Meyer, H.: Deferred correction with mono-implicit Runge-Kutta methods for first-order IVPs, numerical methods for differential equations. J. Comput. Appl. Math. 111(1–2), 37–47 (1999)

    MathSciNet  MATH  Google Scholar 

  80. Weiner, R., Biermann, K., Schmitt, B.A., Podhaisky, H.: Explicit two-step peer methods. Comput. Math. Appl. 55, 609–619 (2008)

    MathSciNet  MATH  Google Scholar 

  81. https://en.wikipedia.org/wiki/Stumpff_function

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Giordano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Conte, D., D’Ambrosio, R., Giordano, G., Ixaru, L.G., Paternoster, B. (2020). User-Friendly Expressions of the Coefficients of Some Exponentially Fitted Methods. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12249. Springer, Cham. https://doi.org/10.1007/978-3-030-58799-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58799-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58798-7

  • Online ISBN: 978-3-030-58799-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics