Skip to main content

Accurate Optimization of Weighted Nuclear Norm for Non-Rigid Structure from Motion

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12372))

Included in the following conference series:

Abstract

Fitting a matrix of a given rank to data in a least squares sense can be done very effectively using 2nd order methods such as Levenberg-Marquardt by explicitly optimizing over a bilinear parameterization of the matrix. In contrast, when applying more general singular value penalties, such as weighted nuclear norm priors, direct optimization over the elements of the matrix is typically used. Due to non-differentiability of the resulting objective function, first order sub-gradient or splitting methods are predominantly used. While these offer rapid iterations it is well known that they become inefficient near the minimum due to zig-zagging and in practice one is therefore often forced to settle for an approximate solution.

In this paper we show that more accurate results can in many cases be achieved with 2nd order methods. Our main result shows how to construct bilinear formulations, for a general class of regularizers including weighted nuclear norm penalties, that are provably equivalent to the original problems. With these formulations the regularizing function becomes twice differentiable and 2nd order methods can be applied. We show experimentally, on a number of structure from motion problems, that our approach outperforms state-of-the-art methods.

This work was supported by the Swedish Research Council (grants no. 2015-05639, 2016-04445 and 2018-05375), the Swedish Foundation for Strategic Research (Semantic Mapping and Visual Navigation for Smart Robots) and the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akhter, I., Sheikh, Y., Khan, S., Kanade, T.: Nonrigid structure from motion in trajectory space. In: Proceedings of the 21st International Conference on Neural Information Processing Systems, NIPS 2008, pp. 41–48. Curran Associates Inc., Red Hook (2008)

    Google Scholar 

  2. Bach, F.: Convex relaxations of structured matrix factorizations, September 2013

    Google Scholar 

  3. Basri, R., Jacobs, D., Kemelmacher, I.: Photometric stereo with general, unknown lighting. Int. J. Comput. Vision 72(3), 239–257 (2007). https://doi.org/10.1007/s11263-006-8815-7

    Article  Google Scholar 

  4. Bhatia, R., Jain, T.: On symplectic eigenvalues of positive definite matrices. J. Math. Phys. 56(11), 112201 (2015)

    Article  MathSciNet  Google Scholar 

  5. Birkhoff, G.: Tres observaciones sobre el algebra lineal. Universidad Nacional de Tucuman Revista. Serie A. 5, 137–151 (1946)

    Google Scholar 

  6. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  Google Scholar 

  7. Bregler, C., Hertzmann, A., Biermann, H.: Recovering non-rigid 3D shape from image streams. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2000)

    Google Scholar 

  8. Buchanan, A.M., Fitzgibbon, A.W.: Damped newton algorithms for matrix factorization with missing data. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2005)

    Google Scholar 

  9. Cabral, R., De la Torre, F., Costeira, J.P., Bernardino, A.: Unifying nuclear norm and bilinear factorization approaches for low-rank matrix decomposition. In: International Conference on Computer Vision (ICCV) (2013)

    Google Scholar 

  10. Candès, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM 58(3), 11:1–11:37 (2011)

    Article  MathSciNet  Google Scholar 

  11. Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9(6), 717–772 (2009). https://doi.org/10.1007/s10208-009-9045-5

    Article  MathSciNet  MATH  Google Scholar 

  12. Canyi, L., Tang, J., Yan, S., Lin, Z.: Generalized nonconvex nonsmooth low-rank minimization. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)

    Google Scholar 

  13. Canyi, L., Tang, J., Yan, S., Lin, Z.: Nonconvex nonsmooth low-rank minimization via iteratively reweighted nuclear norm. IEEE Trans. Image Process. 25(2), 829–839 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Dai, Y., Li, H., He, M.: A simple prior-free method for non-rigid structure-from-motion factorization. Int. J. Comput. Vision 107(2), 101–122 (2014). https://doi.org/10.1007/s11263-013-0684-2

    Article  MathSciNet  MATH  Google Scholar 

  15. Fazel, M., Hindi, H., Boyd, S.P.: A rank minimization heuristic with application to minimum order system approximation. In: American Control Conference (2001)

    Google Scholar 

  16. Garg, R., Roussos, A., Agapito, L.: A variational approach to video registration with subspace constraints. Int. J. Comput. Vision 104(3), 286–314 (2013). https://doi.org/10.1007/s11263-012-0607-7

    Article  MathSciNet  MATH  Google Scholar 

  17. Garg, R., Roussos, A., de Agapito, L.: Dense variational reconstruction of non-rigid surfaces from monocular video. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2013)

    Google Scholar 

  18. Gu, S., Xie, Q., Meng, D., Zuo, W., Feng, X., Zhang, L.: Weighted nuclear norm minimization and its applications to low level vision. Int. J. Comput. Vision 121(2), 183–208 (2016). https://doi.org/10.1007/s11263-016-0930-5

    Article  Google Scholar 

  19. Haeffele, B.D., Vidal, R.: Structured low-rank matrix factorization: global optimality, algorithms, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 42(6), 1468–1482 (2020)

    Article  Google Scholar 

  20. Hyeong Hong, J., Fitzgibbon, A.: Secrets of matrix factorization: approximations, numerics, manifold optimization and random restarts. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  21. Hong, J.H., Zach, C., Fitzgibbon, A., Cipolla, R.: Projective bundle adjustment from arbitrary initialization using the variable projection method. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 477–493. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_29

    Chapter  Google Scholar 

  22. Hong, J.H., Zach, C., Fitzgibbon, A., Cipolla, R.: Projective bundle adjustment from arbitrary initialization using the variable projection method. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  23. Hu, Y., Zhang, D., Ye, J., Li, X., He, X.: Fast and accurate matrix completion via truncated nuclear norm regularization. IEEE Trans. Pattern Anal. Mach. Intell. 35(9), 2117–2130 (2013)

    Article  Google Scholar 

  24. Hyeong Hong, J., Zach, C.: pOSE: pseudo object space error for initialization-free bundle adjustment. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  25. Jensen, S.H.N., Del Bue, A., Doest, M.E.B., Aanæs, H.: A benchmark and evaluation of non-rigid structure from motion (2018)

    Google Scholar 

  26. Krechetov, M., Marecek, J., Maximov, Y., Takac, M.: Entropy-penalized semidefinite programming. In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, pp. 1123–1129. International Joint Conferences on Artificial Intelligence Organization, July 2019

    Google Scholar 

  27. Kumar, S.: Non-rigid structure from motion: prior-free factorization method revisited. In: The IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 51–60, March 2020

    Google Scholar 

  28. Larsson, V., Olsson, C.: Convex low rank approximation. Int. J. Comput. Vision 120(2), 194–214 (2016). https://doi.org/10.1007/s11263-016-0904-7

    Article  MathSciNet  MATH  Google Scholar 

  29. Lewis, A.S.: The convex analysis of unitarily invariant matrix functions. J. Convex Anal. 2(1), 173–183 (1995)

    MathSciNet  MATH  Google Scholar 

  30. Li, H., Lin, Z.: Provable accelerated gradient method for nonconvex low rank optimization. Mach. Learn. 109(1), 103–134 (2019). https://doi.org/10.1007/s10994-019-05819-w

    Article  MathSciNet  MATH  Google Scholar 

  31. Oh, T.H., Tai, Y.W., Bazin, J.C., Kim, H., Kweon, I.S.: Partial sum minimization of singular values in robust PCA: algorithm and applications. IEEE Trans. Pattern Anal. Mach. Intell. 38(4), 744–758 (2016)

    Article  Google Scholar 

  32. Olsson, C., Enqvist, O.: Stable structure from motion for unordered image collections. In: Heyden, A., Kahl, F. (eds.) SCIA 2011. LNCS, vol. 6688, pp. 524–535. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21227-7_49

    Chapter  Google Scholar 

  33. Oymak, S., Mohan, K., Fazel, M., Hassibi, B.: A simplified approach to recovery conditions for low rank matrices. In: IEEE International Symposium on Information Theory Proceedings (ISIT), pp. 2318–2322 (2011)

    Google Scholar 

  34. Paladini, M., Del Bue, A., Stosic, M., Dodig, M., Xavier, J., Agapito, L.: Factorization for non-rigid and articulated structure using metric projections. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2898–2905 (2009)

    Google Scholar 

  35. Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 52(3), 471–501 (2010)

    Article  MathSciNet  Google Scholar 

  36. Russell, C., Fayad, J., Agapito, L.: Energy based multiple model fitting for non-rigid structure from motion. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3009–3016, July 2011

    Google Scholar 

  37. Shang, F., Cheng, J., Liu, Y., Luo, Z., Lin, Z.: Bilinear factor matrix norm minimization for robust PCA: algorithms and applications. IEEE Trans. Pattern Anal. Mach. Intell. 40(9), 2066–2080 (2018)

    Article  Google Scholar 

  38. Stoyanov, D., Mylonas, G.P., Deligianni, F., Darzi, A., Yang, G.Z.: Soft-tissue motion tracking and structure estimation for robotic assisted MIS procedures. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 139–146. Springer, Heidelberg (2005). https://doi.org/10.1007/11566489_18

    Chapter  Google Scholar 

  39. Tomasi, C., Kanade, T.: Shape and motion from image streams under orthography: a factorization method. Int. J. Comput. Vision 9(2), 137–154 (1992). https://doi.org/10.1007/BF00129684

    Article  Google Scholar 

  40. Valtonen Ornhag, M., Olsson, C., Heyden, A.: Bilinear parameterization for differentiable rank-regularization. In: The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2020

    Google Scholar 

  41. Varol, A., Salzmann, M., Tola, E., Fua, P.: Template-free monocular reconstruction of deformable surfaces. In: International Conference on Computer Vision (ICCV), pp. 1811–1818, November 2009

    Google Scholar 

  42. Wang, N., Yao, T., Wang, J., Yeung, D.-Y.: A probabilistic approach to robust matrix factorization. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7578, pp. 126–139. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33786-4_10

    Chapter  Google Scholar 

  43. Xiao, J., Chai, J., Kanade, T.: A closed-form solution to non-rigid shape and motion recovery. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 573–587. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24673-2_46

    Chapter  Google Scholar 

  44. Xu, C., Lin, Z., Zha, H.: A unified convex surrogate for the Schatten-p norm. In: Proceedings of the Conference on Artificial Intelligence (AAAI) (2017)

    Google Scholar 

  45. Yan, J., Pollefeys, M.: A factorization-based approach for articulated nonrigid shape, motion and kinematic chain recovery from video. IEEE Trans. Pattern Anal. Mach. Intell. 30(5), 865–877 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Pedro Iglesias .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1308 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Iglesias, J.P., Olsson, C., Valtonen Örnhag, M. (2020). Accurate Optimization of Weighted Nuclear Norm for Non-Rigid Structure from Motion. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12372. Springer, Cham. https://doi.org/10.1007/978-3-030-58583-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58583-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58582-2

  • Online ISBN: 978-3-030-58583-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics