Skip to main content

Venous Foot and Leg Ulcers

  • Chapter
  • First Online:
Stem Cell Therapy for Vascular Diseases
  • 470 Accesses

Abstract

Venous leg ulceration occurs secondary to venous hypertension and dysregulation of the normal wound healing process. These wounds have a significant socioeconomic impact, as they cause substantial patient morbidity and cost the health-care system billions of dollars. Despite a wide array of therapeutic options, current wound care strategies have met with limited success. Stem cells offer the potential to restore the conditions of physiologic wound healing due to their pluripotent capabilities and the release of trophic factors that can modulate key events in the wound healing cascade. Multiple preclinical and clinical trials have demonstrated that stem cell therapy can accelerate wound healing in diabetic wounds, but little is really known about their benefit in venous wounds. Further research is also necessary to better define the ideal stem cell type, source, and method of delivery in order to maximize their therapeutic potential. Larger clinical trials will be necessary to prove their efficacy and safety in all types of wound repair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stadelmann WK, Digenis AG, Tobin GR. Physiology and healing dynamics of chronic cutaneous wounds. Am J Surg. 1998;176:26S–38S.

    Article  CAS  PubMed  Google Scholar 

  2. Martin P, Nunan R. Cellular and molecular mechanisms of repair in acute and chronic wound healing. BrJ Dermatol. 2015;173:370–8.

    Article  CAS  Google Scholar 

  3. Nussbaum SR, Carter MJ, Fife CE, DaVanzo J, Haught R, Nusgart M, et al. An economic evaluation of the impact, cost, and Medicare policy implications of chronic nonhealing wounds. Value Health. 2018;21:27–32.

    Article  PubMed  Google Scholar 

  4. Ma H, O’Donnell TF, Rosen NA, Iafrati MD. The real cost of treating venous ulcers in a contemporary vascular practice. J Vasc Surg Venous Lymphat Disord. 2014;2:355–61.

    Article  PubMed  Google Scholar 

  5. Herber OR, Schnepp W, Rieger MA. A systematic review on the impact of leg ulceration on patients’ quality of life. Health Qual Life Outcomes. 2007;5:44.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cha J, Falanga V. Stem cells in cutaneous wound healing. Clin Dermatol. 2007;25:73–8.

    Article  PubMed  Google Scholar 

  7. Kanji S, Das H. Advances of stem cell therapeutics in cutaneous wound healing and regeneration. Mediators Inflamm [Internet]. 2017 [cited 2019 Sep 17];2017. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5682068/.

  8. Sorice S, Rustad KC, Li AY, Gurtner GC. The role of stem cell therapeutics in wound healing: current understanding and future directions. Plast Reconstr Surg. 2016;138:31S.

    Article  CAS  PubMed  Google Scholar 

  9. Xie T, Ye J, Rerkasem K, Mani R. The venous ulcer continues to be a clinical challenge: an update. Burns Trauma. [Internet]. 2018. [cited 2019 Nov 21];6. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6003071/.

  10. Green J, Jester R, McKinley R, Pooler A. The impact of chronic venous leg ulcers: a systematic review. J Wound Care. 2014;23:601–12.

    Article  CAS  PubMed  Google Scholar 

  11. Parker CN, Finlayson KJ, Edwards HE. Predicting the likelihood of delayed venous leg ulcer healing and recurrence: development and reliability testing of risk assessment tools. Ostomy Wound Manage. 2017;63:16–33.

    PubMed  Google Scholar 

  12. Franks PJ, Barker J, Collier M, Gethin G, Haesler E, Jawien A, et al. Management of patients with venous leg ulcers: challenges and current best practice. J Wound Care. 2016;25:S1–67.

    Article  PubMed  Google Scholar 

  13. MT F, Mohapatra D, Kumar D, Chittoria R, Nandhagopal V. Current concepts in the physiology of adult wound healing. Plas Aesthet Res. 2015;2:250–6.

    Article  Google Scholar 

  14. Li J, Chen J, Kirsner R. Pathophysiology of acute wound healing. Clin Dermatol. 2007;25:9–18.

    Article  CAS  PubMed  Google Scholar 

  15. Martins-Green M, Petreaca M, Wang L. Chemokines and their receptors are key players in the orchestra that regulates wound healing. Adv Wound Care. 2013;2:327–47.

    Article  Google Scholar 

  16. Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature. 2008;453:314–21.

    Article  CAS  PubMed  Google Scholar 

  17. Tonnesen MG, Feng X, Clark RAF. Angiogenesis in wound healing. J Investig Dermatol Symp Proc. 2000;5:40–6.

    Article  CAS  PubMed  Google Scholar 

  18. Pastar I, Stojadinovic O, Yin NC, Ramirez H, Nusbaum AG, Sawaya A, et al. Epithelialization in wound healing: a comprehensive review. Adv Wound Care. 2014;3:445–64.

    Article  Google Scholar 

  19. Agren MS, Eaglstein WH, Ferguson MW, Harding KG, Moore K, Saarialho-Kere UK, et al. Causes and effects of the chronic inflammation in venous leg ulcers. Acta Derm Venereol Suppl (Stockh). 2000;210:3–17.

    CAS  Google Scholar 

  20. Chi Y-W, Raffetto JD. Venous leg ulceration pathophysiology and evidence based treatment. Vasc Med Lond Engl. 2015;20:168–81.

    Article  Google Scholar 

  21. Crawford JM, Lal BK, Durán WN, Pappas PJ. Pathophysiology of venous ulceration. J Vasc Surg Venous Lymphat Disord. 2017;5:596–605.

    Article  PubMed  Google Scholar 

  22. Bradbury AW. Pathophysiology and Principles of Management of Varicose Veins. In: Fitridge R, Thompson M, editors. Mech Vasc Dis Ref Book Vasc Spec [Internet]. Adelaide (AU): University of Adelaide Press; 2011 [cited 2019 Nov 22]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK534256/.

  23. Raffetto JD. Pathophysiology of chronic venous disease and venous ulcers. Surg Clin North Am. 2018;98:337–47.

    Article  PubMed  Google Scholar 

  24. Burnand KG, Clemenson G, Whimster I, Gaunt J, Browse NL. The effect of sustained venous hypertension on the skin capillaries of the canine hind limb. BJS. 1982;69:41–4.

    Article  CAS  Google Scholar 

  25. Burnand KG, Whimster I, Naidoo A, Browse NL. Pericapillary fibrin in the ulcer-bearing skin of the leg: the cause of lipodermatosclerosis and venous ulceration. BMJ. 1982;285:1071–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pappas PJ, Fallek SR, Garcia A, Araki CT, Back TL, Durán WN, et al. Role of leukocyte activation in patients with venous stasis ulcers. J Surg Res. 1995;59:553–9.

    Article  CAS  PubMed  Google Scholar 

  27. Pappas PJ, DeFouw DO, Venezio LM, Gorti R, Padberg FT, Silva MB, et al. Morphometric assessment of the dermal microcirculation in patients with chronic venous insufficiency. J Vasc Surg. 1997;26:784–95.

    Article  CAS  PubMed  Google Scholar 

  28. Pappas PJ, Teehan EP, Fallek SR, Garcia A, Araki CT, Back TL, et al. Diminished mononuclear cell function is associated with chronic venous insufficiency. J Vasc Surg. 1995;22:580–6.

    Article  CAS  PubMed  Google Scholar 

  29. Sindrilaru A, Peters T, Wieschalka S, Baican C, Baican A, Peter H, et al. An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J Clin Invest. 2011;121:985–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gohel MS, Windhaber RAJ, Tarlton JF, Whyman MR, Poskitt KR. The relationship between cytokine concentrations and wound healing in chronic venous ulceration. J Vasc Surg. 2008;48:1272–7.

    Article  PubMed  Google Scholar 

  31. Beidler SK, Douillet CD, Berndt DF, Keagy BA, Rich PB, Marston WA. Inflammatory cytokine levels in chronic venous insufficiency ulcer tissue before and after compression therapy. J Vasc Surg. 2009;49:1013–20.

    Article  PubMed  PubMed Central  Google Scholar 

  32. MacColl E, Khalil RA. Matrix metalloproteinases as regulators of vein structure and function: implications in chronic venous disease. J Pharmacol Exp Ther. 2015;355:410–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wysocki AB, Staiano-Coico L, Grinnell F. Wound fluid from chronic leg ulcers contains elevated levels of metalloproteinases MMP-2 and MMP-9. J Invest Dermatol. 1993;101:64–8.

    Article  CAS  PubMed  Google Scholar 

  34. Weckroth M, Vaheri A, Lauharanta J, Sorsa T, Konttinen YT. Matrix metalloproteinases, gelatinase and collagenase, in chronic leg ulcers. J Invest Dermatol. 1996;106:1119–24.

    Article  CAS  PubMed  Google Scholar 

  35. Herouy Y, May AE, Pornschlegel G, Stetter C, Grenz H, Preissner KT, et al. Lipodermatosclerosis is characterized by elevated expression and activation of matrix metalloproteinases: implications for venous ulcer formation. J Invest Dermatol. 1998;111:822–7.

    Article  CAS  PubMed  Google Scholar 

  36. Saito S, Trovato MJ, You R, Lal BK, Fasehun F, Padberg FT, et al. Role of matrix metalloproteinases 1, 2, and 9 and tissue inhibitor of matrix metalloproteinase-1 in chronic venous insufficiency. J Vasc Surg. 2001;34:930–8.

    Article  CAS  PubMed  Google Scholar 

  37. Amato B, Coretti G, Compagna R, Amato M, Buffone G, Gigliotti D, et al. Role of matrix metalloproteinases in non-healing venous ulcers. Int Wound J. 2015;12:641–5.

    Article  PubMed  Google Scholar 

  38. Beidler SK, Douillet CD, Berndt DF, Keagy BA, Rich PB, Marston WA. Multiplexed analysis of matrix metalloproteinases in leg ulcer tissue of patients with chronic venous insufficiency before and after compression therapy. Wound Repair Regen Off Publ Wound Heal Soc Eur Tissue Repair Soc. 2008;16:642–8.

    Google Scholar 

  39. Herrick SE, Ireland GW, Simon D, McCollum CN, Ferguson MW. Venous ulcer fibroblasts compared with normal fibroblasts show differences in collagen but not fibronectin production under both normal and hypoxic conditions. J Invest Dermatol. 1996;106:187–93.

    Article  CAS  PubMed  Google Scholar 

  40. Stanley AC, Park HY, Phillips TJ, Russakovsky V, Menzoian JO. Reduced growth of dermal fibroblasts from chronic venous ulcers can be stimulated with growth factors. J Vasc Surg. 1997;26:994–9; discussion 999–1001

    Article  CAS  PubMed  Google Scholar 

  41. Mendez MV, Stanley A, Park H-Y, Shon K, Phillips T, Menzoian JO. Fibroblasts cultured from venous ulcers display cellular characteristics of senescence. J Vasc Surg. 1998;28:876–83.

    Article  CAS  PubMed  Google Scholar 

  42. Stanley AC, Fernandez NN, Lounsbury KM, Corrow K, Osler T, Healey C, et al. Pressure-induced cellular senescence: a mechanism linking venous hypertension to venous ulcers. J Surg Res. 2005;124:112–7.

    Article  PubMed  Google Scholar 

  43. Hasan A, Murata H, Falabella A, Ochoa S, Zhou L, Badiavas E, et al. Dermal fibroblasts from venous ulcers are unresponsive to the action of transforming growth factor-β 11. J Dermatol Sci. 1997;16:59–66.

    Article  CAS  PubMed  Google Scholar 

  44. Kim B-C, Kim HT, Park SH, Cha J-S, Yufit T, Kim S-J, et al. Fibroblasts from chronic wounds show altered TGF-beta-signaling and decreased TGF-beta type II receptor expression. J Cell Physiol. 2003;195:331–6.

    Article  CAS  PubMed  Google Scholar 

  45. Agren MS, Steenfos HH, Dabelsteen S, Hansen JB, Dabelsteen E. Proliferation and mitogenic response to PDGF-BB of fibroblasts isolated from chronic venous leg ulcers is ulcer-age dependent. J Invest Dermatol. 1999;112:463–9.

    Article  CAS  PubMed  Google Scholar 

  46. Frykberg RG, Banks J. Challenges in the treatment of chronic wounds. Adv Wound Care. 2015;4:560–82.

    Article  Google Scholar 

  47. Burnand KG, Layer GT. Graduated elastic stockings. Br Med J Clin Res Ed. 1986;293:224–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. O’Meara S, Cullum N, Nelson EA, Dumville JC. Compression for venous leg ulcers. Cochrane Database Syst Rev [Internet]. 2012 [cited 2019 Nov 24]; Available from: https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD000265.pub3/full.

  49. Shenoy MM. Prevention of venous leg ulcer recurrence. Indian Dermatol Online J. 2014;5:386–9.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mayberry JC, Moneta GL, Taylor LM, Porter JM. Fifteen-year results of ambulatory compression therapy for chronic venous ulcers. Surgery. 1991;109:575–81.

    CAS  PubMed  Google Scholar 

  51. O’Donnell TF, Balk EM. The need for an intersociety consensus guideline for venous ulcer. J Vasc Surg. 2011;54:83S–90S.

    Article  PubMed  Google Scholar 

  52. Norman G, Westby MJ, Rithalia AD, Stubbs N, Soares MO, Dumville JC. Dressings and topical agents for treating venous leg ulcers. Cochrane Database Syst Rev [Internet]. 2018 [cited 2019 Nov 24]; Available from: https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD012583.pub2/full.

  53. Falanga V, Margolis D, Alvarez O, Auletta M, Maggiacomo F, Altman M, et al. Rapid healing of venous ulcers and lack of clinical rejection with an allogeneic cultured human skin equivalent. Human Skin Equivalent Investigators Group. Arch Dermatol. 1998;134:293–300.

    Article  CAS  PubMed  Google Scholar 

  54. Harding K, Sumner M, Cardinal M. A prospective, multicentre, randomised controlled study of human fibroblast-derived dermal substitute (Dermagraft) in patients with venous leg ulcers. Int Wound J. 2013;10:132–7.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Mostow EN, Haraway GD, Dalsing M, Hodde JP, King D, OASIS Venus Ulcer Study Group. Effectiveness of an extracellular matrix graft (OASIS wound matrix) in the treatment of chronic leg ulcers: a randomized clinical trial. J Vasc Surg. 2005;41:837–43.

    Article  PubMed  Google Scholar 

  56. Knighton DR, Ciresi K, Fiegel VD, Schumerth S, Butler E, Cerra F. Stimulation of repair in chronic, nonhealing, cutaneous ulcers using platelet-derived wound healing formula. Surg Gynecol Obstet. 1990;170:56–60.

    CAS  PubMed  Google Scholar 

  57. Smiell JM, Wieman TJ, Steed DL, Perry BH, Sampson AR, Schwab BH. Efficacy and safety of becaplermin (recombinant human platelet-derived growth factor-BB) in patients with nonhealing, lower extremity diabetic ulcers: a combined analysis of four randomized studies. Wound Repair Regen Off Publ Wound Heal Soc Eur Tissue Repair Soc. 1999;7:335–46.

    CAS  Google Scholar 

  58. Papanas N, Maltezos E. Benefit-risk assessment of becaplermin in the treatment of diabetic foot ulcers. Drug Saf. 2010;33:455–61.

    Article  CAS  PubMed  Google Scholar 

  59. Kosaric N, Kiwanuka H, Gurtner GC. Stem cell therapies for wound healing. Expert Opin Biol Ther. 2019;19:575–85.

    Article  CAS  PubMed  Google Scholar 

  60. O’Donnell TF, Passman MA, Marston WA, Ennis WJ, Dalsing M, Kistner RL, et al. Management of venous leg ulcers: clinical practice guidelines of the Society for Vascular Surgery® and the American venous forum. J Vasc Surg. 2014;60:3S–59S.

    Article  PubMed  Google Scholar 

  61. Barwell JR, Davies CE, Deacon J, Harvey K, Minor J, Sassano A, et al. Comparison of surgery and compression with compression alone in chronic venous ulceration (ESCHAR study): randomised controlled trial. Lancet Lond Engl. 2004;363:1854–9.

    Article  Google Scholar 

  62. Gohel MS, Barwell JR, Taylor M, Chant T, Foy C, Earnshaw JJ, et al. Long term results of compression therapy alone versus compression plus surgery in chronic venous ulceration (ESCHAR): randomised controlled trial. BMJ. 2007;335:83.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Harlander-Locke M, Lawrence PF, Alktaifi A, Jimenez JC, Rigberg D, DeRubertis B. The impact of ablation of incompetent superficial and perforator veins on ulcer healing rates. J Vasc Surg. 2012;55:458–64.

    Article  PubMed  Google Scholar 

  64. Harlander-Locke M, Lawrence P, Jimenez JC, Rigberg D, DeRubertis B, Gelabert H. Combined treatment with compression therapy and ablation of incompetent superficial and perforating veins reduces ulcer recurrence in patients with CEAP 5 venous disease. J Vasc Surg. 2012;55:446–50.

    Article  PubMed  Google Scholar 

  65. Behr B, Ko SH, Wong VW, Gurtner GC, Longaker MT. Stem cells. Plast Reconstr Surg. 2010;126:1163–71.

    Article  CAS  PubMed  Google Scholar 

  66. Duscher D, Barrera J, Wong VW, Maan ZN, Whittam AJ, Januszyk M, et al. Stem cells in wound healing: the future of regenerative medicine? A mini-review. Gerontology. 2016;62:216–25.

    Article  CAS  PubMed  Google Scholar 

  67. Odorico JS, Kaufman DS, Thomson JA. Multilineage differentiation from human embryonic stem cell lines. Stem Cells Dayt Ohio. 2001;19:193–204.

    Article  CAS  Google Scholar 

  68. Guenou H, Nissan X, Larcher F, Feteira J, Lemaitre G, Saidani M, et al. Human embryonic stem-cell derivatives for full reconstruction of the pluristratified epidermis: a preclinical study. Lancet Lond Engl. 2009;374:1745–53.

    Article  CAS  Google Scholar 

  69. Lo B, Parham L. Ethical issues in stem cell research. Endocr Rev. 2009;30:204–13.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wu DC, Boyd AS, Wood KJ. Embryonic stem cell transplantation: potential applicability in cell replacement therapy and regenerative medicine. Front Biosci J Virtual Libr. 2007;12:4525–35.

    Article  CAS  Google Scholar 

  71. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    Article  CAS  PubMed  Google Scholar 

  72. Guha P, Morgan JW, Mostoslavsky G, Rodrigues NP, Boyd AS. Lack of immune response to differentiated cells derived from syngeneic induced pluripotent stem cells. Cell Stem Cell. 2013;12:407–12.

    Article  CAS  PubMed  Google Scholar 

  73. Lu Q, Yu M, Shen C, Chen X, Feng T, Yao Y, et al. Negligible Immunogenicity of Induced Pluripotent Stem Cells Derived from Human Skin Fibroblasts. PLoS ONE [Internet]. 2014 [cited 2019 Oct 22];9. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4263724/.

  74. Gorecka J, Kostiuk V, Fereydooni A, Gonzalez L, Luo J, Dash B, et al. The potential and limitations of induced pluripotent stem cells to achieve wound healing. Stem Cell Res Ther [Internet]. 2019 [cited 2019 Oct 22];10. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6416973/.

  75. Sugiyama-Nakagiri Y, Fujimura T, Moriwaki S. Induction of skin-derived precursor cells from human induced pluripotent stem cells. PLoS One. 2016;11:e0168451.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Hewitt KJ, Shamis Y, Hayman RB, Margvelashvili M, Dong S, Carlson MW, et al. Epigenetic and phenotypic profile of fibroblasts derived from induced pluripotent stem cells. PLoS One. 2011;6:e17128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ohta S, Imaizumi Y, Okada Y, Akamatsu W, Kuwahara R, Ohyama M, et al. Generation of human melanocytes from induced pluripotent stem cells. PLoS One. 2011;6:e16182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bilousova G, Chen J, Roop DR. Differentiation of mouse induced pluripotent stem cells into a multipotent keratinocyte lineage. J Invest Dermatol. 2011;131:857–64.

    Article  CAS  PubMed  Google Scholar 

  79. Veraitch O, Mabuchi Y, Matsuzaki Y, Sasaki T, Okuno H, Tsukashima A, et al. Induction of hair follicle dermal papilla cell properties in human induced pluripotent stem cell-derived multipotent LNGFR(+)THY-1(+) mesenchymal cells. Sci Rep. 2017;7:42777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Itoh M, Kiuru M, Cairo MS, Christiano AM. Generation of keratinocytes from normal and recessive dystrophic epidermolysis bullosa-induced pluripotent stem cells. Proc Natl Acad Sci U S A. 2011;108:8797–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Clayton ZE, Tan RP, Miravet MM, Lennartsson K, Cooke JP, Bursill CA, et al. Induced pluripotent stem cell-derived endothelial cells promote angiogenesis and accelerate wound closure in a murine excisional wound healing model. Biosci Rep. 2018;38

    Google Scholar 

  82. Kim KL, Song S-H, Choi K-S, Suh W. Cooperation of endothelial and smooth muscle cells derived from human induced pluripotent stem cells enhances neovascularization in dermal wounds. Tissue Eng Part A. 2013;19:2478–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gutierrez-Aranda I, Ramos-Mejia V, Bueno C, Munoz-Lopez M, Real PJ, Mácia A, et al. Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection. Stem Cells Dayt Ohio. 2010;28:1568–70.

    Article  Google Scholar 

  84. Baraniak PR, McDevitt TC. Stem cell paracrine actions and tissue regeneration. Regen Med. 2010;5:121–43.

    Article  PubMed  Google Scholar 

  85. Maxson S, Lopez EA, Yoo D, Danilkovitch-Miagkova A, Leroux MA. Concise review: role of mesenchymal stem cells in wound repair. Stem Cells Transl Med. 2012;1:142–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hocking AM, Gibran NS. Mesenchymal stem cells: paracrine signaling and differentiation during cutaneous wound repair. Exp Cell Res. 2010;316:2213–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ponte AL, Marais E, Gallay N, Langonné A, Delorme B, Hérault O, et al. The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells Dayt Ohio. 2007;25:1737–45.

    Article  CAS  Google Scholar 

  88. Ishii G, Sangai T, Sugiyama K, Ito T, Hasebe T, Endoh Y, et al. In vivo characterization of bone marrow-derived fibroblasts recruited into fibrotic lesions. Stem Cells Dayt Ohio. 2005;23:699–706.

    Article  CAS  Google Scholar 

  89. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105:1815–22.

    Article  CAS  PubMed  Google Scholar 

  90. Meirelles L d S, Fontes AM, Covas DT, Caplan AI. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev. 2009;20:419–27.

    Article  CAS  Google Scholar 

  91. Zhang Q-Z, Su W-R, Shi S-H, Wilder-Smith P, Xiang AP, Wong A, et al. Human gingiva-derived mesenchymal stem cells elicit polarization of m2 macrophages and enhance cutaneous wound healing. Stem Cells Dayt Ohio. 2010;28:1856–68.

    Article  CAS  Google Scholar 

  92. Krasnodembskaya A, Song Y, Fang X, Gupta N, Serikov V, Lee J-W, et al. Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells Dayt Ohio. 2010;28:2229–38.

    Article  CAS  Google Scholar 

  93. Mei SHJ, Haitsma JJ, Dos Santos CC, Deng Y, Lai PFH, Slutsky AS, et al. Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis. Am J Respir Crit Care Med. 2010;182:1047–57.

    Article  CAS  PubMed  Google Scholar 

  94. Chen L, Tredget EE, Wu PYG, Wu Y. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One. [Internet]. 2008. [cited 2019 Oct 27];3. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2270908/.

  95. Smith AN, Willis E, Chan VT, Muffley LA, Isik FF, Gibran NS, et al. Mesenchymal stem cells induce dermal fibroblast responses to injury. Exp Cell Res. 2010;316:48–54.

    Article  CAS  PubMed  Google Scholar 

  96. Wu Y, Chen L, Scott PG, Tredget EE. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells Dayt Ohio. 2007;25:2648–59.

    Article  CAS  Google Scholar 

  97. Badiavas EV, Falanga V. Treatment of chronic wounds with bone marrow-derived cells. Arch Dermatol. 2003;139:510–6.

    Article  PubMed  Google Scholar 

  98. Yoshikawa T, Mitsuno H, Nonaka I, Sen Y, Kawanishi K, Inada Y, et al. Wound therapy by marrow mesenchymal cell transplantation. Plast Reconstr Surg. 2008;121:860–77.

    Article  CAS  PubMed  Google Scholar 

  99. Falanga V, Iwamoto S, Chartier M, Yufit T, Butmarc J, Kouttab N, et al. Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng. 2007;13:1299–312.

    Article  CAS  PubMed  Google Scholar 

  100. Hu MS, Borrelli MR, Lorenz HP, Longaker MT, Wan DC. Mesenchymal stromal cells and cutaneous wound healing: a comprehensive review of the background, role, and therapeutic potential [internet]. Stem Cells Int. 2018; [cited 2019 Nov 1]. Available from: https://www.hindawi.com/journals/sci/2018/6901983/.

  101. Mohamed-Ahmed S, Fristad I, Lie SA, Suliman S, Mustafa K, Vindenes H, et al. Adipose-derived and bone marrow mesenchymal stem cells: a donor-matched comparison. Stem Cell Res Ther. 2018;9:168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bieback K, Brinkmann I. Mesenchymal stromal cells from human perinatal tissues: from biology to cell therapy. World J Stem Cells. 2010;2:81–92.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Tsuji W, Rubin JP, Marra KG. Adipose-derived stem cells: implications in tissue regeneration. World J Stem Cells. 2014;6:312–21.

    Article  PubMed  PubMed Central  Google Scholar 

  104. De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs. 2003;174:101–9.

    Article  PubMed  Google Scholar 

  105. Hassanshahi A, Hassanshahi M, Khabbazi S, Hosseini-Khah Z, Peymanfar Y, Ghalamkari S, et al. Adipose-derived stem cells for wound healing. J Cell Physiol. 2019;234:7903–14.

    Article  CAS  PubMed  Google Scholar 

  106. Bertozzi N, Simonacci F, Grieco MP, Grignaffini E, Raposio E. The biological and clinical basis for the use of adipose-derived stem cells in the field of wound healing. Ann Med Surg. 2017;20:41–8.

    Article  Google Scholar 

  107. Holm JS, Toyserkani NM, Sorensen JA. Adipose-derived stem cells for treatment of chronic ulcers: current status. Stem Cell Res Ther. 2018;9:142.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Garg RK, Rennert RC, Duscher D, Sorkin M, Kosaraju R, Auerbach LJ, et al. Capillary force seeding of hydrogels for adipose-derived stem cell delivery in wounds. Stem Cells Transl Med. 2014;3:1079–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zografou A, Papadopoulos O, Tsigris C, Kavantzas N, Michalopoulos E, Chatzistamatiou T, et al. Autologous transplantation of adipose-derived stem cells enhances skin graft survival and wound healing in diabetic rats. Ann Plast Surg. 2013;71:225–32.

    Article  CAS  PubMed  Google Scholar 

  110. Konstantinow A, Arnold A, Djabali K, Kempf W, Gutermuth J, Fischer T, et al. Therapy of ulcus cruris of venous and mixed venous arterial origin with autologous, adult, native progenitor cells from subcutaneous adipose tissue: a prospective clinical pilot study. J Eur Acad Dermatol Venereol JEADV. 2017;31:2104–18.

    Article  CAS  PubMed  Google Scholar 

  111. Kavala AA, Turkyilmaz S. Autogenously derived regenerative cell therapy for venous leg ulcers. Arch Med Sci Atheroscler Dis. 2018;3:e156–63.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Koizumi NJ, Inatomi TJ, Sotozono CJ, Fullwood NJ, Quantock AJ, Kinoshita S. Growth factor mRNA and protein in preserved human amniotic membrane. Curr Eye Res. 2000;20:173–7.

    Article  CAS  PubMed  Google Scholar 

  113. Davis JS II. Skin grafting at the Johns Hopkins Hospital. Ann Surg. 1909;50:542–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Stern M. The grafting of preserved amniotic membrane to burned and ulcerated surfaces, substituting skin grafts: a preliminary report. J Am Med Assoc. 1913;60:973–4.

    Article  Google Scholar 

  115. Sabella N. Use of the fetal membranes in skin grafting. Med Rec 1866-1922. 1913;83:478–80.

    Google Scholar 

  116. Denkewalter FR. Ambulatory treatment of varicose leg ulcers with fresh placental dressings. AMA Arch Surg. 1957;74:316–21.

    Article  CAS  PubMed  Google Scholar 

  117. Pourmoussa A, Gardner DJ, Johnson MB, Wong AK. An update and review of cell-based wound dressings and their integration into clinical practice. Ann Transl Med. [Internet]. 2016. [cited 2019 Nov 25];4. Available from: http://atm.amegroups.com/article/view/12913

  118. Mermet I, Pottier N, Sainthillier JM, Malugani C, Cairey-Remonnay S, Maddens S, et al. Use of amniotic membrane transplantation in the treatment of venous leg ulcers. Wound Repair Regen Off Publ Wound Heal Soc Eur Tissue Repair Soc. 2007;15:459–64.

    Google Scholar 

  119. Francis J, Shajimon CR, Bhat AK, Kanakambaran B. Use of amnion transfer in resistant nonhealing venous leg ulcers. Indian J Surg. 2015;77:457–62.

    Article  PubMed  Google Scholar 

  120. Farivar BS, Toursavadkohi S, Monahan TS, Sharma J, Ucuzian AA, Kundi R, et al. Prospective study of cryopreserved placental tissue wound matrix in the management of chronic venous leg ulcers. J Vasc Surg Venous Lymphat Disord. 2019;7:228–33.

    Article  PubMed  Google Scholar 

  121. Bianchi C, Cazzell S, Vayser D, Reyzelman AM, Dosluoglu H, Tovmassian G, et al. A multicentre randomised controlled trial evaluating the efficacy of dehydrated human amnion/chorion membrane (EpiFix® ) allograft for the treatment of venous leg ulcers. Int Wound J. 2018;15:114–22.

    Article  PubMed  Google Scholar 

  122. Marędziak M, Marycz K, Tomaszewski KA, Kornicka K, Henry BM. The influence of aging on the regenerative potential of human adipose derived mesenchymal stem cells [internet]. Stem Cells Int. 2016; [cited 2019 Nov 5]. Available from: https://www.hindawi.com/journals/sci/2016/2152435/abs/.

  123. Zaim M, Karaman S, Cetin G, Isik S. Donor age and long-term culture affect differentiation and proliferation of human bone marrow mesenchymal stem cells. Ann Hematol. 2012;91:1175–86.

    Article  PubMed  Google Scholar 

  124. De Barros S, Dehez S, Arnaud E, Barreau C, Cazavet A, Perez G, et al. Aging-related decrease of human ASC angiogenic potential is reversed by hypoxia preconditioning through ROS production. Mol Ther J Am Soc Gene Ther. 2013;21:399–408.

    Article  CAS  Google Scholar 

  125. Duscher D, Rennert RC, Januszyk M, Anghel E, Maan ZN, Whittam AJ, et al. Aging disrupts cell subpopulation dynamics and diminishes the function of mesenchymal stem cells. Sci Rep. [Internet]. 2014. [cited 2019 Nov 5];4. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4239576/.

  126. Khong SML, Lee M, Kosaric N, Khong DM, Dong Y, Hopfner U, et al. Single-cell transcriptomics of human mesenchymal stem cells reveal age-related cellular subpopulation depletion and impaired regenerative function. Stem Cells. 2019;37:240–6.

    Article  CAS  PubMed  Google Scholar 

  127. Fijany A, Sayadi LR, Khoshab N, Banyard DA, Shaterian A, Alexander M, et al. Mesenchymal stem cell dysfunction in diabetes. Mol Biol Rep. 2019;46:1459–75.

    Article  CAS  PubMed  Google Scholar 

  128. Kim H, Han JW, Lee JY, Choi YJ, Sohn Y-D, Song M, et al. Diabetic mesenchymal stem cells are ineffective for improving limb ischemia due to their impaired Angiogenic capability. Cell Transplant. 2015;24:1571–84.

    Article  PubMed  Google Scholar 

  129. Rennert RC, Sorkin M, Januszyk M, Duscher D, Kosaraju R, Chung MT, et al. Diabetes impairs the angiogenic potential of adipose-derived stem cells by selectively depleting cellular subpopulations. Stem Cell Res Ther. 2014;5:79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Madhira SL, Challa SS, Chalasani M, Nappanveethl G, Bhonde RR, Ajumeera R, et al. Promise(s) of mesenchymal stem cells as an in vitro model system to depict pre-diabetic/diabetic milieu in WNIN/GR-Ob mutant rats. PLoS One. [Internet]. 2012. [cited 2019 Nov 6];7. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3483309/

  131. Noël D, Caton D, Roche S, Bony C, Lehmann S, Casteilla L, et al. Cell specific differences between human adipose-derived and mesenchymal-stromal cells despite similar differentiation potentials. Exp Cell Res. 2008;314:1575–84.

    Article  PubMed  CAS  Google Scholar 

  132. Panepucci RA, Siufi JLC, Silva WA, Proto-Siquiera R, Neder L, Orellana M, et al. Comparison of gene expression of umbilical cord vein and bone marrow-derived mesenchymal stem cells. Stem Cells Dayt Ohio. 2004;22:1263–78.

    Article  CAS  Google Scholar 

  133. Hsieh J-Y, Wang H-W, Chang S-J, Liao K-H, Lee I-H, Lin W-S, et al. Mesenchymal stem cells from human umbilical cord express preferentially secreted factors related to neuroprotection, neurogenesis, and angiogenesis. PLoS One. [Internet]. 2013. [cited 2019 Nov 6];8. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3749979/.

  134. Kim S-W, Zhang H-Z, Guo L, Kim J-M, Kim MH. Amniotic Mesenchymal stem cells enhance wound healing in diabetic NOD/SCID mice through high angiogenic and engraftment capabilities. PLoS ONE [Internet]. 2012 [cited 2019 Nov 6];7. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3398889/.

  135. Liu X, Liu X, Wang Z, Wang Z, Wang R, Wang R, et al. Direct comparison of the potency of human mesenchymal stem cells derived from amnion tissue, bone marrow and adipose tissue at inducing dermal fibroblast responses to cutaneous wounds. Int J Mol Med. 2013;31:407–15.

    Article  PubMed  CAS  Google Scholar 

  136. Aguado BA, Mulyasasmita W, Su J, Lampe KJ, Heilshorn SC. Improving viability of stem cells during syringe needle flow through the design of hydrogel cell carriers. Tissue Eng Part A. 2012;18:806–15.

    Article  CAS  PubMed  Google Scholar 

  137. Rustad KC, Wong VW, Sorkin M, Glotzbach JP, Major MR, Rajadas J, et al. Enhancement of mesenchymal stem cell angiogenic capacity and stemness by a biomimetic hydrogel scaffold. Biomaterials. 2012;33:80–90.

    Article  CAS  PubMed  Google Scholar 

  138. Lee YS, Lim KS, Oh J-E, Yun A, Joo WS, Kim HS, et al. Development of porous PLGA/PEI1.8k biodegradable microspheres for the delivery of Mesenchymal Stem Cells (MSCs). J Control Release Off J Control Release Soc. 2015;205:128–33.

    Article  CAS  Google Scholar 

  139. Guo R, Ward CL, Davidson JM, Duvall CL, Wenke JC, Guelcher SA. A transient cell-shielding method for viable MSC delivery within hydrophobic scaffolds polymerized in situ. Biomaterials. 2015;54:21–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Herberg S, Shi X, Johnson MH, Hamrick MW, Isales CM, Hill WD. Stromal cell-derived factor-1β mediates cell survival through enhancing autophagy in bone marrow-derived mesenchymal stem cells. PLoS One. [Internet]. 2013. [cited 2019 Nov 7];8. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3589360/

  141. HoWangYin K-Y, Loinard C, Bakker W, Guérin CL, Vilar J, D’Audigier C, et al. HIF-prolyl hydroxylase 2 inhibition enhances the efficiency of mesenchymal stem cell-based therapies for the treatment of critical limb ischemia. Stem Cells. 2014;32:231–43.

    Article  PubMed  Google Scholar 

  142. Marquez-Curtis LA, Gul-Uludag H, Xu P, Chen J, Janowska-Wieczorek A. CXCR4 transfection of cord blood mesenchymal stromal cells with the use of cationic liposome enhances their migration toward stromal cell-derived factor-1. Cytotherapy. 2013;15:840–9.

    Article  CAS  PubMed  Google Scholar 

  143. Hu C, Yong X, Li C, Lü M, Liu D, Chen L, et al. CXCL12/CXCR4 axis promotes mesenchymal stem cell mobilization to burn wounds and contributes to wound repair. J Surg Res. 2013;183:427–34.

    Article  CAS  PubMed  Google Scholar 

  144. Song S-H, Lee M-O, Lee J-S, Jeong H-C, Kim H-G, Kim W-S, et al. Genetic modification of human adipose-derived stem cells for promoting wound healing. J Dermatol Sci. 2012;66:98–107.

    Article  CAS  PubMed  Google Scholar 

  145. Kosaric N, Srifa W, Gurtner GC, Porteus MH. Abstract 100: human mesenchymal stromal cells engineered to overexpress PDGF-B using CRISPR/Cas9/rAAV6-based tools improve wound healing. Plast Reconstr Surg Glob Open. [Internet]. 2017. [cited 2019 Nov 7];5. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5417952/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edith Tzeng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tzeng, E., Gonzalez, K. (2021). Venous Foot and Leg Ulcers. In: Navarro, T.P., Minchillo Lopes, L.L.N., Dardik, A. (eds) Stem Cell Therapy for Vascular Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-56954-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56954-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-56953-2

  • Online ISBN: 978-3-030-56954-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics