Skip to main content
Log in

Pathogenesis and Treatment of Impaired Wound Healing in Diabetes Mellitus: New Insights

  • Review
  • Published:
Advances in Therapy Aims and scope Submit manuscript

Abstract

Diabetic foot ulcers (DFUs) are one of the most common and serious complications of diabetes mellitus, as wound healing is impaired in the diabetic foot. Wound healing is a dynamic and complex biological process that can be divided into four partly overlapping phases: hemostasis, inflammation, proliferative and remodeling. These phases involve a large number of cell types, extracellular components, growth factors and cytokines. Diabetes mellitus causes impaired wound healing by affecting one or more biological mechanisms of these processes. Most often, it is triggered by hyperglycemia, chronic inflammation, micro- and macro-circulatory dysfunction, hypoxia, autonomic and sensory neuropathy, and impaired neuropeptide signaling. Research focused on thoroughly understanding these mechanisms would allow for specifically targeted treatment of diabetic foot ulcers. The main principles for DFU treatment are wound debridement, pressure off-loading, revascularization and infection management. New treatment options such as bioengineered skin substitutes, extracellular matrix proteins, growth factors, and negative pressure wound therapy, have emerged as adjunctive therapies for ulcers. Future treatment strategies include stem cell-based therapies, delivery of gene encoding growth factors, application of angiotensin receptors analogs and neuropeptides like substance P, as well as inhibition of inflammatory cytokines. This review provides an outlook of the pathophysiology in diabetic wound healing and summarizes the established and adjunctive treatment strategies, as well as the future therapeutic options for the treatment of DFUs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047–53.

    Article  PubMed  Google Scholar 

  2. Boulton AJ. The pathway to foot ulceration in diabetes. Med Clin North Am. 2013;97(5):775–90.

    Article  PubMed  Google Scholar 

  3. Mulder GD, Patt LM, Sanders L, Rosenstock J, Altman MI, Hanley ME, et al. Enhanced healing of ulcers in patients with diabetes by topical treatment with glycyl-l-histidyl-l-lysine copper. Wound Repair Regen. 1994;2(4):259–69.

    Article  CAS  PubMed  Google Scholar 

  4. Dinh TL, Veves A. A review of the mechanisms implicated in the pathogenesis of the diabetic foot. Int J Low Extrem Wounds. 2005;4(3):154–9.

    Article  PubMed  Google Scholar 

  5. Pradhan L, Nabzdyk C, Andersen ND, LoGerfo FW, Veves A. Inflammation and neuropeptides: the connection in diabetic wound healing. Expert Rev Mol Med. 2009;11:e2.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Blakytny R, Jude E. The molecular biology of chronic wounds and delayed healing in diabetes. Diabet Med. 2006;23(6):594–608.

    Article  CAS  PubMed  Google Scholar 

  7. Falanga V. Wound healing and its impairment in the diabetic foot. Lancet. 2005;366(9498):1736–43.

    Article  PubMed  Google Scholar 

  8. Dinh T, Tecilazich F, Kafanas A, Doupis J, Gnardellis C, Leal E, et al. Mechanisms involved in the development and healing of diabetic foot ulceration. Diabetes. 2012;61(11):2937–47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Dovi JV, Szpaderska AM, DiPietro LA. Neutrophil function in the healing wound: adding insult to injury? Thromb Haemost. 2004;92(2):275–80.

    CAS  PubMed  Google Scholar 

  10. Koh TJ, DiPietro LA. Inflammation and wound healing: the role of the macrophage. Expert Rev Mol Med. 2011;13:e23.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Weller K, Foitzik K, Paus R, Syska W, Maurer M. Mast cells are required for normal healing of skin wounds in mice. Faseb J. 2006;20(13):2366–8.

    Article  CAS  PubMed  Google Scholar 

  12. Egozi EI, Ferreira AM, Burns AL, Gamelli RL, Dipietro LA. Mast cells modulate the inflammatory but not the proliferative response in healing wounds. Wound Repair Regen. 2003;11(1):46–54.

    Article  PubMed  Google Scholar 

  13. Brem H, Tomic-Canic M. Cellular and molecular basis of wound healing in diabetes. J Clin Investig. 2007;117(5):1219–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Fadini GP, Sartore S, Agostini C, Avogaro A. Significance of endothelial progenitor cells in subjects with diabetes. Diabetes Care. 2007;30(5):1305–13.

    Article  CAS  PubMed  Google Scholar 

  15. Drela E, Stankowska K, Kulwas A, Rosc D. Endothelial progenitor cells in diabetic foot syndrome. Adv Clin Exp Med. 2012;21(2):249–54.

    PubMed  Google Scholar 

  16. Lobmann R, Schultz G, Lehnert H. Proteases and the diabetic foot syndrome: mechanisms and therapeutic implications. Diabetes Care. 2005;28(2):461–71.

    Article  CAS  PubMed  Google Scholar 

  17. Sheehan P, Jones P, Caselli A, Giurini JM, Veves A. Percent change in wound area of diabetic foot ulcers over a 4-week period is a robust predictor of complete healing in a 12-week prospective trial. Diabetes Care. 2003;26(6):1879–82.

    Article  PubMed  Google Scholar 

  18. Tellechea A, Kafanas A, Leal EC, Tecilazich F, Kuchibhotla S, Auster ME, et al. Increased skin inflammation and blood vessel density in human and experimental diabetes. Int J Low Extrem Wounds. 2013;12(1):4–11.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Pradhan Nabzdyk L, Kuchibhotla S, Guthrie P, Chun M, Auster ME, Nabzdyk C, et al. Expression of neuropeptides and cytokines in a rabbit model of diabetic neuroischemic wound healing. J Vasc Surg. 2013;58(3):766–75 e12.

  20. Ochoa O, Torres FM, Shireman PK. Chemokines and diabetic wound healing. Vascular. 2007;15(6):350–5.

    Article  PubMed  Google Scholar 

  21. Desta T, Li J, Chino T, Graves DT. Altered fibroblast proliferation and apoptosis in diabetic gingival wounds. J Dent Res. 2010;89(6):609–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Usui ML, Mansbridge JN, Carter WG, Fujita M, Olerud JE. Keratinocyte migration, proliferation, and differentiation in chronic ulcers from patients with diabetes and normal wounds. J Histochem Cytochem. 2008;56(7):687–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Jude EB, Blakytny R, Bulmer J, Boulton AJ, Ferguson MW. Transforming growth factor-beta 1, 2, 3 and receptor type I and II in diabetic foot ulcers. Diabet Med. 2002;19(6):440–7.

    Article  CAS  PubMed  Google Scholar 

  24. Lobmann R, Ambrosch A, Schultz G, Waldmann K, Schiweck S, Lehnert H. Expression of matrix-metalloproteinases and their inhibitors in the wounds of diabetic and non-diabetic patients. Diabetologia. 2002;45(7):1011–6.

    Article  CAS  PubMed  Google Scholar 

  25. Menghini R, Uccioli L, Vainieri E, Pecchioli C, Casagrande V, Stoehr R, et al. Expression of tissue inhibitor of metalloprotease 3 is reduced in ischemic but not neuropathic ulcers from patients with type 2 diabetes mellitus. Acta Diabetol. 2013;50(6):907–10.

    Article  CAS  PubMed  Google Scholar 

  26. Martins VL, Caley M, O’Toole EA. Matrix metalloproteinases and epidermal wound repair. Cell Tissue Res. 2013;351(2):255–68.

    Article  CAS  PubMed  Google Scholar 

  27. Tecilazich F, Dinh TL, Veves A. Emerging drugs for the treatment of diabetic ulcers. Expert Opin Emerg Drugs. 2013;18(2):207–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Kim KA, Shin YJ, Kim JH, Lee H, Noh SY, Jang SH, et al. Dysfunction of endothelial progenitor cells under diabetic conditions and its underlying mechanisms. Arch Pharmacal Res. 2012;35(2):223–34.

    Article  CAS  Google Scholar 

  29. Greenman RL, Panasyuk S, Wang X, Lyons TE, Dinh T, Longoria L, et al. Early changes in the skin microcirculation and muscle metabolism of the diabetic foot. Lancet. 2005;366(9498):1711–7.

    Article  CAS  PubMed  Google Scholar 

  30. Donaghue VM, Chrzan JS, Rosenblum BI, Giurini JM, Habershaw GM, Veves A. Evaluation of a collagen-alginate wound dressing in the management of diabetic foot ulcers. Adv Wound Care. 1998;11(3):114–9.

    CAS  PubMed  Google Scholar 

  31. Dinh T, Veves A. Microcirculation of the diabetic foot. Curr Pharm Des. 2005;11(18):2301–9.

    Article  CAS  PubMed  Google Scholar 

  32. Steinhoff M, Stander S, Seeliger S, Ansel JC, Schmelz M, Luger T. Modern aspects of cutaneous neurogenic inflammation. Arch Dermatol. 2003;139(11):1479–88.

    PubMed  Google Scholar 

  33. Ekstrand AJ, Cao R, Bjorndahl M, Nystrom S, Jonsson-Rylander AC, Hassani H, et al. Deletion of neuropeptide Y (NPY) 2 receptor in mice results in blockage of NPY-induced angiogenesis and delayed wound healing. Proc Natl Acad Sci USA. 2003;100(10):6033–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Toda M, Suzuki T, Hosono K, Kurihara Y, Kurihara H, Hayashi I, et al. Roles of calcitonin gene-related peptide in facilitation of wound healing and angiogenesis. Biomed Pharmacother. 2008;62(6):352–9.

    Article  CAS  PubMed  Google Scholar 

  35. Gordon KA, Lebrun EA, Tomic-Canic M, Kirsner RS. The role of surgical debridement in healing of diabetic foot ulcers. Skinmed. 2012;10(1):24–6.

    PubMed  Google Scholar 

  36. Cavanagh PR, Bus SA. Off-loading the diabetic foot for ulcer prevention and healing. J Vasc Surg. 2010;52(3 Suppl):37S–43S.

    Article  PubMed  Google Scholar 

  37. Moura LI, Dias AM, Carvalho E, de Sousa HC. Recent advances on the development of wound dressings for diabetic foot ulcer treatment—a review. Acta Biomater. 2013;9(7):7093–114.

    Article  CAS  PubMed  Google Scholar 

  38. Dumville JC, Deshpande S, O’Meara S, Speak K. Hydrocolloid dressings for healing diabetic foot ulcers. Cochrane Database Syst Rev (Online). 2013;8:CD009099.

    Google Scholar 

  39. Lewis J, Lipp A. Pressure-relieving interventions for treating diabetic foot ulcers. Cochrane Database Syst Rev (Online). 2013;1:CD002302.

    Google Scholar 

  40. Albayati MA, Shearman CP. Peripheral arterial disease and bypass surgery in the diabetic lower limb. Med Clin North Am. 2013;97(5):821–34.

    Article  PubMed  Google Scholar 

  41. Mendes JJ, Neves J. Diabetic foot infectios: current diagnosis and treatment. J Diabet Foot Complicat. 2012;4(2):26–45.

    Google Scholar 

  42. Lipsky BA, Peters EJ, Berendt AR, Senneville E, Bakker K, Embil JM, et al. Specific guidelines for the treatment of diabetic foot infections 2011. Diabetes Metabol Res Rev. 2012;28(Suppl 1):234–5.

    Article  Google Scholar 

  43. Uchi H, Igarashi A, Urabe K, Koga T, Nakayama J, Kawamori R, et al. Clinical efficacy of basic fibroblast growth factor (bFGF) for diabetic ulcer. Eur J Dermatol. 2009;19(5):461–8.

    PubMed  Google Scholar 

  44. Maier HM, Ilich JZ, Kim JS, Spicer MT. Nutrition supplementation for diabetic wound healing: a systematic review of current literature. Skinmed. 2013;11(4):217–24 (quiz 24–25).

    PubMed  Google Scholar 

  45. Steed DL, Attinger C, Colaizzi T, Crossland M, Franz M, Harkless L, et al. Guidelines for the treatment of diabetic ulcers. Wound Repair Regen. 2006;14(6):680–92.

    Article  PubMed  Google Scholar 

  46. Villar G, Graham AD, Bayley H. A tissue-like printed material. Science. 2013;340(6128):48–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Michael S, Sorg H, Peck CT, Koch L, Deiwick A, Chichkov B, et al. Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS One. 2013;8(3):e57741.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Perrier A, Vuillerme N, Luboz V, Bucki M, Cannard F, Diot B, et al. Smart diabetic shocks: embedded device for diabetic foot prevention. Innov Res Biomed Eng. 2014;32(2):72–6.

    Google Scholar 

  49. Shen JT, Falanga V. Innovative therapies in wound healing. J Cutan Med Surg. 2003;7(3):217–24.

    Article  PubMed  Google Scholar 

  50. Dinh TL, Veves A. The efficacy of Apligraf in the treatment of diabetic foot ulcers. Plast Reconstr Surg. 2006;117(7 Suppl):152S–7S (discussion 8S–9S).

    Article  CAS  PubMed  Google Scholar 

  51. Marston WA. Dermagraft, a bioengineered human dermal equivalent for the treatment of chronic nonhealing diabetic foot ulcer. Expert Rev Med Devices. 2004;1(1):21–31.

    Article  CAS  PubMed  Google Scholar 

  52. Veves A, Giurini JM, LoGerfo FW. The diabetic foot: medical and surgical management. Heidelberg: Springer; 2012. p. 279.

    Book  Google Scholar 

  53. Brigido SA. The use of an acellular dermal regenerative tissue matrix in the treatment of lower extremity wounds: a prospective 16-week pilot study. Int Wound J. 2006;3(3):181–7.

    Article  PubMed  Google Scholar 

  54. Ehrenreich M, Ruszczak Z. Update on tissue-engineered biological dressings. Tissue Eng. 2006;12(9):2407–24.

    Article  CAS  PubMed  Google Scholar 

  55. Caselli A, Rich J, Hanane T, Uccioli L, Veves A. Role of C-nociceptive fibers in the nerve axon reflex-related vasodilation in diabetes. Neurology. 2003;60(2):297–300.

    Article  CAS  PubMed  Google Scholar 

  56. Niezgoda JA, Van Gils CC, Frykberg RG, Hodde JP. Randomized clinical trial comparing OASIS Wound Matrix to Regranex Gel for diabetic ulcers. Adv Skin Wound Care. 2005;18(5 Pt 1):258–66.

    Article  PubMed  Google Scholar 

  57. Veves A, Sheehan P, Pham HT. A randomized, controlled trial of Promogran (a collagen/oxidized regenerated cellulose dressing) vs standard treatment in the management of diabetic foot ulcers. Arch Surg. 2002;137(7):822–7.

    Article  CAS  PubMed  Google Scholar 

  58. Hong JP, Jung HD, Kim YW. Recombinant human epidermal growth factor (EGF) to enhance healing for diabetic foot ulcers. Ann Plast Surg. 2006;56(4):394–8 (discussion 9–400).

    Article  CAS  PubMed  Google Scholar 

  59. Saad Setta H, Elshahat A, Elsherbiny K, Massoud K, Safe I. Platelet-rich plasma versus platelet-poor plasma in the management of chronic diabetic foot ulcers: a comparative study. Int Wound J. 2011;8(3):307–12.

    Article  PubMed  Google Scholar 

  60. Margolis DJ, Bartus C, Hoffstad O, Malay S, Berlin JA. Effectiveness of recombinant human platelet-derived growth factor for the treatment of diabetic neuropathic foot ulcers. Wound Repair Regen. 2005;13(6):531–6.

    Article  PubMed  Google Scholar 

  61. Galiano RD, Tepper OM, Pelo CR, Bhatt KA, Callaghan M, Bastidas N, et al. Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells. Am J Pathol. 2004;164(6):1935–47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Tiaka EK, Papanas N, Manolakis AC, Maltezos E. The role of nerve growth factor in the prophylaxis and treatment of diabetic foot ulcers. Int J Burns Trauma. 2011;1(1):68–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Game FL, Hinchliffe RJ, Apelqvist J, Armstrong DG, Bakker K, Hartemann A, et al. A systematic review of interventions to enhance the healing of chronic ulcers of the foot in diabetes. Diabetes Metabol Res Rev. 2012;28(Suppl 1):119–41.

    Article  Google Scholar 

  64. Londahl M. Hyperbaric oxygen therapy as adjunctive treatment of diabetic foot ulcers. Med Clin North Am. 2013;97(5):957–80.

    Article  PubMed  Google Scholar 

  65. Liu R, Li L, Yang M, Boden G, Yang G. Systematic review of the effectiveness of hyperbaric oxygenation therapy in the management of chronic diabetic foot ulcers. Mayo Clin Proc. 2013;88(2):166–75.

    Article  CAS  PubMed  Google Scholar 

  66. O’Reilly D, Pasricha A, Campbell K, Burke N, Assasi N, Bowen JM, et al. Hyperbaric oxygen therapy for diabetic ulcers: systematic review and meta-analysis. Int J Technol Assess Health Care. 2013;29(3):269–81.

    Article  PubMed  Google Scholar 

  67. Margolis DJ, Gupta J, Hoffstad O, Papdopoulos M, Glick HA, Thom SR, et al. Lack of effectiveness of hyperbaric oxygen therapy for the treatment of diabetic foot ulcer and the prevention of amputation: a cohort study. Diabetes Care. 2013;36(7):1961–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Isaac AL, Armstrong DG. Negative pressure wound therapy and other new therapies for diabetic foot ulceration: the current state of play. Med Clin North Am. 2013;97(5):899–909.

    Article  PubMed  Google Scholar 

  69. Argenta LC, Morykwas MJ. Vacuum-assisted closure: a new method for wound control and treatment: clinical experience. Ann Plast Surg. 1997;38(6):563–76 (discussion 77).

    Article  CAS  PubMed  Google Scholar 

  70. Plikaitis CM, Molnar JA. Subatmospheric pressure wound therapy and the vacuum-assisted closure device: basic science and current clinical successes. Expert Rev Med Devices. 2006;3(2):175–84.

    Article  PubMed  Google Scholar 

  71. Seo SG, Yeo JH, Kim JH, Kim JB, Cho TJ, Lee DY. Negative-pressure wound therapy induces endothelial progenitor cell mobilization in diabetic patients with foot infection or skin defects. Exp Mol Med. 2013;45:e62.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Vig S, Dowsett C, Berg L, Caravaggi C, Rome P, Birke-Sorensen H, et al. Evidence-based recommendations for the use of negative pressure wound therapy in chronic wounds: steps towards an international consensus. J Tissue Viability. 2011;20(Suppl 1):S1–18.

    Article  PubMed  Google Scholar 

  73. Thakral G, Lafontaine J, Najafi B, Talal TK, Kim P, Lavery LA. Electrical stimulation to accelerate wound healing. Diabet Foot Ankle. 2013;4:22081.

  74. Moretti B, Notarnicola A, Maggio G, Moretti L, Pascone M, Tafuri S, et al. The management of neuropathic ulcers of the foot in diabetes by shock wave therapy. BMC Musculoskelet Disord. 2009;10:54.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Huang P, Li S, Han M, Xiao Z, Yang R, Han ZC. Autologous transplantation of granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cells improves critical limb ischemia in diabetes. Diabetes Care. 2005;28(9):2155–60.

    Article  PubMed  Google Scholar 

  76. Dubsky M, Jirkovska A, Bem R, Fejfarova V, Pagacova L, Sixta B, et al. Both autologous bone marrow mononuclear cell and peripheral blood progenitor cell therapies similarly improve ischaemia in patients with diabetic foot in comparison with control treatment. Diabetes Metabol Res Rev. 2013;29(5):369–76.

    Article  CAS  Google Scholar 

  77. Humpert PM, Bartsch U, Konrade I, Hammes HP, Morcos M, Kasper M, et al. Locally applied mononuclear bone marrow cells restore angiogenesis and promote wound healing in a type 2 diabetic patient. Exp Clin Endocrinol Diabetes. 2005;113(9):538–40.

    Article  CAS  PubMed  Google Scholar 

  78. Falanga V, Iwamoto S, Chartier M, Yufit T, Butmarc J, Kouttab N, et al. Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng. 2007;13(6):1299–312.

    Article  CAS  PubMed  Google Scholar 

  79. O’Loughlin A, Kulkarni M, Creane M, Vaughan EE, Mooney E, Shaw G, et al. Topical administration of allogeneic mesenchymal stromal cells seeded in a collagen scaffold augments wound healing and increases angiogenesis in the diabetic rabbit ulcer. Diabetes. 2013;62(7):2588–94.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Mulder G, Tallis AJ, Marshall VT, Mozingo D, Phillips L, Pierce GF, et al. Treatment of nonhealing diabetic foot ulcers with a platelet-derived growth factor gene-activated matrix (GAM501): results of a phase 1/2 trial. Wound Repair Regen. 2009;17(6):772–9.

    Article  PubMed  Google Scholar 

  81. Brem H, Kodra A, Golinko MS, Entero H, Stojadinovic O, Wang VM, et al. Mechanism of sustained release of vascular endothelial growth factor in accelerating experimental diabetic healing. J Invest Dermatol. 2009;129(9):2275–87.

    Article  CAS  PubMed  Google Scholar 

  82. Steckelings UM, Henz BM, Wiehstutz S, Unger T, Artuc M. Differential expression of angiotensin receptors in human cutaneous wound healing. Br J Dermatol. 2005;153(5):887–93.

    Article  CAS  PubMed  Google Scholar 

  83. Steckelings UM, Wollschlager T, Peters J, Henz BM, Hermes B, Artuc M. Human skin: source of and target organ for angiotensin II. Exp Dermatol. 2004;13(3):148–54.

    Article  CAS  PubMed  Google Scholar 

  84. Rodgers K, Verco S, Bolton L, Dizerega G. Accelerated healing of diabetic wounds by NorLeu(3)-angiotensin (1-7). Expert Opin Investig Drugs. 2011;20(11):1575–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Rodgers KE, Roda N, Felix JE, Espinoza T, Maldonado S, diZerega G. Histological evaluation of the effects of angiotensin peptides on wound repair in diabetic mice. Exp Dermatol. 2003;12(6):784–90.

    Article  CAS  PubMed  Google Scholar 

  86. Rodgers KE, Espinoza T, Felix J, Roda N, Maldonado S, diZerega G. Acceleration of healing, reduction of fibrotic scar, and normalization of tissue architecture by an angiotensin analogue, NorLeu3-A(1-7). Plast Reconstr Surg. 2003;111(3):1195–206.

    Article  PubMed  Google Scholar 

  87. Balingit PP, Armstrong DG, Reyzelman AM, Bolton L, Verco SJ, Rodgers KE, et al. NorLeu3-A(1-7) stimulation of diabetic foot ulcer healing: results of a randomized, parallel-group, double-blind, placebo-controlled phase 2 clinical trial. Wound Repair Regen. 2012;20(4):482–90.

    PubMed  Google Scholar 

  88. Kant V, Gopal A, Kumar D, Bag S, Kurade NP, Kumar A, et al. Topically applied substance P enhanced healing of open excision wound in rats. Eur J Pharmacol. 2013;715(1–3):345–53.

    Article  CAS  PubMed  Google Scholar 

  89. Mirza RE, Fang MM, Ennis WJ, Koh TJ. Blocking interleukin-1beta induces a healing-associated wound macrophage phenotype and improves healing in type 2 diabetes. Diabetes. 2013;62(7):2579–87.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Sponsorship for this study was funded by the National Institute of Health Grants 1R01DK091949 (AV), 1R01NS066205 (AV, LPN) 1R01DK076937 (AV), 1R01NS046710 (AV) and 1R24DK091210-01 (AV). All named authors meet the ICMJE criteria for authorship for this manuscript, take responsibility for the integrity of the work as a whole, and have given final approval for the version to be published.

Conflict of interest

Dimitrios Baltzis, Ioanna Eleftheriadou and Aristidis Veves declare that they have no conflict of interest.

Compliance with ethics guidelines

The analysis in this article is based on previously conducted studies, and does not involve any new studies of human or animal subjects performed by any of the authors.

Funding

Sponsorship for this study was funded by the National Institute of Health Grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aristidis Veves.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 191 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baltzis, D., Eleftheriadou, I. & Veves, A. Pathogenesis and Treatment of Impaired Wound Healing in Diabetes Mellitus: New Insights. Adv Ther 31, 817–836 (2014). https://doi.org/10.1007/s12325-014-0140-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12325-014-0140-x

Keywords

Navigation