Skip to main content

Stem Cell Delivery for the Treatment of Arteriovenous Fistula Failure

  • Chapter
  • First Online:
Stem Cell Therapy for Vascular Diseases

Abstract

The arteriovenous fistula is the most commonly used method of vascular access for patients needing hemodialysis. This iatrogenic vascular connection allows for reliable access to high rates of blood flow needed for hemodialysis. After creating an arteriovenous fistula, the venous portion is anticipated to dilate and take on a more arterial morphology allowing for adequate blood flow and repeated cannulation. However, many fistulas fail to mature or develop delayed complications due to stenosis. The stenosis that occurs in arteriovenous fistulae results from venous neointimal hyperplasia. Instead of the desired dilation of the vessel lumen, cells proliferate and migrate toward the lumen. This negative remodeling eventually leads to stenosis. There are several underlying mechanisms, including hypoxia, inflammation, and shear stress, which drive venous neointimal hyperplasia. There has been a great deal of work aimed at reducing and preventing fistula failure with some benefit. Despite these advances, fistula failure remains a significant problem as only about 60% of fistulas remain patent at one year (Al-Jaishi et al., Am J Kidney Dis 63:464–478, 2014).

Mesenchymal stem cells are pluripotent cells, which have been shown to exert beneficial effects in many pathological disease states, mainly through paracrine immunomodulation. Overall, mesenchymal stem cells have been shown to counteract the negative drivers tied to fistula failure, namely, inflammation in many in vitro and in vivo studies (Yoder, J Mol Med (Berl) 91:285–295, 2013; Dave et al., Inflamm Bowel Dis. 21(11):2696–2707, 2015; Redondo-Castro et al. Stem Cell Res Ther 8(1):79–79, 2017; Ponte et al. Stem Cells 25(7):1737-1745, 2007; Luz-Crawford et al. Stem Cells 34(2):483–492, 2016; Leeper et al. Circulation 122(5):517–526, 2010; Kern et al. Stem Cells. 24(5):1294–1301, 2006; Gu et al. Microcirculation. 2017;24(1); Ding et al. Cell Transpl 2011;20(1):5–14). As a result, mesenchymal stem cells were hypothesized to potentially improve fistula patency by driving the cellular responses after fistula placement toward a reparative end resulting in positive remodeling. In vivo murine models have shown that adventitial delivery of adipose-derived mesenchymal stem cells reduce inflammation, cellular migration, and proliferation (Yang et al. Radiology. 2016;279(2):513–522).

This chapter will review the molecular basis of fistula failure, as well as the rationale and methods for using mesenchymal stem cells to prevent it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Jaishi AA, Oliver MJ, Thomas SM, et al. Patency rates of the arteriovenous fistula for hemodialysis: a systematic review and meta-analysis. Am J Kidney Dis. 2014;63(3):464–78.

    Article  PubMed  Google Scholar 

  2. Yoder MC. Endothelial progenitor cell: a blood cell by many other names may serve similar functions. J Mol Med (Berl). 2013;91(3):285–95.

    Article  Google Scholar 

  3. Dave M, Mehta K, Luther J, Baruah A, Dietz AB, Faubion WA Jr. Mesenchymal stem cell therapy for inflammatory bowel disease: a systematic review and meta-analysis. Inflamm Bowel Dis. 2015;21(11):2696–707.

    Article  PubMed  Google Scholar 

  4. Redondo-Castro E, Cunningham C, Miller J, et al. Interleukin-1 primes human mesenchymal stem cells towards an anti-inflammatory and pro-trophic phenotype in vitro. Stem Cell Res Ther. 2017;8(1):79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Ponte AL, Marais E, Gallay N, et al. The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells. 2007;25(7):1737–45.

    Article  CAS  PubMed  Google Scholar 

  6. Luz-Crawford P, Djouad F, Toupet K, et al. Mesenchymal stem cell-derived interleukin 1 receptor antagonist promotes macrophage polarization and inhibits B cell differentiation. Stem Cells. 2016;34(2):483–92.

    Article  CAS  PubMed  Google Scholar 

  7. Leeper NJ, Hunter AL, Cooke JP. Stem cell therapy for vascular regeneration: adult, embryonic, and induced pluripotent stem cells. Circulation. 2010;122(5):517–26.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24(5):1294–301.

    Article  CAS  PubMed  Google Scholar 

  9. Gu W, Hong X, Potter C, Qu A, Xu Q. Mesenchymal stem cells and vascular regeneration. Microcirculation. 2017;24(1) https://doi.org/10.1111/micc.12324.

  10. Ding DC, Shyu WC, Lin SZ. Mesenchymal stem cells. Cell Transplant. 2011;20(1):5–14.

    Article  PubMed  Google Scholar 

  11. Yang B, Brahmbhatt A, Nieves Torres E, et al. Tracking and therapeutic value of human adipose tissue-derived mesenchymal stem cell transplantation in reducing venous neointimal hyperplasia associated with arteriovenous fistula. Radiology. 2016;279(2):513–22.

    Article  PubMed  Google Scholar 

  12. Murphy D, McCulloch CE, Lin F, et al. Trends in prevalence of chronic kidney disease in the United States. Ann Intern Med. 2016;165(7):473–81.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sequeira A, Naljayan M, Vachharajani TJ. Vascular access guidelines: summary, rationale, and controversies. Tech Vasc Interv Radiol. 2017;20(1):2–8.

    Article  PubMed  Google Scholar 

  14. Lok CE, Foley R. Vascular access morbidity and mortality: trends of the last decade. Clin J Am Soc Nephrol. 2013;8(7):1213–9.

    Article  PubMed  Google Scholar 

  15. Bashar K, Conlon PJ, Kheirelseid EA, Aherne T, Walsh SR, Leahy A. Arteriovenous fistula in dialysis patients: factors implicated in early and late AVF maturation failure. Surgeon : journal of the Royal Colleges of Surgeons of Edinburgh and Ireland. 2016;14(5):294–300.

    Article  PubMed  Google Scholar 

  16. Brahmbhatt A, Remuzzi A, Franzoni M, Misra S. The molecular mechanisms of hemodialysis vascular access failure. Kidney Int. 2016;89(2):303–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nieves Torres EC, Yang B, Brahmbhatt A, Mukhopadhyay D, Misra S. Blood outgrowth endothelial cells reduce hypoxia-mediated fibroblast to myofibroblast conversion by decreasing proangiogenic cytokines. J Vasc Res. 2014;51(6):458–67.

    Article  CAS  PubMed  Google Scholar 

  18. Hughes D, Fu AA, Puggioni A, et al. Adventitial transplantation of blood outgrowth endothelial cells in porcine haemodialysis grafts alleviates hypoxia and decreases neointimal proliferation through a matrix metalloproteinase-9-mediated pathway--a pilot study. Nephrol Dial Transplant. 2009;24(1):85–96.

    Article  CAS  PubMed  Google Scholar 

  19. Rotmans JI, Bezhaeva T. The battlefield at arteriovenous crossroads: invading arterial smooth muscle cells occupy the outflow tract of fistulas. Kidney Int. 2015;88(3):431–3.

    Article  CAS  PubMed  Google Scholar 

  20. Lee T, Roy-Chaudhury P. Advances and new frontiers in the pathophysiology of venous neointimal hyperplasia and dialysis access stenosis. Adv Chronic Kidney Dis. 2009;16(5):329–38.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Brahmbhatt A, Misra S. The biology of hemodialysis vascular access failure. Semin Intervent Radiol. 2016;33(1):15–20.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lee T, Ul Haq N. New developments in our understanding of neointimal hyperplasia. Adv Chronic Kidney Dis. 2015;22(6):431–7.

    Article  PubMed  Google Scholar 

  23. Misra S, Fu AA, Misra KD, Shergill UM, Leof EB, Mukhopadhyay D. Hypoxia-induced phenotypic switch of fibroblasts to myofibroblasts through a matrix metalloproteinase 2/tissue inhibitor of metalloproteinase-mediated pathway: implications for venous neointimal hyperplasia in hemodialysis access. J Vasc Interven Radiol. 2010;21(6):896–902.

    Article  Google Scholar 

  24. Misra S, Doherty MG, Woodrum D, et al. Adventitial remodeling with increased matrix metalloproteinase-2 activity in a porcine arteriovenous polytetrafluoroethylene grafts. Kidney Int. 2005;68(6):2890–900.

    Article  CAS  PubMed  Google Scholar 

  25. Misra S, Fu AA, Rajan DK, et al. Expression of hypoxia inducible factor-1 alpha, macrophage migration inhibition factor, matrix metalloproteinase-2 and -9, and their inhibitors in hemodialysis grafts and arteriovenous fistulas. J Vasc Interv Radiol. 2008;19(2 Pt 1):252–9.

    Article  PubMed  Google Scholar 

  26. Misra S, Shergill U, Yang B, Janardhanan R, Misra KD. Increased expression of HIF-1alpha, VEGF-A and its receptors, MMP-2, TIMP-1, and ADAMTS-1 at the venous stenosis of arteriovenous fistula in a mouse model with renal insufficiency. J Vasc Interv Radiol. 2010;21(8):1255–61.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Misra S, Fu AA, Puggioni A, et al. Increased shear stress with upregulation of VEGF-A and its receptors and MMP-2, MMP-9, and TIMP-1 in venous stenosis of hemodialysis grafts. Am J Physiol Heart Circ Physiol. 2008;294(5):H2219–30.

    Article  CAS  PubMed  Google Scholar 

  28. Kilari S, Cai C, Zhao C, et al. The role of MicroRNA-21 in venous neointimal hyperplasia: implications for targeting miR-21 for VNH treatment. Mol Ther the journal of the American Society of Gene Therapy. 2019;27(9):1681–93.

    Article  CAS  Google Scholar 

  29. Duque JC, Vazquez-Padron RI. Myofibroblasts: the ideal target to prevent arteriovenous fistula failure? Kidney Int. 2014;85(2):234–6.

    Article  CAS  PubMed  Google Scholar 

  30. Brahmbhatt A, NievesTorres E, Yang B, et al. The role of Iex-1 in the pathogenesis of venous neointimal hyperplasia associated with hemodialysis arteriovenous fistula. PLoS One. 2014;9(7):e102542.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Yang B, Janardhanan R, Vohra P, et al. Adventitial transduction of lentivirus-shRNA-VEGF-A in arteriovenous fistula reduces venous stenosis formation. Kidney Int. 2014;85(2):289–306.

    Article  CAS  PubMed  Google Scholar 

  32. Wong CY, de Vries MR, Wang Y, et al. Vascular remodeling and intimal hyperplasia in a novel murine model of arteriovenous fistula failure. J Vasc Surg. 2014;59(1):192–201.e191.

    Article  PubMed  Google Scholar 

  33. Schepers A, Eefting D, Bonta PI, et al. Anti-MCP-1 gene therapy inhibits vascular smooth muscle cells proliferation and attenuates vein graft thickening both in vitro and in vivo. Arterioscler Thromb Vasc Biol. 2006;26(9):2063–9.

    Article  CAS  PubMed  Google Scholar 

  34. De Marchi S, Falleti E, Giacomello R, et al. Risk factors for vascular disease and arteriovenous fistula dysfunction in hemodialysis patients. J Am Soc Nephrol. 1996;7(8):1169–77.

    Article  PubMed  Google Scholar 

  35. Nath KA, Kanakiriya SKR, Grande JP, Croatt AJ, Katusic ZS. Increased venous proinflammatory gene expression and intimal hyperplasia in an aorto-caval fistula model in the rat. Am J Pathol. 2003;162(6):2079–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Aitken E, Jackson A, Kong C, Coats P, Kingsmore D. Renal function, uraemia and early arteriovenous fistula failure. BMC Nephrol. 2014;15(1):179.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Weber CL, Djurdjev O, Levin A, Kiaii M. Outcomes of vascular access creation prior to dialysis: building the case for early referral. ASAIO J. 2009;55(4):355–60.

    Article  PubMed  Google Scholar 

  38. Langer S, Paulus N, Koeppel TA, et al. Cardiovascular remodeling during arteriovenous fistula maturation in a rodent uremia model. J Vasc Access. 2011;12(3):215–23.

    Article  PubMed  Google Scholar 

  39. Henaut L, Candellier A, Boudot C, et al. New insights into the roles of monocytes/macrophages in cardiovascular calcification associated with chronic kidney disease. Toxins. 2019;11(9):529.

    Article  CAS  PubMed Central  Google Scholar 

  40. Liang M, Guo Q, Huang F, et al. Notch signaling in bone marrow-derived FSP-1 cells initiates neointima formation in arteriovenous fistulas. Kidney Int. 2019;95(6):1347–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liang M, Wang Y, Liang A, et al. Migration of smooth muscle cells from the arterial anastomosis of arteriovenous fistulas requires Notch activation to form neointima. Kidney Int. 2015;88(3):490–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Koga JI, Nakano T, Dahlman JE, et al. Macrophage Notch Ligand Delta-Like 4 promotes vein graft lesion development: implications for the treatment of vein graft failure. Arterioscler Thromb Vasc Biol. 2015;35(11):2343–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pan L, Ye X, Ding J, Zhou Y. Antiproliferation effect of the uremic toxin paracresol on endothelial progenitor cells is related to its antioxidant activity. Mol Med Rep. 2017;15(4):2308–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ozkok A, Yildiz A. Endothelial progenitor cells and kidney diseases. Kidney Blood Press Res. 2018;43(3):701–18.

    Article  CAS  PubMed  Google Scholar 

  45. Ballermann BJ, Dardik A, Eng E, Liu A. Shear stress and the endothelium. Kidney Int Suppl. 1998;67:S100–8.

    Article  CAS  PubMed  Google Scholar 

  46. Misra S, Fu AA, Misra KD, Glockner JF, Mukhopadyay D. Evolution of shear stress, protein expression, and vessel area in an animal model of arterial dilatation in hemodialysis grafts. J Vasc Interv Radiol. 2010;21(1):108–15.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Dardik A, Chen L, Frattini J, et al. Differential effects of orbital and laminar shear stress on endothelial cells. J Vasc Surg. 2005;41(5):869–80.

    Article  PubMed  Google Scholar 

  48. Zhang L, Coombes J, Pascoe EM, et al. The effect of pentoxifylline on oxidative stress in chronic kidney disease patients with erythropoiesis-stimulating agent hyporesponsiveness: sub-study of the HERO trial. Redox Rep. 2016;21(1):14–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Locatelli F, Canaud B, Eckardt KU, Stenvinkel P, Wanner C, Zoccali C. Oxidative stress in end-stage renal disease: an emerging threat to patient outcome. Nephrol Dial Transplant. 2003;18(7):1272–80.

    Article  CAS  PubMed  Google Scholar 

  50. Paniagua OA, Bryant MB, Panza JA. Role of endothelial nitric oxide in shear stress-induced vasodilation of human microvasculature: diminished activity in hypertensive and hypercholesterolemic patients. Circulation. 2001;103(13):1752–8.

    Article  CAS  PubMed  Google Scholar 

  51. Katsanos K, Karnabatidis D, Kitrou P, Spiliopoulos S, Christeas N, Siablis D. Paclitaxel-coated balloon angioplasty vs. plain balloon dilation for the treatment of failing dialysis access: 6-month interim results from a prospective randomized controlled trial. J Endovasc Ther. 2012;19(2):263–72.

    Article  PubMed  Google Scholar 

  52. Kitrou PM, Katsanos K, Spiliopoulos S, Karnabatidis D, Siablis D. Drug-eluting versus plain balloon angioplasty for the treatment of failing dialysis access: final results and cost-effectiveness analysis from a prospective randomized controlled trial (NCT01174472). Eur J Radiol. 2015;84(3):418–23.

    Article  PubMed  Google Scholar 

  53. Patanè D, Giuffrida S, Morale W, et al. Drug-eluting balloon for the treatment of failing hemodialytic radiocephalic arteriovenous fistulas: our experience in the treatment of juxta-anastomotic stenoses. J Vasc Access. 2014;15(5):338–43.

    Article  PubMed  Google Scholar 

  54. Björkman P, Weselius EM, Kokkonen T, Rauta V, Albäck A, Venermo M. Drug-coated versus plain balloon angioplasty in arteriovenous fistulas: a randomized, controlled study with 1-year follow-up (the Drecorest ii-study). Scand J Surg. 2019;108(1):61–6.

    Article  PubMed  Google Scholar 

  55. Lučev J, Breznik S, Dinevski D, Ekart R, Rupreht M. Endovascular treatment of Haemodialysis arteriovenous fistula with drug-coated balloon angioplasty: a single-centre study. Cardiovasc Intervent Radiol. 2018;41(6):882–9.

    Article  PubMed  Google Scholar 

  56. Phang CC, Tan RY, Pang SC, et al. Paclitaxel-coated balloon in the treatment of recurrent dysfunctional arteriovenous access, real-world experience and longitudinal follow up. Nephrology (Carlton). 2019;24(12):1290–5.

    Article  CAS  Google Scholar 

  57. El Sharouni SY, Smits HF, Wüst AF, Battermann JJ, Blankestijn PJ. Endovascular brachytherapy in arteriovenous grafts for haemodialysis does not prevent development of stenosis. Radiother Oncol. 1998;49(2):199–200.

    PubMed  Google Scholar 

  58. Misra S, Bonan R, Pflederer T, Roy-Chaudhury P, Investigators BI. BRAVO I: a pilot study of vascular brachytherapy in polytetrafluoroethylene dialysis access grafts. Kidney Int. 2006;70(11):2006–13.

    Article  CAS  PubMed  Google Scholar 

  59. Roy-Chaudhury P, Arnold P, Seigel J, Misra S. From basic biology to randomized clinical trial: the beta radiation for arteriovenous graft outflow stenosis (BRAVO II). Semin Dial. 2013;26(2):227–32.

    Article  PubMed  Google Scholar 

  60. van Tongeren RB, Levendag PC, Coen VL, et al. External beam radiation therapy to prevent anastomotic intimal hyperplasia in prosthetic arteriovenous fistulas: results of a randomized trial. Radiother Oncol. 2003;69(1):73–7.

    Article  PubMed  Google Scholar 

  61. Irish AB, Viecelli AK, Hawley CM, et al. Effect of fish oil supplementation and aspirin use on arteriovenous fistula failure in patients requiring hemodialysis: a randomized clinical trial. JAMA Intern Med. 2017;177(2):184–93.

    Article  PubMed  Google Scholar 

  62. Viecelli AK, Irish AB, Polkinghorne KR, et al. Omega-3 polyunsaturated fatty acid supplementation to prevent arteriovenous fistula and graft failure: a systematic review and meta-analysis of randomized controlled trials. Am J Kidney Dis. 2018;72(1):50–61.

    Article  CAS  PubMed  Google Scholar 

  63. Wan Q, Li L, Yang S, Chu F. Impact of statins on arteriovenous fistulas outcomes: a meta-analysis. Ther Apher Dial. 2018;22(1):67–72.

    Article  CAS  PubMed  Google Scholar 

  64. Tanner NC, Da Silva A. Medical adjuvant treatment to increase patency of arteriovenous fistulae and grafts. Cochrane Database Syst Rev. 2015;2015(7):Cd002786.

    PubMed Central  Google Scholar 

  65. Akin EB, Topcu O, Ozcan H, Ersoz S, Aytac S, Anadol E. Hemodynamic effect of transdermal glyceryl trinitrate on newly constructed arteriovenous fistula. World J Surg. 2002;26(10):1256–9.

    Article  PubMed  Google Scholar 

  66. Field M, McGrogan D, Marie Y, et al. Randomized clinical trial of the use of glyceryl trinitrate patches to aid arteriovenous fistula maturation. Br J Surg. 2016;103(10):1269–75.

    Article  CAS  PubMed  Google Scholar 

  67. Poggi A, Zocchi MR. Immunomodulatory properties of mesenchymal stromal cells: still unresolved “Yin and Yang”. Curr Stem Cell Res Ther. 2019;14(4):344–50.

    Article  CAS  PubMed  Google Scholar 

  68. Khubutiya MS, Vagabov AV, Temnov AA, Sklifas AN. Paracrine mechanisms of proliferative, anti-apoptotic and anti-inflammatory effects of mesenchymal stromal cells in models of acute organ injury. Cytotherapy. 2014;16(5):579–85.

    Article  CAS  PubMed  Google Scholar 

  69. Blázquez R, Sánchez-Margallo FM, Álvarez V, Usón A, Casado JG. Surgical meshes coated with mesenchymal stem cells provide an anti-inflammatory environment by a M2 macrophage polarization. Acta Biomater. 2016;31:221–30.

    Article  PubMed  CAS  Google Scholar 

  70. Hickson LJ, Eirin A, Lerman LO. Challenges and opportunities for stem cell therapy in patients with chronic kidney disease. Kidney Int. 2016;89(4):767–78.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science (New York, NY). 1999;284(5411):143–7.

    Article  CAS  Google Scholar 

  72. Wu Y, Hoogduijn MJ, Baan CC, et al. Adipose tissue-derived mesenchymal stem cells have a heterogenic cytokine secretion profile. Stem Cells Int. 2017;2017:4960831.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Yagi H, Soto-Gutierrez A, Navarro-Alvarez N, et al. Reactive bone marrow stromal cells attenuate systemic inflammation via sTNFR1. Mol Ther: the journal of the American Society of Gene Therapy. 2010;18(10):1857–64.

    Article  CAS  Google Scholar 

  74. Eliopoulos N, Zhao J, Bouchentouf M, et al. Human marrow-derived mesenchymal stromal cells decrease cisplatin renotoxicity in vitro and in vivo and enhance survival of mice post-intraperitoneal injection. Am J Physiol Renal Physiol. 2010;299(6):F1288–98.

    Article  CAS  PubMed  Google Scholar 

  75. Maggini J, Mirkin G, Bognanni I, et al. Mouse bone marrow-derived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile. PLoS One. 2010;5(2):–e9252.

    Google Scholar 

  76. Carelli S, Colli M, Vinci V, Caviggioli F, Klinger M, Gorio A. Mechanical activation of adipose tissue and derived mesenchymal stem cells: novel anti-inflammatory properties. Int J Mol Sci. 2018;19(1):267.

    Article  PubMed Central  CAS  Google Scholar 

  77. Janardhanan R, Yang B, Kilari S, Leof EB, Mukhopadhyay D, Misra S. The role of repeat administration of adventitial delivery of lentivirus-shRNA-Vegf-A in arteriovenous fistula to prevent venous stenosis formation. J Vasc interv Radiol. 2016;27(4):576–83.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Valledor AF, Comalada M, Santamaría-Babi LF, Lloberas J, Celada A. Macrophage proinflammatory activation and deactivation: a question of balance. Adv Immunol. 2010;108:1–20.

    Article  CAS  PubMed  Google Scholar 

  79. Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H. Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol. 2008;180(4):2581–7.

    Article  CAS  PubMed  Google Scholar 

  80. Mousawi F, Peng H, Li J, et al. Chemical activation of the Piezo1 channel drives mesenchymal stem cell migration via inducing ATP release and activation of P2 receptor purinergic signalling. 2019.

    Google Scholar 

  81. Mousavi A. CXCL12/CXCR4 signal transduction in diseases and its molecular approaches in targeted-therapy. Immunol Lett. 2019;217:91.

    Article  PubMed  CAS  Google Scholar 

  82. Nitzsche F, Muller C, Lukomska B, Jolkkonen J, Deten A, Boltze J. Concise review: MSC adhesion cascade-insights into homing and transendothelial migration. Stem Cells. 2017;35(6):1446–60.

    Article  PubMed  Google Scholar 

  83. Camilleri ET, Gustafson MP, Dudakovic A, et al. Identification and validation of multiple cell surface markers of clinical-grade adipose-derived mesenchymal stromal cells as novel release criteria for good manufacturing practice-compliant production. Stem Cell Res Ther. 2016;7(1):107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Riester SM, Denbeigh JM, Lin Y, et al. Safety studies for use of adipose tissue-derived mesenchymal stromal/stem cells in a rabbit model for osteoarthritis to support a phase I clinical trial. Stem Cells Transl Med. 2017;6(3):910–22.

    Article  CAS  PubMed  Google Scholar 

  85. Im GI. Clinical use of stem cells in orthopaedics. Eur Cell Mater. 2017;33:183–96.

    Article  PubMed  Google Scholar 

  86. Centeno CJ, Schultz JR, Cheever M, et al. Safety and complications reporting update on the re-implantation of culture-expanded mesenchymal stem cells using autologous platelet lysate technique. Curr Stem Cell Res Ther. 2011;6(4):368–78.

    Article  CAS  PubMed  Google Scholar 

  87. Pak J, Chang J-J, Lee JH, Lee SH. Safety reporting on implantation of autologous adipose tissue-derived stem cells with platelet-rich plasma into human articular joints. BMC Musculoskelet Disord. 2013;14:337.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Rifkin BS, Brewster UC, Aruny JE, Perazella MA. Percutaneous balloon cryoplasty: a new therapy for rapidly recurrent anastomotic venous stenoses of hemodialysis grafts? Am J Kidney Dis. 2005;45(2):e27–32.

    Article  PubMed  Google Scholar 

  89. Kitrou PM, Spiliopoulos S, Papadimatos P, et al. Paclitaxel-coated balloons for the treatment of dysfunctional dialysis access. Results from a single-center, retrospective analysis. Cardiovasc Intervent Radiol. 2017;40(1):50–4.

    Article  PubMed  Google Scholar 

  90. Eslami MH, Gangadharan SP, Sui X, Rhynhart KK, Snyder RO, Conte MS. Gene delivery to in situ veins: differential effects of adenovirus and adeno-associated viral vectors. J Vasc Surg. 2000;31(6):1149–59.

    Article  CAS  PubMed  Google Scholar 

  91. Hashimoto T, Yamamoto K, Foster T, Bai H, Shigematsu K, Dardik A. Intraluminal drug delivery to the mouse arteriovenous fistula endothelium. J Vis Exp. 2016;(109):e53905-e53905.

    Google Scholar 

  92. Globerman AS, Chaouat M, Shlomai Z, Galun E, Zeira E, Zamir G. Efficient transgene expression from naked DNA delivered into an arterio-venous fistula model for kidney dialysis. J Gene Med. 2011;13(11):611–21.

    Article  CAS  PubMed  Google Scholar 

  93. Sato T, Iwasaki Y, Kikkawa Y, Fukagawa M. An efficacy of intensive vitamin D delivery to neointimal hyperplasia in recurrent vascular access stenosis. J Vasc Access. 2016;17(1):72–7.

    Article  PubMed  Google Scholar 

  94. Gasper WJ, Jimenez CA, Walker J, Conte MS, Seward K, Owens CD. Adventitial nab-rapamycin injection reduces porcine femoral artery luminal stenosis induced by balloon angioplasty via inhibition of medial proliferation and adventitial inflammation. Circ Cardiovasc Interv. 2013;6(6):701–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bakken AM, Protack CD, Saad WE, Lee DE, Waldman DL, Davies MG. Long-term outcomes of primary angioplasty and primary stenting of central venous stenosis in hemodialysis patients. J Vasc Surg. 2007;45(4):776–83.

    Article  PubMed  Google Scholar 

  96. McLennan G. Stent and stent-graft use in arteriovenous dialysis access. Semin Intervent Radiol. 2016;33(1):10–4.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Anaya-Ayala JE, Smolock CJ, Colvard BD, et al. Efficacy of covered stent placement for central venous occlusive disease in hemodialysis patients. J Vasc Surg. 2011;54(3):754–9.

    Article  PubMed  Google Scholar 

  98. Dinh K, Thomas SD, Cho T, Swinnen J, Crowe P, Varcoe RL. Use of paclitaxel eluting stents in arteriovenous fistulas: a pilot study. Vasc Specialist Int. 2019;35(4):225–31.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Hwang CW, Johnston PV, Gerstenblith G, et al. Stem cell impregnated nanofiber stent sleeve for on-stent production and intravascular delivery of paracrine factors. Biomaterials. 2015;52:318–26.

    Article  CAS  PubMed  Google Scholar 

  100. Delattre C, Velazquez D, Roques C, et al. In vitro and in vivo evaluation of a dextran-graft-polybutylmethacrylate copolymer coated on CoCr metallic stent. Bioimpacts. 2019;9(1):25–36.

    Article  CAS  PubMed  Google Scholar 

  101. Johnston PV, Hwang CW, Bogdan V, et al. Intravascular stem cell bioreactor for prevention of adverse remodeling after myocardial infarction. J Am Heart Assoc. 2019;8(15):e012351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Carter K, Lee HJ, Na KS, et al. Characterizing the impact of 2D and 3D culture conditions on the therapeutic effects of human mesenchymal stem cell secretome on corneal wound healing in vitro and ex vivo. Acta Biomater. 2019;99:247–57.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Zhang P, Zhang C, Li J, Han J, Liu X, Yang H. The physical microenvironment of hematopoietic stem cells and its emerging roles in engineering applications. Stem Cell Res Ther. 2019;10(1):327.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Dubey SK, Alexander A, Sivaram M, et al. Uncovering the diversification of tissue engineering on the emergent areas of stem cells, nanotechnology and biomaterials. Curr Stem Cell Res Ther. 2020;15:187.

    Google Scholar 

  105. Flores AM, Ye J, Jarr K-U, Hosseini-Nassab N, Smith BR, Leeper NJ. Nanoparticle therapy for vascular diseases. Arterioscler Thromb Vasc Biol. 2019;39(4):635–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kuji T, Masaki T, Goteti K, et al. Efficacy of local dipyridamole therapy in a porcine model of arteriovenous graft stenosis. Kidney Int. 2006;69(12):2179–85.

    Article  CAS  PubMed  Google Scholar 

  107. Masaki T, Rathi R, Zentner G, et al. Inhibition of neointimal hyperplasia in vascular grafts by sustained perivascular delivery of paclitaxel. Kidney Int. 2004;66(5):2061–9.

    Article  CAS  PubMed  Google Scholar 

  108. Rotmans JI, Verhagen HJM, Velema E, et al. Local overexpression of C-type natriuretic peptide ameliorates vascular adaptation of porcine hemodialysis grafts. Kidney Int. 2004;65(5):1897–905.

    Article  CAS  PubMed  Google Scholar 

  109. Paulson WD, Kipshidze N, Kipiani K, et al. Safety and efficacy of local periadventitial delivery of sirolimus for improving hemodialysis graft patency: first human experience with a sirolimus-eluting collagen membrane (Coll-R). Nephrol Dial Transplant. 2012;27(3):1219–24.

    Article  CAS  PubMed  Google Scholar 

  110. Kelly B, Melhem M, Zhang J, et al. Perivascular paclitaxel wraps block arteriovenous graft stenosis in a pig model. Nephrol Dial Transplant. 2006;21(9):2425–31.

    Article  CAS  PubMed  Google Scholar 

  111. Yang B, Kilari S, Brahmbhatt A, et al. CorMatrix wrapped around the adventitia of the arteriovenous fistula outflow vein attenuates venous neointimal hyperplasia. Sci Rep. 2017;7(1):–14298.

    Google Scholar 

  112. Huang Q, Zou Y, Arno MC, et al. Hydrogel scaffolds for differentiation of adipose-derived stem cells. Chem Soc Rev. 2017;46(20):6255–75.

    Article  CAS  PubMed  Google Scholar 

  113. Terry CM, Dember LM. Novel therapies for hemodialysis vascular access dysfunction: myth or reality? Clin J Am Soc Nephrol. 2013;8(12):2202–12.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Misra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brahmbhatt, A.N., Misra, S. (2021). Stem Cell Delivery for the Treatment of Arteriovenous Fistula Failure. In: Navarro, T.P., Minchillo Lopes, L.L.N., Dardik, A. (eds) Stem Cell Therapy for Vascular Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-56954-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56954-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-56953-2

  • Online ISBN: 978-3-030-56954-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics