Skip to main content

Neurologic Disease in HIV Infection

  • Chapter
  • First Online:
Neurological Complications of Infectious Diseases

Part of the book series: Current Clinical Neurology ((CCNEU))

Abstract

First described in 1981, acquired immunodeficiency syndrome (AIDS), presents as a constellation of signs, symptoms, and opportunistic diseases reflecting the human immunodeficiency virus’s (HIV) infection, dysregulation, and destruction of immune cells involved primarly in the cellular immune response such as CD4+ T lymphocytes but also including members of the monocyte/macrophage lineage such as central nervous system (CNS) microglia. The Centers for Disease Control and Prevention (CDC) defined AIDS as a CD4+ T-lymphocyte count below 200 cells/microliter and also identified a number of AIDS-defining conditions, both opportunistic diseases arising from a devastated cellular immune as well as conditions manifesting as a direct consequence of the immune dysregulation characteristic of HIV infection. The entire neuroaxis is susceptible to the HIV-related damage, and many AIDS-defining conditions manifest in the central nervous system (CNS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gottlieb GJ, Ragaz A, Vogel JV, Friedman-Kien A, Rywlin AM, Weiner EA, et al. A preliminary communication on extensively disseminated Kaposi’s sarcoma in young homosexual men. Am J Dermatopathol. 1981;3(2):111–4.

    Article  CAS  PubMed  Google Scholar 

  2. Desplats P, Dumaop W, Smith D, Adame A, Everall I, Letendre S, et al. Molecular and pathologic insights from latent HIV-1 infection in the human brain. Neurology. 2013;80(15):1415–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ferretti F, Gisslen M, Cinque P, Price RW. Cerebrospinal fluid HIV escape from antiretroviral therapy. Curr HIV/AIDS Rep. 2015;12(2):280–8.

    Article  PubMed  Google Scholar 

  4. Ozdener H. Molecular mechanisms of HIV-1 associated neurodegeneration. J Biosci. 2005;30(3):391–405.

    Article  CAS  PubMed  Google Scholar 

  5. González-Scarano F, Martín-García J. The neuropathogenesis of AIDS. Nat Rev Immunol. 2005;5(1):69–81.

    Article  PubMed  CAS  Google Scholar 

  6. Masliah E, Ge N, Mucke L. Pathogenesis of HIV-1 associated neurodegeneration. Crit Rev Neurobiol. 1996;10(1):57–67.

    Article  CAS  PubMed  Google Scholar 

  7. Kass JS, Parker AS, Samudralwar RD. Infectious diseases of the central nervous system. Textbook of neuropsychiatry and clinical neurosciences. 6th ed. Washington, DC: American Psychiatric Association Publishing; 2018. p. 303–32.

    Google Scholar 

  8. Luo X, He JJ. Cell-cell contact viral transfer contributes to HIV infection and persistence in astrocytes. J Neurovirol. 2015;21(1):66–80.

    Article  CAS  PubMed  Google Scholar 

  9. Brew B, Chan P. Update on HIV dementia and HIV-associated neurocognitive disorders. Curr Neurol Neurosci Rep. 2014;14(8):1–7.

    Article  CAS  Google Scholar 

  10. Dahl V, Peterson J, Fuchs D, Gisslen M, Palmer S, Price RW. Low levels of HIV-1 RNA detected in the cerebrospinal fluid after up to 10 years of suppressive therapy are associated with local immune activation. AIDS. 2014;28(15):2251–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Navia BA, Cho ES, Petito CK, Price RW. The AIDS dementia complex: II. Neuropathology. Ann Neurol. 1986;19(6):525–35.

    Article  CAS  PubMed  Google Scholar 

  12. Navia BA, Jordan BD, Price RW. The AIDS dementia complex: I. Clinical features. Ann Neurol. 1986;19(6):517–24.

    Article  CAS  PubMed  Google Scholar 

  13. Beresford TP, Blow FC, Hall RC. AIDS encephalitis mimicking alcohol dementia and depression. Biol Psychiatry. 1986;21(4):394–7.

    Article  CAS  PubMed  Google Scholar 

  14. Bissel SJ, Wiley CA. Human immunodeficiency virus infection of the brain: pitfalls in evaluating infected/affected cell populations. Brain Pathol. 2004;14(1):97–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, et al. Updated research nosology for HIV-associated neurocognitive disorders. Neurology. 2007;69(18):1789–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Elbirt D, Mahlab-Guri K, Bezalel-Rosenberg S, Gill H, Attali M, Asher I. HIV-associated neurocognitive disorders (HAND). Isr Med Assoc J. 2015;17(1):54–9.

    PubMed  Google Scholar 

  17. McArthur JC, Steiner J, Sacktor N, Nath A. Human immunodeficiency virus-associated neurocognitive disorders: mind the gap. Ann Neurol. 2010;67(6):699–714.

    CAS  PubMed  Google Scholar 

  18. Heaton RK, Franklin DR, Ellis RJ, McCutchan JA, Letendre SL, Leblanc S, et al. HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neurovirol. 2011;17(1):3–16.

    Article  CAS  PubMed  Google Scholar 

  19. Sacktor N, Skolasky RL, Seaberg E, Munro C, Becker JT, Martin E, et al. Prevalence of HIV-associated neurocognitive disorders in the multicenter AIDS cohort study. Neurology. 2016;86(4):334–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Heaton RK, Franklin DR, Deutsch R, Letendre S, Ellis RJ, Casaletto K, et al. Neurocognitive change in the era of HIV combination antiretroviral therapy: the longitudinal CHARTER study. Clin Infect Dis. 2015;60(3):473–80.

    Article  CAS  PubMed  Google Scholar 

  21. Heaton RK, Clifford DB, Franklin DR Jr, Woods SP, Ake C, Vaida F, et al. HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER study. Neurology. 2010;75(23):2087–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ellis RJ, Badiee J, Vaida F, Letendre S, Heaton RK, Clifford D, et al. CD4 nadir is a predictor of HIV neurocognitive impairment in the era of combination antiretroviral therapy. AIDS. 2011;25(14):1747–51.

    Article  CAS  PubMed  Google Scholar 

  23. Becker JT, Kingsley L, Mullen J, Cohen B, Martin E, Miller EN, et al. Vascular risk factors, HIV serostatus, and cognitive dysfunction in gay and bisexual men. Neurology. 2009;73(16):1292–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. McCutchan JA, Marquie-Beck JA, Fitzsimons CA, Letendre SL, Ellis RJ, Heaton RK, et al. Role of obesity, metabolic variables, and diabetes in HIV-associated neurocognitive disorder. Neurology. 2012;78(7):485–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sattler FR, He J, Letendre S, Wilson C, Sanders C, Heaton R, et al. Abdominal obesity contributes to neurocognitive impairment in HIV-infected patients with increased inflammation and immune activation. J Acquir Immune Defic Syndr. 2015;68(3):281–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Small RC, Brew BJ. HIV-associated neuro cognitive disorder. In: Brew BJ, editor. Handbook of clinical neurology, vol. 152; 2018. p. 75–98.

    Google Scholar 

  27. Eggers C, Arendt G, Hahn K, Husstedt IW, Maschke M, Neuen-Jacob E, et al. HIV-1-associated neurocognitive disorder: epidemiology, pathogenesis, diagnosis, and treatment. J Neurol. 2017;264(8):1715–27.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cysique LA, Maruff P, Brew BJ. The neuropsychological profile of symptomatic AIDS and ADC patients in the pre-HAART era: a meta-analysis. J Int Neuropsychol Soc. 2006;12(3):368–82.

    Article  PubMed  Google Scholar 

  29. Clifford DB, Ances BM. HIV-associated neurocognitive disorder. Lancet Infect Dis. 2013;13(11):976–86.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sacktor NC, Wong M, Nakasujja N, Skolasky RL, Selnes OA, Musisi S, et al. The international HIV dementia scale: a new rapid screening test for HIV dementia. AIDS. 2005;19(13):1367–74.

    PubMed  Google Scholar 

  31. Overton ET, Azad TD, Parker N, Demarco Shaw D, Frain J, Spitz T, et al. The Alzheimer’s disease-8 and Montreal Cognitive Assessment as screening tools for neurocognitive impairment in HIV-infected persons. J Neurovirol. 2013;19(1):109–16.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Steinbrink F, Evers S, Buerke B, Young P, Arendt G, Koutsilieri E, et al. Cognitive impairment in HIV infection is associated with MRI and CSF pattern of neurodegeneration. Eur J Neurol. 2013;20(3):420–8.

    Article  CAS  PubMed  Google Scholar 

  33. Kuper M, Rabe K, Esser S, Gizewski ER, Husstedt IW, Maschke M, et al. Structural gray and white matter changes in patients with HIV. J Neurol. 2011;258(6):1066–75.

    Article  PubMed  Google Scholar 

  34. Ovbiagele B, Nath A. Increasing incidence of ischemic stroke in patients with HIV infection. Neurology. 2011;76(5):444–50.

    Article  PubMed  PubMed Central  Google Scholar 

  35. McMurtray A, Nakamoto B, Shikuma C, Valcour V. Small-vessel vascular disease in human immunodeficiency virus infection: the Hawaii aging with HIV cohort study. Cerebrovasc Dis. 2007;24(2–3):236–41.

    Article  PubMed  Google Scholar 

  36. Archibald SL, Masliah E, Fennema-Notestine C, Marcotte TD, Ellis RJ, McCutchan JA, et al. Correlation of in vivo neuroimaging abnormalities with postmortem human immunodeficiency virus encephalitis and dendritic loss. Arch Neurol. 2004;61(3):369–76.

    Article  PubMed  Google Scholar 

  37. Pfefferbaum A, Rosenbloom MJ, Sassoon SA, Kemper CA, Deresinski S, Rohlfing T, et al. Regional brain structural dysmorphology in human immunodeficiency virus infection: effects of acquired immune deficiency syndrome, alcoholism, and age. Biol Psychiatry. 2012;72(5):361–70.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cysique LA, Maruff P, Brew BJ. Prevalence and pattern of neuropsychological impairment in human immunodeficiency virus-infected/acquired immunodeficiency syndrome (HIV/AIDS) patients across pre- and post-highly active antiretroviral therapy eras: a combined study of two cohorts. J Neurovirol. 2004;10(6):350–7.

    Article  PubMed  Google Scholar 

  39. Hall M, Whaley R, Robertson K, Hamby S, Wilkins J, Hall C. The correlation between neuropsychological and neuroanatomic changes over time in asymptomatic and symptomatic HIV-1-infected individuals. Neurology. 1996;46(6):1697–702.

    Article  CAS  PubMed  Google Scholar 

  40. Jakobsen J, Gyldensted C, Brun B, Bruhn P, Helweg-Larsen S, Arlien-Søborg P. Cerebral ventricular enlargement relates to neuropsychological measures in unselected AIDS patients. Acta Neurol Scand. 1989;79(1):59–62.

    Article  CAS  PubMed  Google Scholar 

  41. Paul R, Cohen R, Navia B, Tashima K. Relationships between cognition and structural neuroimaging findings in adults with human immunodeficiency virus type-1. Neurosci Biobehav Rev. 2002;26(3):353–9.

    Article  PubMed  Google Scholar 

  42. Thompson PM, Dutton RA, Hayashi KM, Lu A, Lee SE, Lee JY, et al. 3D mapping of ventricular and corpus callosum abnormalities in HIV/AIDS. NeuroImage. 2006;31(1):12–23.

    Article  PubMed  Google Scholar 

  43. Thompson PM, Dutton RA, Hayashi KM, Toga AW, Lopez OL, Aizenstein HJ, et al. Thinning of the cerebral cortex visualized in HIV/AIDS reflects CD4+ T lymphocyte decline. Proc Natl Acad Sci U S A. 2005;102(43):15647–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Becker JT, Sanders J, Madsen SK, Ragin A, Kingsley L, Maruca V, et al. Subcortical brain atrophy persists even in HAART-regulated HIV disease. Brain Imaging Behav. 2011;5(2):77–85.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ragin AB, Du H, Ochs R, Wu Y, Sammet CL, Shoukry A, et al. Structural brain alterations can be detected early in HIV infection. Neurology. 2012;79(24):2328–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chang L, Shukla DK. Chapter 18: Imaging studies of the HIV-infected brain. Handb Clin Neurol. 2018;152:229–64.

    Article  PubMed  Google Scholar 

  47. Risacher SL, Saykin AJ. Neuroimaging biomarkers of neurodegenerative diseases and dementia. Semin Neurol. 2013;33(4):386–416.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ernst T, Chang L, Jovicich J, Ames N, Arnold S. Abnormal brain activation on functional MRI in cognitively asymptomatic HIV patients. Neurology. 2002;59(9):1343–9.

    Article  CAS  PubMed  Google Scholar 

  49. Thomas JB, Brier MR, Snyder AZ, Vaida FF, Ances BM. Pathways to neurodegeneration: effects of HIV and aging on resting-state functional connectivity. Neurology. 2013;80(13):1186–93.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Davison JM, Subramaniam RM, Surasi DS, Cooley T, Mercier G, Peller PJ. FDG PET/CT in patients with HIV. AJR Am J Roentgenol. 2011;197(2):284–94.

    Article  PubMed  Google Scholar 

  51. Valcour VG, Shiramizu BT, Sithinamsuwan P, Nidhinandana S, Ratto-Kim S, Ananworanich J, et al. HIV DNA and cognition in a Thai longitudinal HAART initiation cohort: the SEARCH 001 Cohort Study. Neurology. 2009;72(11):992–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lyons JL, Uno H, Ancuta P, Kamat A, Moore DJ, Singer EJ, et al. Plasma sCD14 is a biomarker associated with impaired neurocognitive test performance in attention and learning domains in HIV infection. J Acquir Immune Defic Syndr. 2011;57(5):371–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Price RW, Epstein LG, Becker JT, Cinque P, Gisslen M, Pulliam L, et al. Biomarkers of HIV-1 CNS infection and injury. Neurology. 2007;69(18):1781–8.

    Article  CAS  PubMed  Google Scholar 

  54. Peluso MJ, Ferretti F, Peterson J, Lee E, Fuchs D, Boschini A, et al. Cerebrospinal fluid HIV escape associated with progressive neurologic dysfunction in patients on antiretroviral therapy with well controlled plasma viral load. AIDS. 2012;26(14):1765–74.

    Article  CAS  PubMed  Google Scholar 

  55. Grant I, Franklin DR Jr, Deutsch R, Woods SP, Vaida F, Ellis RJ, et al. Asymptomatic HIV-associated neurocognitive impairment increases risk for symptomatic decline. Neurology. 2014;82(23):2055–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Crum-Cianflone NF, Moore DJ, Letendre S, Poehlman Roediger M, Eberly L, Weintrob A, et al. Low prevalence of neurocognitive impairment in early diagnosed and managed HIV-infected persons. Neurology. 2013;80(4):371–9.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Cole MA, Margolick JB, Cox C, Li X, Selnes OA, Martin EM, et al. Longitudinally preserved psychomotor performance in long-term asymptomatic HIV-infected individuals. Neurology. 2007;69(24):2213–20.

    Article  CAS  PubMed  Google Scholar 

  58. Cysique LA, Vaida F, Letendre S, Gibson S, Cherner M, Woods SP, et al. Dynamics of cognitive change in impaired HIV-positive patients initiating antiretroviral therapy. Neurology. 2009;73(5):342–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Anthony IC, Ramage SN, Carnie FW, Simmonds P, Bell JE. Influence of HAART on HIV-related CNS disease and neuroinflammation. J Neuropathol Exp Neurol. 2005;64(6):529–36.

    Article  CAS  PubMed  Google Scholar 

  60. Kumar AM, Borodowsky I, Fernandez B, Gonzalez L, Kumar M. Human immunodeficiency virus type 1 RNA levels in different regions of human brain: quantification using real-time reverse transcriptase-polymerase chain reaction. J Neurovirol. 2007;13(3):210–24.

    Article  CAS  PubMed  Google Scholar 

  61. Letendre S, Marquie-Beck J, Capparelli E, Best B, Clifford D, Collier AC, et al. Validation of the CNS penetration-effectiveness rank for quantifying antiretroviral penetration into the central nervous system. Arch Neurol. 2008;65(1):65–70.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Smurzynski M, Wu K, Letendre S, Robertson K, Bosch RJ, Clifford DB, et al. Effects of central nervous system antiretroviral penetration on cognitive functioning in the ALLRT cohort. AIDS. 2011;25(3):357–65.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Caniglia EC, Cain LE, Justice A, Tate J, Logan R, Sabin C, et al. Antiretroviral penetration into the CNS and incidence of AIDS-defining neurologic conditions. Neurology. 2014;83(2):134–41.

    Article  PubMed  PubMed Central  Google Scholar 

  64. McArthur JC, Brew BJ, Nath A. Neurological complications of HIV infection. Lancet Neurol. 2005;4(9):543–55.

    Article  PubMed  Google Scholar 

  65. Sacktor N, Miyahara S, Deng L, Evans S, Schifitto G, Cohen BA, et al. Minocycline treatment for HIV-associated cognitive impairment: results from a randomized trial. Neurology. 2011;77(12):1135–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Simioni S, Cavassini M, Annoni JM, Metral M, Iglesias K, Rimbault Abraham A, et al. Rivastigmine for HIV-associated neurocognitive disorders: a randomized crossover pilot study. Neurology. 2013;80(6):553–60.

    Article  CAS  PubMed  Google Scholar 

  67. Schifitto G, Navia BA, Yiannoutsos CT, Marra CM, Chang L, Ernst T, et al. Memantine and HIV-associated cognitive impairment: a neuropsychological and proton magnetic resonance spectroscopy study. AIDS. 2007;21(14):1877–86.

    Article  CAS  PubMed  Google Scholar 

  68. Schifitto G, Yiannoutsos CT, Simpson DM, Marra CM, Singer EJ, Kolson DL, et al. A placebo-controlled study of memantine for the treatment of human immunodeficiency virus-associated sensory neuropathy. J Neurovirol. 2006;12(4):328–31.

    Article  CAS  PubMed  Google Scholar 

  69. Schifitto G, Zhang J, Evans SR, Sacktor N, Simpson D, Millar LL, et al. A multicenter trial of selegiline transdermal system for HIV-associated cognitive impairment. Neurology. 2007;69(13):1314–21.

    Article  CAS  PubMed  Google Scholar 

  70. Lescure FX, Moulignier A, Savatovsky J, Amiel C, Carcelain G, Molina JM, et al. CD8 encephalitis in HIV-infected patients receiving cART: a treatable entity. Clin Infect Dis. 2013;57(1):101–8.

    Article  CAS  PubMed  Google Scholar 

  71. Salam S, Mihalova T, Ustianowski A, et al. Relapsing CD8+ encephalitis—looking for a solution Case Reports 2016;2016:bcr2016214961. pp 1–5.

    Google Scholar 

  72. Zarkali A, Gorgoraptis N, Miller R, John L, Merve A, Thust S, et al. CD8+ encephalitis: a severe but treatable HIV-related acute encephalopathy. Pract Neurol. 2017;17(1):42–6.

    Article  PubMed  Google Scholar 

  73. Levin SN, Lyons JL. HIV and spinal cord disease. Handb Clin Neurol. 2018;152:213–27.

    Article  PubMed  Google Scholar 

  74. Hamada Y, Watanabe K, Aoki T, Arai N, Honda M, Kikuchi Y, et al. Primary HIV infection with acute transverse myelitis. Intern Med. 2011;50(15):1615–7.

    Article  PubMed  Google Scholar 

  75. Andrade P, Figueiredo C, Carvalho C, Santos L, Sarmento A. Transverse myelitis and acute HIV infection: a case report. BMC Infect Dis. 2014;14:149.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Goh C, Desmond PM, Phal PM. MRI in transverse myelitis. J Magn Reson Imaging. 2014;40(6):1267–79.

    Article  PubMed  Google Scholar 

  77. Dal Pan GJ, Glass JD, McArthur JC. Clinicopathologic correlations of HIV-1-associated vacuolar myelopathy: an autopsy-based case-control study. Neurology. 1994;44(11):2159–64.

    Article  CAS  PubMed  Google Scholar 

  78. Ernst F, Klausner F, Kleindienst W, Bartsch H, Taylor N, Trinka E. Diagnostic challenges in vacuolar myelopathy: a didactic case report. Spinal Cord Ser Cases. 2016;2:16020.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Anneken K, Fischera M, Evers S, Kloska S, Husstedt IW. Recurrent vacuolar myelopathy in HIV infection. J Infect. 2006;52(6):e181–3.

    Article  PubMed  Google Scholar 

  80. Bizaare M, Dawood H, Moodley A. Vacuolar myelopathy: a case report of functional, clinical, and radiological improvement after highly active antiretroviral therapy. Int J Infect Dis. 2008;12(4):442–4.

    Article  PubMed  Google Scholar 

  81. Fernández-Fernández FJ, de la Fuente-Aguado J, Ocampo-Hermida A, Iglesias-Castañón A. Remission of HIV-associated myelopathy after highly active antiretroviral therapy. J Postgrad Med. 2004;50(3):195–6.

    PubMed  Google Scholar 

  82. Di Rocco A. HIV myelopathy. In: Handbook of clinical neurology. HIV/AIDS and the nervous system, vol. 85. Amsterdam: Elsevier; 2007.

    Google Scholar 

  83. McCombe JA, Auer RN, Maingat FG, Houston S, Gill MJ, Power C. Neurologic immune reconstitution inflammatory syndrome in HIV/AIDS: outcome and epidemiology. Neurology. 2009;72(9):835–41.

    Article  CAS  PubMed  Google Scholar 

  84. Johnson T, Nath A. Neurological complications of immune reconstitution in HIV-infected populations. Ann N Y Acad Sci. 2010;1184:106–20.

    Article  CAS  PubMed  Google Scholar 

  85. Pérez Valero I, González-Baeza A, Montes Ramírez ML. Central nervous system penetration and effectiveness of darunavir/ritonavir monotherapy. AIDS Rev. 2014;16(2):101–8.

    PubMed  Google Scholar 

  86. Bhatia NS, Chow FC. Neurologic complications in treated HIV-1 infection. Curr Neurol Neurosci Rep. 2016;16(7):62.

    Article  PubMed  CAS  Google Scholar 

  87. Kugathasan R, Collier DA, Haddow LJ, El Bouzidi K, Edwards SG, Cartledge JD, et al. Diffuse white matter signal abnormalities on magnetic resonance imaging are associated with human immunodeficiency virus type 1 viral escape in the central nervous system among patients with neurological symptoms. Clin Infect Dis. 2017;64(8):1059–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sekiya H, Kawamoto M, Togo M, Yoshimura H, Imai Y, Kohara N. Response regarding “HIV encephalopathy due to drug resistance despite 2-year suppression of HIV viremia by cART”. Rinsho Shinkeigaku. 2015;55(6):437.

    Article  PubMed  Google Scholar 

  89. Bowen LN, Smith B, Reich D, Quezado M, Nath A. HIV-associated opportunistic CNS infections: pathophysiology, diagnosis and treatment. Nat Rev Neurol. 2016;12(11):662–74.

    Article  CAS  PubMed  Google Scholar 

  90. Ayoade F, Joel Chandransean AS. HIV-1 associated opportunistic infections, toxoplasmosis. StatPearls [Internet]. 2019.

    Google Scholar 

  91. Berger JR. Mass lesions of the brain in AIDS: the dilemmas of distinguishing toxoplasmosis from primary CNS lymphoma. AJNR Am J Neuroradiol. 2003;24(4):554–5.

    PubMed  Google Scholar 

  92. Pierce MA, Johnson MD, Maciunas RJ, Murray MJ, Allen GS, Harbison MA, et al. Evaluating contrast-enhancing brain lesions in patients with AIDS by using positron emission tomography. Ann Intern Med. 1995;123(8):594–8.

    Article  CAS  PubMed  Google Scholar 

  93. Hussain FS, Hussain NS. Clinical utility of Thallium-201 single photon emission computed tomography and cerebrospinal fluid Epstein-Barr Virus detection using polymerase chain reaction in the diagnosis of AIDS-related primary central nervous system lymphoma. Cureus. 2016;8(5):e606.

    PubMed  PubMed Central  Google Scholar 

  94. Jones CJ, Naina HV, Shen Y-MP. Treatment of primary central nervous system lymphoma in the HIV-positive patient: should we be doing more? Blood. 2013;122(21):1.

    Article  Google Scholar 

  95. Abrey LE, Batchelor TT, Ferreri AJ, Gospodarowicz M, Pulczynski EJ, Zucca E, et al. Report of an international workshop to standardize baseline evaluation and response criteria for primary CNS lymphoma. J Clin Oncol. 2005;23(22):5034–43.

    Article  PubMed  Google Scholar 

  96. Sierra del Rio M, Rousseau A, Soussain C, Ricard D, Hoang-Xuan K. Primary CNS lymphoma in immunocompetent patients. Oncologist. 2009;14(5):526–39.

    Article  CAS  PubMed  Google Scholar 

  97. Grommes C, DeAngelis LM. Primary CNS lymphoma. J Clin Oncol. 2017;35(21):2410–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Scott BJ, Douglas VC, Tihan T, Rubenstein JL, Josephson SA. A systematic approach to the diagnosis of suspected central nervous system lymphoma. JAMA Neurol. 2013;70(3):311–9.

    Article  PubMed  PubMed Central  Google Scholar 

  99. De Luca A, Antinori A, Cingolani A, Larocca LM, Linzalone A, Ammassari A, et al. Evaluation of cerebrospinal fluid EBV-DNA and IL-10 as markers for in vivo diagnosis of AIDS-related primary central nervous system lymphoma. Br J Haematol. 1995;90(4):844–9.

    Article  PubMed  Google Scholar 

  100. Moulignier A, Lamirel C, Picard H, Lebrette MG, Amiel C, Hamidi M, et al. Long-term AIDS-related PCNSL outcomes with HD-MTX and combined antiretroviral therapy. Neurology. 2017;89(8):796–804.

    Article  CAS  PubMed  Google Scholar 

  101. Offiah CE, Turnbull IW. The imaging appearances of intracranial CNS infections in adult HIV and AIDS patients. Clin Radiol. 2006;61(5):393–401.

    Article  CAS  PubMed  Google Scholar 

  102. Maschke M, Kastrup O, Diener HC. CNS manifestations of cytomegalovirus infections: diagnosis and treatment. CNS Drugs. 2002;16(5):303–15.

    Article  CAS  PubMed  Google Scholar 

  103. Silva CA, Oliveira AC, Vilas-Boas L, Fink MC, Pannuti CS, Vidal JE. Neurologic cytomegalovirus complications in patients with AIDS: retrospective review of 13 cases and review of the literature. Rev Inst Med Trop Sao Paulo. 2010;52(6):305–10.

    Article  PubMed  Google Scholar 

  104. Dodt KK, Jacobsen PH, Hofmann B, Meyer C, Kolmos HJ, Skinhøj P, et al. Development of cytomegalovirus (CMV) disease may be predicted in HIV-infected patients by CMV polymerase chain reaction and the antigenemia test. AIDS. 1997;11(3):F21–8.

    Article  CAS  PubMed  Google Scholar 

  105. Griffiths P. Cytomegalovirus infection of the central nervous system. Herpes. 2004;11(Suppl 2):95A–104A.

    PubMed  Google Scholar 

  106. Nagel MA, Gilden D. Developments in varicella zoster virus vasculopathy. Curr Neurol Neurosci Rep. 2016;16(2):12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. De Broucker T, Mailles A, Chabrier S, Morand P, Stahl J-P, group scai. Acute varicella zoster encephalitis without evidence of primary vasculopathy in a case-series of 20 patients. Eur J Clin Microbiol Infect Dis. 2012;18(8):12.

    Google Scholar 

  108. Picard O, Brunereau L, Pelosse B, Kerob D, Cabane J, Imbert JC. Cerebral infarction associated with vasculitis due to varicella zoster virus in patients infected with the human immunodeficiency virus. Biomed Pharmacother. 1997;51(10):449–54.

    Article  CAS  PubMed  Google Scholar 

  109. Gray F, Mohr M, Rozenberg F, Belec L, Lescs MC, Dournon E, et al. Varicella-zoster virus encephalitis in acquired immunodeficiency syndrome: report of four cases. Neuropathol Appl Neurobiol. 1992;18(5):502–14.

    Article  CAS  PubMed  Google Scholar 

  110. Chrétien F, Gray F, Lescs MC, Geny C, Dubreuil-Lemaire ML, Ricolfi F, et al. Acute varicella-zoster virus ventriculitis and meningo-myelo-radiculitis in acquired immunodeficiency syndrome. Acta Neuropathol. 1993;86(6):659–65.

    Article  PubMed  Google Scholar 

  111. Brown M, Scarborough M, Brink N, Manji H, Miller R. Varicella zoster virus-associated neurological disease in HIV-infected patients. Int J STD AIDS. 2001;12(2):79–83.

    Article  CAS  PubMed  Google Scholar 

  112. Grahn A, Studahl M. Varicella-zoster virus infections of the central nervous system – prognosis, diagnostics and treatment. J Infect. 2015;71(3):281–93.

    Article  PubMed  Google Scholar 

  113. Kaewpoowat Q, Salazar L, Aguilera E, Wootton SH, Hasbun R. Herpes simplex and varicella zoster CNS infections: clinical presentations, treatments and outcomes. Infection. 2016;44(3):337–45.

    Article  CAS  PubMed  Google Scholar 

  114. Cinque P, Koralnik IJ, Gerevini S, Miro JM, Price RW. Progressive multifocal leukoencephalopathy in HIV-1 infection. Lancet Infect Dis. 2009;9(10):625–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Augusto L, Neves N, Reis C, Abreu C, Sarmento A. Clinical and radiological characterization of progressive multifocal leukoencephalopathy in HIV-infected patients: a retrospective analysis and review of the literature. Acta Medica Port. 2015;28(3):286–96.

    Article  Google Scholar 

  116. Loignon M, Toma E. Treatment options for progressive multifocal leukoencephalopathy in HIV-infected persons: current status and future directions. Expert Rev Anti-Infect Ther. 2016;14(2):177–91.

    Article  CAS  PubMed  Google Scholar 

  117. White MK, Sariyer IK, Gordon J, Delbue S, Pietropaolo V, Berger JR, et al. Diagnostic assays for polyomavirus JC and progressive multifocal leukoencephalopathy. Rev Med Virol. 2016;26(2):102–14.

    Article  CAS  PubMed  Google Scholar 

  118. Alstadhaug KB, Fykse Halstensen R, Odeh F. Progressive multifocal leukoencephalopathy in a patient with systemic mastocytosis treated with cladribine. J Clin Virol. 2017;88:17–20.

    Article  PubMed  Google Scholar 

  119. Shahani L, Shah M, Tavakoli-Tabasi S. Immune reconstitution inflammatory syndrome in a patient with progressive multifocal leukoencephalopathy. BMJ Case Rep. 2015;2015: pp 1–3.

    Google Scholar 

  120. Srichatrapimuk S, Sungkanuparph S. Integrated therapy for HIV and cryptococcosis. AIDS Res Ther. 2016;13(1):42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Taramasso L, Tatarelli P, Di Biagio A. Bloodstream infections in HIV-infected patients. Virulence. 2016;7(3):320–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Warkentien T, Crum-Cianflone NF. An update on cryptococcus among HIV-infected patients. Int J STD AIDS. 2010;21(10):679–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang RJ, Miller RF, Huang L. Approach to fungal infections in human immunodeficiency virus-infected individuals: pneumocystis and beyond. Clin Chest Med. 2017;38(3):465–77.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Mourad A, Perfect JR. Present and future therapy of cryptococcus infections. J Fungi (Basel). 2018;4(3):79.

    Article  CAS  Google Scholar 

  125. Perfect JR, Dismukes WE, Dromer F, Goldman DL, Graybill JR, Hamill RJ, et al. Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the infectious diseases society of america. Clin Infect Dis. 2010;50(3):291–322.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Antinori S. New insights into HIV/AIDS-associated cryptococcosis. ISRN AIDS. 2013;2013:471363.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Centner CM, Bateman KJ, Heckmann JM. Manifestations of HIV infection in the peripheral nervous system. Lancet Neurol. 2013;12(3):295–309.

    Article  PubMed  Google Scholar 

  128. Evans SR, Ellis RJ, Chen H, Yeh TM, Lee AJ, Schifitto G, et al. Peripheral neuropathy in HIV: prevalence and risk factors. AIDS. 2011;25(7):919–28.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Benevides MLAC, Filho SB, Debona R, Bergamaschi ENC, Nunes JC. Prevalence of peripheral neuropathy and associated factors in HIV-infected patients. J Neurol Sci. 2017;375:316–20.

    Article  PubMed  Google Scholar 

  130. Ellis RJ, Rosario D, Clifford DB, McArthur JC, Simpson D, Alexander T, et al. Continued high prevalence and adverse clinical impact of human immunodeficiency virus-associated sensory neuropathy in the era of combination antiretroviral therapy: the CHARTER study. Arch Neurol. 2010;67(5):552–8.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Schleicher GK, Black A, Mochan A, Richards GA. Effect of human immunodeficiency virus on intensive care unit outcome of patients with Guillain-Barré syndrome. Crit Care Med. 2003;31(6):1848–50.

    Article  PubMed  Google Scholar 

  132. Moulignier A, Authier FJ, Baudrimont M, Pialoux G, Belec L, Polivka M, et al. Peripheral neuropathy in human immunodeficiency virus-infected patients with the diffuse infiltrative lymphocytosis syndrome. Ann Neurol. 1997;41(4):438–45.

    Article  CAS  PubMed  Google Scholar 

  133. Brew BJ. The peripheral nerve complications of human immunodeficiency virus (HIV) infection. Muscle Nerve. 2003;28(5):542–52.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph S. Kass .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goethe, E.A., Kass, N.R., Kass, J.S. (2021). Neurologic Disease in HIV Infection. In: Hasbun, MD MPH, R., Bloch, MD MPH, K.C., Bhimraj, MD, A. (eds) Neurological Complications of Infectious Diseases. Current Clinical Neurology. Humana, Cham. https://doi.org/10.1007/978-3-030-56084-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56084-3_9

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-56083-6

  • Online ISBN: 978-3-030-56084-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics