Skip to main content

Advertisement

Log in

Cerebrospinal Fluid HIV Escape from Antiretroviral Therapy

  • Central Nervous System and Cognition (SS Spudich, Section Editor)
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

CNS infection is a nearly constant facet of systemic CNS infection and is generally well controlled by suppressive systemic antiretroviral therapy (ART). However, there are instances when HIV can be detected in the cerebrospinal fluid (CSF) despite suppression of plasma viruses below the clinical limits of measurement. We review three types of CSF viral escape: asymptomatic, neuro-symptomatic, and secondary. The first, asymptomatic CSF escape, is seemingly benign and characterized by lack of discernable neurological deterioration or subsequent CNS disease progression. Neuro-symptomatic CSF escape is an uncommon, but important, entity characterized by new or progressive CNS disease that is critical to recognize clinically because of its management implications. Finally, secondary CSF escape, which may be even more uncommon, is defined by an increase of CSF HIV replication in association with a concomitant non-HIV infection, as a consequence of the local inflammatory response. Understanding these CSF escape settings not only is important for clinical diagnosis and management but also may provide insight into the CNS HIV reservoir.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Valcour V, Chalermchai T, Sailasuta N, Marovich M, Lerdlum S, Suttichom D, et al. Central nervous system viral invasion and inflammation during acute HIV infection. J Infect Dis. 2012;206(2):275–82. doi:10.1093/infdis/jis326.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Tambussi G, Gori A, Capiluppi B, Balotta C, Papagno L, Morandini B, et al. Neurological symptoms during primary human immunodeficiency virus (HIV) infection correlate with high levels of HIV RNA in cerebrospinal fluid. Clin Infect Dis Off Publ Infect Dis Soc Am. 2000;30(6):962–5. doi:10.1086/313810.

    Article  CAS  Google Scholar 

  3. Enting RH, Prins JM, Jurriaans S, Brinkman K, Portegies P, Lange JM. Concentrations of human immunodeficiency virus type 1 (HIV-1) RNA in cerebrospinal fluid after antiretroviral treatment initiated during primary HIV-1 infection. Clin Infect Dis Off Publ Infect Dis Soc Am. 2001;32(7):1095–9. doi:10.1086/319602.

    Article  CAS  Google Scholar 

  4. Conrad AJ, Schmid P, Syndulko K, Singer EJ, Nagra RM, Russell JJ, et al. Quantifying HIV-1 RNA using the polymerase chain reaction on cerebrospinal fluid and serum of seropositive individuals with and without neurologic abnormalities. J Acquir Immune Defic Syndr Hum Retrovirol Off Publ Int Retrovirol Assoc. 1995;10(4):425–35.

    Article  CAS  Google Scholar 

  5. Chiodi F, Keys B, Albert J, Hagberg L, Lundeberg J, Uhlen M, et al. Human immunodeficiency virus type 1 is present in the cerebrospinal fluid of a majority of infected individuals. J Clin Microbiol. 1992;30(7):1768–71.

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Cinque P, Vago L, Ceresa D, Mainini F, Terreni MR, Vagani A, et al. Cerebrospinal fluid HIV-1 RNA levels: correlation with HIV encephalitis. AIDS. 1998;12(4):389–94.

    Article  CAS  PubMed  Google Scholar 

  7. Staprans S, Marlowe N, Glidden D, Novakovic-Agopian T, Grant RM, Heyes M, et al. Time course of cerebrospinal fluid responses to antiretroviral therapy: evidence for variable compartmentalization of infection. AIDS. 1999;13(9):1051–61.

    Article  CAS  PubMed  Google Scholar 

  8. Yilmaz A, Svennerholm B, Hagberg L, Gisslen M. Cerebrospinal fluid viral loads reach less than 2 copies/ml in HIV-1-infected patients with effective antiretroviral therapy. Antivir Ther. 2006;11(7):833–7.

    CAS  PubMed  Google Scholar 

  9. Robertson KR, Smurzynski M, Parsons TD, Wu K, Bosch RJ, Wu J, et al. The prevalence and incidence of neurocognitive impairment in the HAART era. AIDS. 2007;21(14):1915–21. doi:10.1097/QAD.0b013e32828e4e27.

    Article  PubMed  Google Scholar 

  10. Sacktor N, Robertson K. Evolving clinical phenotypes in HIV-associated neurocognitive disorders. Curr Opin HIV AIDS. 2014;9(6):517–20. doi:10.1097/COH.0000000000000102.

    Article  CAS  PubMed  Google Scholar 

  11. Gisslen M, Fuchs D, Svennerholm B, Hagberg L. Cerebrospinal fluid viral load, intrathecal immunoactivation, and cerebrospinal fluid monocytic cell count in HIV-1 infection. J Acquir Immune Defic Syndr. 1999;21(4):271–6.

    Article  CAS  PubMed  Google Scholar 

  12. Spudich SS, Nilsson AC, Lollo ND, Liegler TJ, Petropoulos CJ, Deeks SG, et al. Cerebrospinal fluid HIV infection and pleocytosis: relation to systemic infection and antiretroviral treatment. BMC Infect Dis. 2005;5:98. doi:10.1186/1471-2334-5-98.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Stam AJ, Nijhuis M, van den Bergh WM, Wensing AM. Differential genotypic evolution of HIV-1 quasispecies in cerebrospinal fluid and plasma: a systematic review. AIDS Rev. 2013;15(3):152–61.

    PubMed  Google Scholar 

  14. Price RW, Spudich S. Antiretroviral therapy and central nervous system HIV type 1 infection. J Infect Dis. 2008;197 Suppl 3:S294–306. doi:10.1086/533419.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Chaillon A, Gianella S, Wertheim JO, Richman DD, Mehta SR, Smith DM. HIV migration between blood and cerebrospinal fluid or semen over time. J Infect Dis. 2014;209(10):1642–52. doi:10.1093/infdis/jit678.

    Article  PubMed  Google Scholar 

  16. Karlsson U, Antonsson L, Ljungberg B, Medstrand P, Esbjornsson J, Jansson M, et al. Dual R3R5 tropism characterizes cerebrospinal fluid HIV-1 isolates from individuals with high cerebrospinal fluid viral load. AIDS. 2012;26(14):1739–44. doi:10.1097/QAD.0b013e3283560791.

    Article  PubMed  Google Scholar 

  17. Schnell G, Price RW, Swanstrom R, Spudich S. Compartmentalization and clonal amplification of HIV-1 variants in the cerebrospinal fluid during primary infection. J Virol. 2010;84(5):2395–407. doi:10.1128/JVI. 01863-09.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Maslin CL, Kedzierska K, Webster NL, Muller WA, Crowe SM. Transendothelial migration of monocytes: the underlying molecular mechanisms and consequences of HIV-1 infection. Curr HIV Res. 2005;3(4):303–17.

    Article  CAS  PubMed  Google Scholar 

  19. Nottet HS, Persidsky Y, Sasseville VG, Nukuna AN, Bock P, Zhai QH, et al. Mechanisms for the transendothelial migration of HIV-1-infected monocytes into brain. J Immunol. 1996;156(3):1284–95.

    CAS  PubMed  Google Scholar 

  20. Arrildt KT, Joseph SB, Swanstrom R. The HIV-1 env protein: a coat of many colors. Curr HIV/AIDS Rep. 2012;9(1):52–63. doi:10.1007/s11904-011-0107-3. Informative review on compartmentalization from a virological point of view.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Joseph SB, Arrildt KT, Swanstrom AE, Schnell G, Lee B, Hoxie JA, et al. Quantification of entry phenotypes of macrophage-tropic HIV-1 across a wide range of CD4 densities. J Virol. 2014;88(4):1858–69. doi:10.1128/JVI. 02477-13.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Swanstrom R, Coffin J. HIV-1 pathogenesis: the virus. Cold Spring Harb Perspect Med. 2012;2(12):a007443. doi:10.1101/cshperspect.a007443.

    Article  PubMed Central  PubMed  Google Scholar 

  23. del Saz SV, Sued O, Falco V, Aguero F, Crespo M, Pumarola T, et al. Acute meningoencephalitis due to human immunodeficiency virus type 1 infection in 13 patients: clinical description and follow-up. J Neurovirol. 2008;14(6):474–9. doi:10.1080/13550280802195367.

    Article  PubMed  Google Scholar 

  24. Schnell G, Spudich S, Harrington P, Price RW, Swanstrom R. Compartmentalized human immunodeficiency virus type 1 originates from long-lived cells in some subjects with HIV-1-associated dementia. PLoS Pathog. 2009;5(4):e1000395. doi:10.1371/journal.ppat.1000395.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Soulie C, Tubiana R, Simon A, Lambert-Niclot S, Malet I, Canestri A, et al. Presence of HIV-1 R5 viruses in cerebrospinal fluid even in patients harboring R5X4/X4 viruses in plasma. J Acquir Immune Defic Syndr. 2009;51(1):60–4. doi:10.1097/QAI.0b013e31819fb903.

    Article  PubMed  Google Scholar 

  26. Spudich SS, Huang W, Nilsson AC, Petropoulos CJ, Liegler TJ, Whitcomb JM, et al. HIV-1 chemokine coreceptor utilization in paired cerebrospinal fluid and plasma samples: a survey of subjects with viremia. J Infect Dis. 2005;191(6):890–8. doi:10.1086/428095.

    Article  CAS  PubMed  Google Scholar 

  27. Parisi SG, Andreoni C, Sarmati L, Boldrin C, Buonomini AR, Andreis S, et al. HIV coreceptor tropism in paired plasma, peripheral blood mononuclear cell, and cerebrospinal fluid isolates from antiretroviral-naive subjects. J Clin Microbiol. 2011;49(4):1441–5. doi:10.1128/JCM. 02564-10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Albright AV, Shieh JT, Itoh T, Lee B, Pleasure D, O’Connor MJ, et al. Microglia express CCR5, CXCR4, and CCR3, but of these, CCR5 is the principal coreceptor for human immunodeficiency virus type 1 dementia isolates. J Virol. 1999;73(1):205–13.

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Gorry PR, Bristol G, Zack JA, Ritola K, Swanstrom R, Birch CJ, et al. Macrophage tropism of human immunodeficiency virus type 1 isolates from brain and lymphoid tissues predicts neurotropism independent of coreceptor specificity. J Virol. 2001;75(21):10073–89. doi:10.1128/JVI. 75.21.10073-10089.2001.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Koenig S, Gendelman HE, Orenstein JM, Dal Canto MC, Pezeshkpour GH, Yungbluth M, et al. Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy. Science. 1986;233(4768):1089–93.

    Article  CAS  PubMed  Google Scholar 

  31. Gisslen M, Norkrans G, Svennerholm B, Hagberg L. The effect on human immunodeficiency virus type 1 RNA levels in cerebrospinal fluid after initiation of zidovudine or didanosine. J Infect Dis. 1997;175(2):434–7.

    Article  CAS  PubMed  Google Scholar 

  32. Spudich S, Lollo N, Liegler T, Deeks SG, Price RW. Treatment benefit on cerebrospinal fluid HIV-1 levels in the setting of systemic virological suppression and failure. J Infect Dis. 2006;194(12):1686–96. doi:10.1086/508750.

    Article  CAS  PubMed  Google Scholar 

  33. Robertson KR, Robertson WT, Ford S, Watson D, Fiscus S, Harp AG, et al. Highly active antiretroviral therapy improves neurocognitive functioning. J Acquir Immune Defic Syndr. 2004;36(1):562–6.

    Article  PubMed  Google Scholar 

  34. Haas DW, Johnson BW, Spearman P, Raffanti S, Nicotera J, Schmidt D, et al. Two phases of HIV RNA decay in CSF during initial days of multidrug therapy. Neurology. 2003;61(10):1391–6.

    Article  CAS  PubMed  Google Scholar 

  35. Ellis RJ, Gamst AC, Capparelli E, Spector SA, Hsia K, Wolfson T, et al. Cerebrospinal fluid HIV RNA originates from both local CNS and systemic sources. Neurology. 2000;54(4):927–36.

    Article  CAS  PubMed  Google Scholar 

  36. Churchill M, Nath A. Where does HIV hide? A focus on the central nervous system. Curr Opin HIV AIDS. 2013;8(3):165–9. doi:10.1097/COH.0b013e32835fc601.

    Article  CAS  PubMed  Google Scholar 

  37. Cinque P, Presi S, Bestetti A, Pierotti C, Racca S, Boeri E, et al. Effect of genotypic resistance on the virological response to highly active antiretroviral therapy in cerebrospinal fluid. AIDS Res Hum Retrovir. 2001;17(5):377–83. doi:10.1089/088922201750102409.

    Article  CAS  PubMed  Google Scholar 

  38. Dahl V, Peterson J, Fuchs D, Gisslen M, Palmer S, Price RW. Low levels of HIV-1 RNA detected in the cerebrospinal fluid after up to 10 years of suppressive therapy are associated with local immune activation. AIDS. 2014;28(15):2251–8. doi:10.1097/QAD.0000000000000400.

    Article  CAS  PubMed  Google Scholar 

  39. Letendre S, Marquie-Beck J, Capparelli E, Best B, Clifford D, Collier AC, et al. Validation of the CNS penetration-effectiveness rank for quantifying antiretroviral penetration into the central nervous system. Arch Neurol. 2008;65(1):65–70. doi:10.1001/archneurol.2007.31.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Letendre SL, Ellis RJ, Ances BM, McCutchan JA. Neurologic complications of HIV disease and their treatment. Top HIV Med Publ Int AIDS Soc, USA. 2010;18(2):45–55.

    Google Scholar 

  41. Yilmaz A, Izadkhashti A, Price RW, Mallon PW, De Meulder M, Timmerman P, et al. Darunavir concentrations in cerebrospinal fluid and blood in HIV-1-infected individuals. AIDS Res Hum Retrovir. 2009;25(4):457–61. doi:10.1089/aid.2008.0216.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Croteau D, Rossi SS, Best BM, Capparelli E, Ellis RJ, Clifford DB, et al. Darunavir is predominantly unbound to protein in cerebrospinal fluid and concentrations exceed the wild-type HIV-1 median 90 % inhibitory concentration. J Antimicrob Chemother. 2013;68(3):684–9. doi:10.1093/jac/dks441.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Calcagno A, Yilmaz A, Cusato J, Simiele M, Bertucci R, Siccardi M, et al. Determinants of darunavir cerebrospinal fluid concentrations: impact of once-daily dosing and pharmacogenetics. AIDS. 2012;26(12):1529–33. doi:10.1097/QAD.0b013e3283553619.

    Article  CAS  PubMed  Google Scholar 

  44. Letendre SL, Mills AM, Tashima KT, Thomas DA, Min SS, Chen S, et al. ING116070: a study of the pharmacokinetics and antiviral activity of dolutegravir in cerebrospinal fluid in HIV-1-infected, antiretroviral therapy-naive subjects. Clin Infect Dis Off Publ Infect Dis Soc Am. 2014;59(7):1032–7. doi:10.1093/cid/ciu477.

    Article  Google Scholar 

  45. Eden A, Fuchs D, Hagberg L, Nilsson S, Spudich S, Svennerholm B, et al. HIV-1 viral escape in cerebrospinal fluid of subjects on suppressive antiretroviral treatment. J Infect Dis. 2010;202(12):1819–25. doi:10.1086/657342. Shows the proportion of asymptomatic CSF viral escape in a group of ART-treated patients with suppressed systemic HIV replication. It also shows the association between CSF viral escape and intrathecal immune activation.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Edén A AL, Fuchs D, Hagberg L, Nilsson S, Svennerholm B, Yilmaz A, Zetterberg H, Gisslén M. Cerebrospinal fluid viral blips and persistent escape in HIV-infected patients on ART. Topics in antiviral medicine. 2014;22(2):(e–1):210.

  47. Siliciano JD, Kajdas J, Finzi D, Quinn TC, Chadwick K, Margolick JB, et al. Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat Med. 2003;9(6):727–8. doi:10.1038/nm880.

    Article  CAS  PubMed  Google Scholar 

  48. Imaz A, Cayuela N, Niubo J, Tiraboschi JM, Izquierdo C, Cabellos C, et al. Short communication: focal encephalitis related to viral escape and resistance emergence in cerebrospinal fluid in a patient on lopinavir/ritonavir monotherapy with plasma HIV-1 RNA suppression. AIDS Res Hum Retrovir. 2014;30(10):984–7. doi:10.1089/AID.2014.0014.

    Article  CAS  PubMed  Google Scholar 

  49. Gutmann C, Cusini A, Gunthard HF, Fux C, Hirschel B, Decosterd LA, et al. Randomized controlled study demonstrating failure of LPV/r monotherapy in HIV: the role of compartment and CD4-nadir. AIDS. 2010;24(15):2347–54. doi:10.1097/QAD.0b013e32833db9a1. Reports rebounds of HIV replication in CSF in association with neurological disease in patients failing a LPV/r monotherapy within a randomized clinical trial.

    CAS  PubMed  Google Scholar 

  50. Bierhoff M, Boucher CA, Fibriani A, Ten Kate RW. Ongoing HIV replication in cerebrospinal fluid under successful monotherapy. Antivir Ther. 2013;18(4):641–3. doi:10.3851/IMP2530.

    Article  PubMed  Google Scholar 

  51. Mangioni D, Muscatello A, Sabbatini F, Soria A, Rossi M, Bisi L, et al. A case of cerebrospinal fluid viral escape on a dual antiretroviral regimen: worth the risk? Clin Infect Dis Off Publ Infect Dis Soc Am. 2014;59(11):1655–6. doi:10.1093/cid/ciu679.

    Article  Google Scholar 

  52. Katlama C, Valantin MA, Algarte-Genin M, Duvivier C, Lambert-Niclot S, Girard PM, et al. Efficacy of darunavir/ritonavir maintenance monotherapy in patients with HIV-1 viral suppression: a randomized open-label, noninferiority trial, MONOI-ANRS 136. AIDS. 2010;24(15):2365–74. doi:10.1097/QAD.0b013e32833dec20.

    CAS  PubMed  Google Scholar 

  53. Vernazza P, Daneel S, Schiffer V, Decosterd L, Fierz W, Klimkait T, et al. The role of compartment penetration in PI-monotherapy: the Atazanavir-Ritonavir Monomaintenance (ATARITMO) Trial. AIDS. 2007;21(10):1309–15. doi:10.1097/QAD.0b013e32814e6b1c.

    Article  CAS  PubMed  Google Scholar 

  54. Santos JR, Munoz-Moreno JA, Molto J, Prats A, Curran A, Domingo P, et al. Virological efficacy in cerebrospinal fluid and neurocognitive status in patients with long-term monotherapy based on lopinavir/ritonavir: an exploratory study. PLoS ONE. 2013;8(7):e70201. doi:10.1371/journal.pone.0070201.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Estebanez M, Stella-Ascariz N, Mingorance J, Perez-Valero I, Gonzalez-Baeza A, Bayon C, et al. A comparative study of neurocognitively impaired patients receiving protease inhibitor monotherapy or triple-drug antiretroviral therapy. J Acquir Immune Defic Syndr. 2014;67(4):419–23. doi:10.1097/QAI.0000000000000337.

    Article  CAS  PubMed  Google Scholar 

  56. Ferretti F, Gianotti N, Lazzarin A, Cinque P. Central nervous system HIV infection in “less-drug regimen” antiretroviral therapy simplification strategies. Semin Neurol. 2014;34(1):78–88. doi:10.1055/s-0034-1372345.

    Article  PubMed  Google Scholar 

  57. Canestri A, Lescure FX, Jaureguiberry S, Moulignier A, Amiel C, Marcelin AG, et al. Discordance between cerebral spinal fluid and plasma HIV replication in patients with neurological symptoms who are receiving suppressive antiretroviral therapy. Clin Infect Dis Off Publ Infect Dis Soc Am. 2010;50(5):773–8. doi:10.1086/650538. The first published series of cases of symptomatic CSF viral escape.

    Article  Google Scholar 

  58. Peluso MJ, Ferretti F, Peterson J, Lee E, Fuchs D, Boschini A, et al. Cerebrospinal fluid HIV escape associated with progressive neurologic dysfunction in patients on antiretroviral therapy with well controlled plasma viral load. AIDS. 2012;26(14):1765–74. doi:10.1097/QAD.0b013e328355e6b2. An additional detailed series of cases of symptomatic CSF viral escape.

    Article  CAS  PubMed  Google Scholar 

  59. Bingham R, Ahmed N, Rangi P, Johnson M, Tyrer M, Green J. HIV encephalitis despite suppressed viraemia: a case of compartmentalized viral escape. Int J STD AIDS. 2011;22(10):608–9. doi:10.1258/ijsa.2011.010507.

    Article  CAS  PubMed  Google Scholar 

  60. Bogoch II, Davis BT, Venna N. Reversible dementia in a patient with central nervous system escape of human immunodeficiency virus. J Infect. 2011;63(3):236–9. doi:10.1016/j.jinf.2011.05.011.

    Article  PubMed  Google Scholar 

  61. Khoury MN, Tan CS, Peaslee M, Koralnik IJ. CSF viral escape in a patient with HIV-associated neurocognitive disorder. J Neurovirol. 2013;19(4):402–5. doi:10.1007/s13365-013-0175-9.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Pasquet A, Ajana F, Melliez H, Giurca C, Poissy J, Yazdanpanah Y. Central nervous system HIV replication and HIV-related pachymeningitis in a patient on protease inhibitor monotherapy despite an undetectable plasma viral load. AIDS. 2012;26(13):1726–8. doi:10.1097/QAD.0b013e32835646fb.

    Article  PubMed  Google Scholar 

  63. Tamarit Mdel P, Quereda C, Gonzalez-Rozas M, Corral I, Casado JL. HIV type 1 viral encephalitis after development of viral resistance to plasma suppressive antiretroviral therapy. AIDS Res Hum Retrovir. 2012;28(1):83–6. doi:10.1089/AID.2011.0020.

    Article  PubMed  Google Scholar 

  64. van Lelyveld SF, Nijhuis M, Baatz F, Wilting I, van den Bergh WM, Kurowski M, et al. Therapy failure following selection of enfuvirtide-resistant HIV-1 in cerebrospinal fluid. Clin Infect Dis Off Publ Infect Dis Soc Am. 2010;50(3):387–90. doi:10.1086/649874.

    Article  Google Scholar 

  65. Wendel KA, McArthur JC. Acute meningoencephalitis in chronic human immunodeficiency virus (HIV) infection: putative central nervous system escape of HIV replication. Clin Infect Dis Off Publ Infect Dis Soc Am. 2003;37(8):1107–11. doi:10.1086/378300.

    Article  Google Scholar 

  66. Tucker KA, Robertson KR, Lin W, Smith JK, An H, Chen Y, et al. Neuroimaging in human immunodeficiency virus infection. J Neuroimmunol. 2004;157(1–2):153–62. doi:10.1016/j.jneuroim.2004.08.036.

    Article  CAS  PubMed  Google Scholar 

  67. Worthington MG, Ross JJ. Aseptic meningitis and acute HIV syndrome after interruption of antiretroviral therapy: implications for structured treatment interruptions. AIDS. 2003;17(14):2145–6. doi:10.1097/01.aids.0000088191.77946.3d.

    Article  PubMed  Google Scholar 

  68. Gray F, Lescure FX, Adle-Biassette H, Polivka M, Gallien S, Pialoux G, et al. Encephalitis with infiltration by CD8+ lymphocytes in HIV patients receiving combination antiretroviral treatment. Brain Pathol. 2013;23(5):525–33. doi:10.1111/bpa.12038. Detailed neuropathological description of cases with CD8+ cell encephalitis.

    Article  PubMed  Google Scholar 

  69. Lescure FX, Moulignier A, Savatovsky J, Amiel C, Carcelain G, Molina JM, et al. CD8 encephalitis in HIV-infected patients receiving cART: a treatable entity. Clin Infect Dis Off Publ Infect Dis Soc Am. 2013;57(1):101–8. doi:10.1093/cid/cit175.

    Article  CAS  Google Scholar 

  70. Langford TD, Letendre SL, Marcotte TD, Ellis RJ, McCutchan JA, Grant I, et al. Severe, demyelinating leukoencephalopathy in AIDS patients on antiretroviral therapy. AIDS. 2002;16(7):1019–29. Detailed neuropathological description of HIV leukoencephalitis cases observed in the early ART era, mostly associated with systemic virological failure and characterized by brain inflammation.

    Article  PubMed Central  PubMed  Google Scholar 

  71. de Almeida SM, Bhatt A, Riggs PK, Durelle J, Lazzaretto D, Marquie-Beck J, et al. Cerebrospinal fluid human immunodeficiency virus viral load in patients with neurosyphilis. J Neurovirol. 2010;16(1):6–12. doi:10.3109/13550280903514776.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Moling O, Rossi P, Rimenti G, Vedovelli C, Mian P. Varicella-zoster virus meningitis and cerebrospinal fluid HIV RNA. Scand J Infect Dis. 2001;33(5):398–9.

    Article  CAS  PubMed  Google Scholar 

  73. Falcone EL, Adegbulugbe AA, Sheikh V, Imamichi H, Dewar RL, Hammoud DA, et al. Cerebrospinal fluid HIV-1 compartmentalization in a patient with AIDS and acute varicella-zoster virus meningomyeloradiculitis. Clin Infect Dis Off Publ Infect Dis Soc Am. 2013;57(5):e135–42. doi:10.1093/cid/cit356.

    Article  Google Scholar 

  74. Bremell D, Sall C, Gisslen M, Hagberg L. Lyme neuroborreliosis in HIV-1 positive men successfully treated with oral doxycycline: a case series and literature review. J Med Case Rep. 2011;5:465. doi:10.1186/1752-1947-5-465.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Francesca Ferretti declares payment from Bristol-Myers Squibb for educational presentation and travel expenses.

Magnus Gisslen declares payment for board memberships on the Scientific Advisory Boards from Gilead, Janssen, BMS, MSD, and GSK/ViiV, and honoraria payment for lectures from BMS, Gilead, Janssen, AbbVie, and GSK/ViiV, and declares travel expenses paid for by Gilead.

Paola Cinque declares a grant from Gilead Sciences and payment for educational presentation, board membership or travel expenses from AbbVie, Bristol-Myers-Squibb, Gilead, Janssen, Viiv, and Merck.

Richard W. Price declares payment from a one-time consultation meeting with Merck & Co., an honorarium for a talk at a scientific meeting with AbbVie, and travel expenses covered by AbbVie.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Cinque.

Additional information

This article is part of the Topical Collection on Central Nervous System and Cognition

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferretti, F., Gisslen, M., Cinque, P. et al. Cerebrospinal Fluid HIV Escape from Antiretroviral Therapy. Curr HIV/AIDS Rep 12, 280–288 (2015). https://doi.org/10.1007/s11904-015-0267-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-015-0267-7

Keywords

Navigation