Skip to main content

Finite Element Method Study of the Protection Damping Elements Dynamic Deformation

  • Chapter
  • First Online:
Dynamics, Strength of Materials and Durability in Multiscale Mechanics

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 137))

Abstract

The problem of dynamic deformation of structures damping elements made of metal hollow spheres (MHS) filler is considered. MHS filler is a porous material obtained by joining homogeneous metal hollow spheres. The MHS filler is modeled by a continually homogeneous, orthotropic, physically nonlinear medium. The solution of the determining equation system is based on the finite element method moment scheme and the explicit finite-difference time integration “cross” type scheme. The problem of stability loss and supercritical behavior of a titanium spherical shell under compression loading between two non-deformable plates approaching with a constant velocity is considered. According to the problem numerical solution results, the dependence of the contact force on the plates movement was built, on the basis of which the deformation diagram and the parameters of the MHS filler mathematical model of the were determined. The problem of plate falling on a spherical shells’ set located on a fixed base is solved using the obtained data. As it is shown by the calculation results analysis, the developed computational model allows to determine with acceptable accuracy the integral deformation parameters of the MHS filler (contact forces, displacements, displacement velocities) and to evaluate its damping properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abali, B. E., Muller, W., & dell’Isola, F. (2017). Theory and computation of higher gradient elasticity theories based on action principles. Archive of Applied Mechanics, 87, 1495–1510.

    Article  ADS  Google Scholar 

  • Alibert, J. J., Seppecher, P., & dell’Isola, F. (2003). Truss modular beams with deformation energy depending on higher displacement gradients. Mathematics and Mechanics of Solids, 8, 51–73.

    Article  MathSciNet  Google Scholar 

  • Auffray, N., dell’Isola, F., Eremeyev, V., Madeo, A., & Rosi, G. (2013). Analytical continuum mechanics à la Hamilton-Piola: Least action principle for second gradient continua and capillary fluids. Mathematics and Mechanics of Solids.

    Google Scholar 

  • Banhart, J. (2001). Manufacture, characterization and application of cellular metals and metal foams. Progress in Materials Science., 46, 559–632.

    Article  Google Scholar 

  • Barchiesi, E., Spagnuolo, M., & Placidi, L. (2018) Mechanical metamaterials: A state of the art. Mathematics and Mechanics of Solids.

    Google Scholar 

  • Bathe, K. Y. (1996). Finite element procedures. Upper Saddle River, NJ: «Prentice Hall» 1037p.

    Google Scholar 

  • Baumeister, J., & Banhart, J. (1998). Deformation characteristics of metal foam. Journal of Materials Science, 33, 1431–1440.

    Article  ADS  Google Scholar 

  • Bazhenov, V. G., Kibets, A. I., & Tsvetkova, I. N. (1995). Numerical simulation of transient processes of shock interaction of deformable elements of constructions. Problemy Mashinostroeniia I Nadezhnosti Mashin, 2, 20–26.

    Google Scholar 

  • Bazhenov, V. G., Gonik, E. G., Kibets, A. I., & Shoshin, D. V. (2014). Stability and limit states of elastoplastic spherical shells under static and dynamic loading. Journal of Applied Mechanics and Technical Physics, 55(1), 8–15.

    Article  ADS  MathSciNet  Google Scholar 

  • Bazhenov, V. G., Demareva, A. V., Zhestkov, M. N., & Kibets, A. I. (2016a). Special features of numerical simulation for elastic-plastic buckling of hemispherical shells under loading with the rigid indenter. PNRPU Mechanics Bulletin, 2, 22–33.

    Article  Google Scholar 

  • Bazhenov, V. G., Demareva, A. V., Baranova, M. S., Kibets, A. I., Ryabov, A. A., & Romanov, V. I. (2016b). Finite-element modeling of large elastoplastic deformations of a spherical shell in a scaphander under an overload pulse. Problems of Strenght and Plasticity, 78(3), 322–332.

    Article  Google Scholar 

  • Caty, O., Maire, E., Douillard, T., Bertino, P., Dejaeger, R., & Bouchet, R. (2009). Experimental determination of the macroscopic fatigue properties of metal hollow sphere structures. Materials Letters, 63, 1131–1134.

    Article  Google Scholar 

  • Davies, G. J., & Zhen, S. (1983). Metallic foams-their production, properties and applications. Journal of Materials Science, 18(7), 1899–1911.

    Article  ADS  Google Scholar 

  • dell’Isola, F., Seppecher, P., & Madeo, A. (2012). How contact interactions may depend on the shape of Cauchy cuts in Nth gradient continua: Approach “à la D’Alembert.” Zeitschrift Für Angewandte Mathematik Und Physik, 63, 1119–1141.

    Article  ADS  Google Scholar 

  • dell’Isola, F., Della, C. A., & Giorgio, I. (2017). Higher-gradient continua: The legacy of Pio-la, Mindlin, Sedov and Toupin and some future research perspectives. Mathematics and Mechanics of Solids, 22, 852–872.

    Article  MathSciNet  Google Scholar 

  • dell’Isola, F., Seppecher, P., Alibert, J. J., Lekszycki, T., Grygoruk, R., Pawlikowski, M., et al. (2019). Pantographic metamaterials: An example of mathematically driven design and of its technological challenges. Continuum Mechanics and Thermodynamics, 31(4), 851–884.

    Article  ADS  MathSciNet  Google Scholar 

  • dell'Isola, F., & Batra, R. (1997). Saint-Venant's problem for porous linear elastic materials. Journal of Elasticity, 47(1).

    Google Scholar 

  • dell'Isola, F., Guarascio, M., & Hutter, K. (2000). A variational approach for the deformation of a saturated porous solid. A second-gradient theory extending Terzaghi's effective stress principle. Archive of Applied Mechanics, 70(5).

    Google Scholar 

  • dell'Isola, F., Madeo, A., & Seppecher, P. (2009). Boundary conditions at fluid-permeable interfaces in porous media: A variational approach. International Journal of Solids and Structures, 246(17).

    Google Scholar 

  • dell’Isola, F., Andreaus, U., & Placidi, L. (2015). At the origins and in the vanguard of peri-dynamics, non-local and higher gradient continuum mechanics. An underestimated and still topical contribution of Gabrio Piola. Mathematics and Mechanics of Solids, 20, 887–928.

    Article  MathSciNet  Google Scholar 

  • Del Vescovo, D., & Giorgio, I. (2014). Dynamic problems for metamaterials: Review of existing models and ideas for further research. International Journal of Engineering Science, 80, 153–172.

    Article  MathSciNet  Google Scholar 

  • Demareva, A. V., Ivanov, V. A., Zhestkov, M. N., Kibets, A. I., Kibets, Yu. I., & Shoshin, D. V. (2014). Numerically analyzing dynamic problems of deformation of multilayered shells with a porous filling. Problems of Strenght and Plasticity, 76(1), 46–54.

    Article  Google Scholar 

  • Gibson, L. J., & Ashby, M. F. (1997). Cellular solids: Structure and properties (p. 528). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Giorgio, I. (2016). Numerical identification procedure between a micro-Cauchy model and a macro-second gradient model for planar pantographic structures. Zeitschrift für an-gewandte Mathematik und Physik.

    Google Scholar 

  • Golovanov, A. I., Tiuleneva, O. N., & Shigabutdinov, A. F. (2006). The finite element method in statics and dynamics of thin-walled structures (p. 391). Moscow: Fizmatlit.

    Google Scholar 

  • Hallquist, J. O. (1998). LS-DYNA: Theoretical manual (p. 498p). Livermore: Livermore Software Technology Corporation.

    Google Scholar 

  • Liu YB, Wu HX, Wang B (2012) Gradient design of metal hollow sphere (MHS) foams with density gradients. Composites Part B: Engineering 43, 1346–1352.

    Google Scholar 

  • Madeo, A., dell'Isola, F., & Darve, F. (2013). A continuum model for deformable, second gradient porous media partially saturated with compressible fluids. Journal of the Mechanics and Physics of Solids, 61(11).

    Google Scholar 

  • Placidi, L., Barchiesi, E., Turco, E., & Rizzi, N.L. (2016). A review on 2D models for the description of pantographic fabrics. Zeitschrift für angewandte Mathematik und Physik, 67.

    Google Scholar 

  • Ramchandra, S., Ramamurty, U., & Sudheer Kumar, P. (2003). Impact energy absorption in an Al foam at low velocities. Scripta Materialia, 49(8), 741–745.

    Article  Google Scholar 

  • Ruan, H. H., Gao, Z. Y., & Yu, T. X. (2006). Crushing of thin-walled spheres and sphere arrays. International Journal of Mechanical Sciences., 48, 117–133.

    Article  Google Scholar 

  • Sciarra, G., dell'Isola, D., & Coussy, O. (2007). Second gradient poromechanics. International Journal of Solids and Structures, 44(20).

    Google Scholar 

  • Thornton, P. H., & Magee, C. L. (1975). The deformation of aluminium foams. Metallurgical and Materials Transactions A, 6(6), 1253–1263.

    Article  Google Scholar 

  • Volkov, I. A., & Korotkikh, Yu. G. (2008). State equation for Viscoelastoplastic media with defects (p. 424). Moscow: FIZMATLIT.

    Google Scholar 

Download references

Acknowledgements

The work is financially supported by the Federal Targeted Program for Research and Development in Priority Areas of Development of the Russian Scientific and Technological Complex for 2014–2020 under the contract No. 075-15-2019-1702 (unique identifier RFMEFI60519X0183).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandr I. Kibets .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Demareva, A.V., Kibets, A.I., Skobeeva, M.V., Savichin, O.G., Lyakhov, A.F. (2021). Finite Element Method Study of the Protection Damping Elements Dynamic Deformation. In: dell'Isola, F., Igumnov, L. (eds) Dynamics, Strength of Materials and Durability in Multiscale Mechanics. Advanced Structured Materials, vol 137. Springer, Cham. https://doi.org/10.1007/978-3-030-53755-5_4

Download citation

Publish with us

Policies and ethics