Skip to main content

Microplane Modeling for Inelastic Responses of Shape Memory Alloys

  • Chapter
  • First Online:
Dynamics, Strength of Materials and Durability in Multiscale Mechanics

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 137))

  • 374 Accesses

Abstract

Shape memory alloys (SMAs) are a class of smart materials. In these alloys, an inelastically deformed configuration can recover to their original shape upon heating to a specific temperature. One of the main challenges in modeling these materials under multiaxial loadings is that the so-called normality rule does not necessarily hold true as the direction of inelastic strain rate vector does not coincide with the deviatoric stress vector for nonproportional loadings. Therefore, any generalization of 1-D constitutive equations to 3-D cases based on J2 or J2-J3 plasticity is valid only for proportional loadings. Microplane modeling approach is a promising candidate for overcoming this challenge since 1-D constitutive models in this method are generalized to 3-D through a particular homogenization technique. All the material parameters can be obtained using uniaxial tension–compression tests. These features  make microplane theory an efficient approach in constitutive modeling of shape memory alloys. In this chapter, first, the basic concepts of microplane theory are reviewed. Then, a microplane model for SMAs along with an efficient technique in numerical implementation of the constitutive equations is presented. Introduction of tension–compression asymmetry is further discussed and verified. Finally, modeling of plastic and cyclic response is explained, and the theoretical results are validated against experimental findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alibert, J. J., Seppecher, P., & dell’Isola, F. (2003). Truss modular beams with deformation energy depending on higher displacement gradients. Mathematics and Mechanics of Solids, 8(1), 51–73.

    Article  MathSciNet  MATH  Google Scholar 

  • Badel, P.-B., & Leblond, J.-B. (2003). A note on integration schemes for the microplane model of the mechanical behaviour of concrete. Communications in Numerical Methods in Engineering, 20(1), 75–81.

    Article  MATH  Google Scholar 

  • Badnava, H., Mashayekhi, M., & Kadkhodaei, M. (2016). An anisotropic gradient damage model based on microplane theory. International Journal of Damage Mechanics, 25(3), 336–357.

    Article  Google Scholar 

  • Barchiesi, E., Spagnuolo, M., & Placidi, L. (2019). Mechanical metamaterials: a state of the art. Mathematics and Mechanics of Solids, 24(1), 212–234.

    Article  MathSciNet  MATH  Google Scholar 

  • Bažant, Z. P. (1984). Microplane model for strain controlled inelastic behavior. In C. S. Desai & R. H. Gallagher (Eds.), Mechanics of Engineering Materials (pp. 45–59) Wiley.

    Google Scholar 

  • Bažant, Z. P., & Di Luzio, G. (2004). Nonlocal microplane model with strain-softening yield limits. International Journal of Solids and Structures, 41(24–25), 7209–7240.

    Article  MATH  Google Scholar 

  • Bažant, P., & Oh, B. (1986). Efficient numerical integration on the surface of a sphere. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 66(1), 37–49.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bažant, Z. P., & Prat, P. C. (1987). Creep of anisotropic clay: New microplane model. Journal of Engineering Mechanics, 113(7), 1050–1064.

    Article  Google Scholar 

  • Bažant, Z. P., & Prat, C. P. (1988a). Microplane model for brittle-plastic material: I. Theory. Journal of Engineering Mechanics, 114(10), 1672–1688.

    Article  Google Scholar 

  • Bažant, Z., & Prat, P. (1988b). Microplane model for brittle plastic material: II. Verification. Journal of Engineering Mechanics, 114(10), 1689–1699.

    Article  Google Scholar 

  • Bažant, Z. P., Xiang, Y., & Prat, P. C. (1996). Microplane model for concrete. I: Stress-strain boundaries and finite strain. Journal of Engineering Mechanics, 122(3), 245–254.

    Google Scholar 

  • Bažant, Z. P., & Zi, G. (2003). Microplane constitutive model for porous isotropic rocks. International Journal for Numerical and Analytical Methods in Geomechanics, 27(1), 25–47.

    Article  ADS  MATH  Google Scholar 

  • Bažant, Z. P., et al. (2000a). Fracturing rate effect and creep in microplane model for dynamics. Journal of Engineering Mechanics, 126(9), 962–970.

    Article  Google Scholar 

  • Bažant, Z. P., et al. (2000b). Large-strain generalization of microplane model for concrete and application. Journal of engineering mechanics, 126(9), 971–980.

    Article  Google Scholar 

  • Brinson, L. C. (1993). One-dimensional constitutive behavior of shape memory alloys: Thermomechanical derivation with non-constant material functions and redefined martensite internal variable. Journal of Intelligent Material Systems and Structures, 4(2), 229–242.

    Article  Google Scholar 

  • Brocca, M., & Bažant, Z. P. (2000). Microplane model and metal plasticity. ASME Applied Mechanics Reviews, 53(10), 265–281.

    Article  ADS  Google Scholar 

  • Brocca, M., Brinson, L., & Bažant, Z. (2002). Three-dimensional constitutive model for shape memory alloys based on microplane model. Journal of the Mechanics and Physics of Solids, 50(5), 1051–1077.

    Article  ADS  MATH  Google Scholar 

  • Caner, F. C., & Carol, I. (2006). Microplane constitutive model and computational framework for blood vessel tissue. Journal of Biomechanical Engineering, 128(3), 419–427.

    Article  Google Scholar 

  • Caner, F. C., de Carlos Blasco, V., & Egido, M. G. (2019). Microplane models for elasticity and inelasticity of engineering materials. In Handbook of nonlocal continuum mechanics for materials and structures (pp. 1065–1097). Springer.

    Google Scholar 

  • Caner, F. C., et al. (2007). Hyperelastic anisotropic microplane constitutive model for annulus fibrosus. Journal of Biomechanical Engineering, 129(5), 632–641.

    Article  Google Scholar 

  • Carol, I., & Bazant, Z. P. (1997). Damage and plasticity in microplane theory. International Journal of Solids and Structures, 34(29), 3807–3835.

    Article  MATH  Google Scholar 

  • Carol, I., Bažant, Z. P., & Prat, P. C. (1991). Geometric damage tensor based on microplane model. Journal of engineering mechanics, 117(10), 2429–2448.

    Article  Google Scholar 

  • Carol, I., Jirásek, M., & Bažant, Z. P. (2004). A framework for microplane models at large strain, with application to hyperelasticity. International Journal of Solids and Structures, 41(2), 511–557.

    Article  MATH  Google Scholar 

  • Chang, K.-T., & Sture, S. (2006). Microplane modeling of sand behavior under non-proportional loading. Computers and Geotechnics, 33(3), 177–187.

    Article  Google Scholar 

  • Chatti, M., et al. (2019). Modelling of the viscoelastic behaviour with damage induced anisotropy of a plastic-bonded explosive based on the microplane approach. International Journal of Solids and Structures, 168, 13–25.

    Article  Google Scholar 

  • De Angelo, M., Spagnuolo, M., D’Annibale, F., Pfaff, A., Hoschke, K., Misra, A., et al. (2019). The macroscopic behavior of pantographic sheets depends mainly on their microstructure: experimental evidence and qualitative analysis of damage in metallic specimens. Continuum Mechanics and Thermodynamics, 31(4), 1181–1203.

    Google Scholar 

  • Dean, A., et al. (2016). A thermodynamically consistent framework to couple damage and plasticity microplane-based formulations for fracture modeling: development and algorithmic treatment. International Journal of Fracture, 203(1–2), 115–134.

    Google Scholar 

  • dell’Isola, F., Giorgio, I., Pawlikowski, M., & Rizzi, N. L. (2016). Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 472(2185), 20150790.

    Article  ADS  Google Scholar 

  • Etse, G., Nieto, M., & Steinmann, P. (2003). A micropolar microplane theory. International Journal of Engineering Science, 41(13–14), 1631–1648.

    Article  MathSciNet  MATH  Google Scholar 

  • Huang, L. C., et al. (2017). Numerical aspects of microplane constitutive models for concrete. Applied Mathematical Modelling, 41, 530–548.

    Article  MathSciNet  MATH  Google Scholar 

  • Indriyantho, B. R., Zreid, I., & Kaliske, M. (2019). Finite strain extension of a gradient enhanced microplane damage model for concrete at static and dynamic loading. Engineering Fracture Mechanics, 216.

    Google Scholar 

  • Jalalpour, A., et al. (2019). On the effects of numerical integration on accuracy of microplane modeling of shape memory alloys, 24ème Congrès Français de Mécanique. France: Brest.

    Google Scholar 

  • Jin, C., et al. (2016). Elastic microplane formulation for transversely isotropic materials. Journal of Applied Mechanics, 84(1).

    Google Scholar 

  • Kadkhodaei, M., et al. (2007a). Modeling of shape memory alloys based on microplane theory. Journal of Intelligent Material Systems and Structures, 19(5), 541–550.

    Article  Google Scholar 

  • Kadkhodaei, M., et al. (2007b). Microplane modelling of shape memory alloys. Physica Scripta, T129, 329–334.

    Article  ADS  Google Scholar 

  • Karamooz Ravari, M. R., Kadkhodaei, M., & Ghaei, A. (2015). A microplane constitutive model for shape memory alloys considering tension–compression asymmetry. Smart Materials and Structures, 24(7).

    Google Scholar 

  • Karamooz-Ravari, M. R., & Shahriari, B. (2017). Numerical implementation of the microplane constitutive model for shape memory alloys. In Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications.

    Google Scholar 

  • Karamooz-Ravari, M. R., et al. (2018). Modeling the cyclic shape memory and superelasticity of selective laser melting fabricated NiTi. International Journal of Mechanical Sciences, 138–139, 54–61.

    Article  Google Scholar 

  • Kirane, K., Su, Y., & Bažant, Z. P. (2015). Strain-rate-dependent microplane model for high-rate comminution of concrete under impact based on kinetic energy release theory. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471(2182).

    Google Scholar 

  • Kuhl, E., et al. (2001). Microplane modelling and particle modelling of cohesive-frictional materials. In P. A. Vermeer, et al. (Eds.) Continuous and Discontinuous Modelling of Cohesive-Frictional Materials (pp. 31–46). Berlin, Heidelberg: Springer Berlin Heidelberg.

    Google Scholar 

  • Kuhl, E., & Ramm, E. (1998). On the linearization of the microplane model. Mechanics of Cohesive-frictional Materials, 3, 343–364.

    Article  Google Scholar 

  • Leukart, M., & Ramm, E. (2003). A comparison of damage models formulated on different material scales. Computational Materials Science, 28(3–4), 749–762.

    Article  Google Scholar 

  • Leukart, M., & Ramm, E. (2006). Identification and Interpretation of Microplane Material Laws. Journal of Engineering Mechanics, 132(3), 295–305.

    Article  Google Scholar 

  • Li, C., et al. (2017). Spherocylindrical microplane constitutive model for shale and other anisotropic rocks. Journal of the Mechanics and Physics of Solids, 103, 155–178.

    Article  ADS  MathSciNet  Google Scholar 

  • Mehrabi, R., & Kadkhodaei, M. (2013). 3D phenomenological constitutive modeling of shape memory alloys based on microplane theory. Smart Materials and Structures, 22(2).

    Google Scholar 

  • Mehrabi, R., Kadkhodaei, M., & Chirani, S. A. (2012). Microplane modeling of martensite reorientation in shape memory alloys. In European Congress on Computational Methods in Applied Sciences and Engineering. Vienna, Austria: ECCOMAS.

    Google Scholar 

  • Mehrabi, R., Kadkhodaei, M., & Elahinia, M. (2014a). A thermodynamically-consistent microplane model for shape memory alloys. International Journal of Solids and Structures, 51(14), 2666–2675.

    Article  Google Scholar 

  • Mehrabi, R., Kadkhodaei, M., & Ghaei, A. (2012b). Numerical Implementation of a Thermomechanical Constitutive Model for Shape Memory Alloys Using Return Mapping Algorithm and Microplane Theory. Advanced Materials Research, 516–517, 351–354.

    Article  Google Scholar 

  • Mehrabi, R., et al. (2014b). Microplane modeling of shape memory alloy tubes under tension, torsion, and proportional tension–torsion loading. Journal of Intelligent Material Systems and Structures, 26(2), 144–155.

    Article  Google Scholar 

  • Němeček, J., et al. (2002). Microplane models: computational aspects and proposed parallel algorithm. Computers & Structures, 80(27–30), 2099–2108.

    Article  Google Scholar 

  • Ožbolt, J., Li, Y., & Kožar, I. (2001). Microplane model for concrete with relaxed kinematic constraint. International Journal of Solids and Structures, 38(16), 2683–2711.

    Article  MATH  Google Scholar 

  • Poorasadion, S., et al. (2013). An improvement on the Brinson model for shape memory alloys with application to two-dimensional beam element. Journal of Intelligent Material Systems and Structures, 25(15), 1905–1920.

    Article  Google Scholar 

  • Prat, P. C., & Bažant, Z. P. (1991). Microplane model for triaxial deformation of saturated cohesive soils. Journal of Geotechnical Engineering, 117(6), 891–912.

    Article  Google Scholar 

  • Qidwai, M., & Lagoudas, D. (2000). On thermomechanics and transformation surfaces of polycrystalline NiTi shape memory alloy material. International Journal of Plasticity, 16(10), 1309–1343.

    Article  MATH  Google Scholar 

  • Reedlunn, B., et al. (2014). Tension, compression, and bending of superelastic shape memory alloy tubes. Journal of the Mechanics and Physics of Solids, 63, 506–537.

    Article  ADS  Google Scholar 

  • Salviato, M., Ashari, S. E., & Cusatis, G. (2016). Spectral stiffness microplane model for damage and fracture of textile composites. Composite Structures, 137, 170–184.

    Article  Google Scholar 

  • Steinke, C., Zreid, I., & Kaliske, M. (2019) Modelling of nonlinear concrete behavior-microplane and phase-field approaches. In 7th International Conference on Structural Engineering, Mechanics and Computation. Cape Town, South Africa.

    Google Scholar 

  • Taylor, G. I. (1938). Plastic strain in metals. Journal of Institute of Metals, 62, 307–324.

    Google Scholar 

  • Verron, E. (2015). Questioning numerical integration methods for microsphere (and microplane) constitutive equations. Mechanics of Materials, 89, 216–228.

    Article  Google Scholar 

  • Vrech, S., Etse, G., & Caggiano, A. (2016). Thermodynamically consistent elasto-plastic microplane formulation for fiber reinforced concrete. International Journal of Solids and Structures, 81, 337–349.

    Article  Google Scholar 

  • Yang, H., Ganzosch, G., Giorgio, I., & Abali, B. E. (2018). Material characterization and computations of a polymeric metamaterial with a pantographic substructure. Zeitschrift für Angewandte Mathematik und Physik, 69(4), 105.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Zhou, T., et al. (2019). A new microplane model for non-proportionally multiaxial deformation of shape memory alloys addressing both the martensite transformation and reorientation. International Journal of Mechanical Sciences, 152, 63–80.

    Article  Google Scholar 

  • Zreid, I., & Kaliske, M. (2016). An implicit gradient formulation for microplane Drucker-Prager plasticity. International Journal of Plasticity, 83, 252–272.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Kadkhodaei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karamooz-Ravari, M.R., Kadkhodaei, M., Elahinia, M. (2021). Microplane Modeling for Inelastic Responses of Shape Memory Alloys. In: dell'Isola, F., Igumnov, L. (eds) Dynamics, Strength of Materials and Durability in Multiscale Mechanics. Advanced Structured Materials, vol 137. Springer, Cham. https://doi.org/10.1007/978-3-030-53755-5_17

Download citation

Publish with us

Policies and ethics