Skip to main content

Complementary and Alternative Medicine and Dermatooncology

  • Chapter
  • First Online:
Dermato-Oncology Study Guide
  • 337 Accesses

Abstract

In recent times, the realms of both dermatology and healthcare in general have seen large increases in the use of off-label treatments or treatments not recognized by healthcare providers and regulatory bodies. These are often referred to as complementary and alternative medicines (CAMs). The effectiveness of these treatments vary widely, encompassing the spectrum of well established and research-effective off-label use, to questionable use, to actually causing harm. In this chapter we will explore alternate treatments to avoid, those with potential benefits in prevention and treatment of cutaneous malignancy, and those with potential benefits in treating non-oncologic cutaneous problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AK:

Actinic keratosis

BCC:

Basal cell carcinoma

BEC:

Curaderm

CAM:

Complementary and alternative medicine

CDK:

Cyclin-dependent kinase

CoQ10:

Coenzyme Q10

DNA:

Deoxyribonucleic acid

ER:

Estrogen receptor

ESRD:

End stage renal disease

FDA:

Food and Drug Administration

HFS:

Hand-foot syndrome

MMS:

Mohs micrographic surgery

NAC:

N-Acetyl cysteine

NF-κB:

Nuclear Factor kappa-light-chain-enhancer of activated B cells

PDT:

Photodynamic therapy

RNA:

Ribonucleic acid

SCC:

Squamous cell carcinoma

TEWL:

Transepidermal water loss

UV:

Ultraviolet

References

  1. What is CAM? National Center for Complementary and Integrative Health, U.S. National Institutes of Health (NIH). 2019. http://nccam.nih.gov/health/whatiscam.

  2. Straus SE. Herbal medicines—what’s in the bottle? N Engl J Med. 2002;347(25):1997–8.

    Article  PubMed  Google Scholar 

  3. Landis ET, Davis SA, Feldman SR, Taylor S. Complementary and alternative medicine use in dermatology in the United States. J Altern Complement Med. 2014;20(5):392–8.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kristoffersen AE, Stub T, Musial F, Fønnebø V, Lillenes O, Norheim AJ. Prevalence and reasons for intentional use of complementary and alternative medicine as an adjunct to future visits to a medical doctor for chronic disease. BMC Complement Altern Med. 2018;18(1):109.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mitha S, Nagarajan V, Babar MG, Siddiqui MJ, Jamshed SQ. Reasons of using complementary and alternative medicines (CAM) among elderly Malaysians of Kuala Lumpur and Selangor states: an exploratory study. J Young Pharm. 2013;5(2):50–3.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ventola CL. Current issues regarding complementary and alternative medicine (CAM) in the United States: part 1: the widespread use of CAM and the need for better-informed health care professionals to provide patient counseling. P T. 2010;35(8):461–8.

    PubMed  PubMed Central  Google Scholar 

  7. Ventola CL. Current issues regarding complementary and alternative medicine (CAM) in the United States: part 2: regulatory and safety concerns and proposed governmental policy changes with respect to dietary supplements. P T. 2010;35(9):514–22.

    PubMed  PubMed Central  Google Scholar 

  8. Ha JF, Longnecker N. Doctor-patient communication: a review. Ochsner J. 2010;10(1):38–43.

    PubMed  PubMed Central  Google Scholar 

  9. Jellinek N, Maloney ME. Escharotic and other botanical agents for the treatment of skin cancer: a review. J Am Acad Dermatol. 2005;53(3):487–95.

    Article  PubMed  Google Scholar 

  10. McDaniel S, Goldman GD. Consequences of using escharotic agents as primary treatment for nonmelanoma skin cancer. Arch Dermatol. 2002;138(12):1593–6.

    Article  PubMed  Google Scholar 

  11. Lim A. Black salve treatment of skin cancer: a review. J Dermatolog Treat. 2018;29(4):388–92.

    Article  PubMed  CAS  Google Scholar 

  12. Elston DM. Escharotic agents, Fred Mohs, and Harry Hoxsey. J Am Acad Dermatol. 2005;53(3):523–5.

    Article  PubMed  Google Scholar 

  13. Ong NC, Sham E, Adams BM. Use of unlicensed black salve for cutaneous malignancy. Med J Aust. 2014;200(6):314.

    Article  PubMed  Google Scholar 

  14. Cienki JJ, Zaret L. An internet misadventure: bloodroot salve toxicity. J Altern Complement Med. 2010;16(10):1125–7.

    Article  PubMed  Google Scholar 

  15. Bhaskaran S, Dileep KV, Deepa SS, et al. Gossypin as a novel selective dual inhibitor of V-RAF murine sarcoma viral oncogene homolog B1 and cyclin-dependent kinase 4 for melanoma. Mol Cancer Ther. 2013;12(4):361–72.

    Article  PubMed  CAS  Google Scholar 

  16. Wang L, Wang X, Chen H, et al. Gossypin inhibits gastric cancer growth by direct targeting of AURKA and RSK2. Phytother Res. 2019;33(3):640–50.

    Article  PubMed  CAS  Google Scholar 

  17. Kunnumakkara AB, Nair AS, Ahn KS, et al. Gossypin, a pentahydroxy glucosyl flavone, inhibits the transforming growth factor beta-activated kinase-1-mediated NF-kappaB activation pathway, leading to potentiation of apoptosis, suppression of invasion, and abrogation of osteoclastogenesis. Blood. 2007;109(12):5112–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Fernandez SP, Nguyen M, Yow TT, et al. The flavonoid glycosides, myricitrin, gossypin and naringin exert anxiolytic action in mice. Neurochem Res. 2009;34(10):1867–75.

    Article  PubMed  CAS  Google Scholar 

  19. PubChem, Gossypin Compound Summary. 2019. https://pubchem.ncbi.nlm.nih.gov/compound/Gossypin.

  20. Cham BE, Daunter B, Evans RA. Topical treatment of malignant and premalignant skin lesions by very low concentrations of a standard mixture (BEC) of solasodine glycosides. Cancer Lett. 1991;59(3):183–92.

    Article  PubMed  CAS  Google Scholar 

  21. Cui CZ, Wen XS, Cui M, Gao J, Sun B, Lou HX. Synthesis of solasodine glycoside derivatives and evaluation of their cytotoxic effects on human cancer cells. Drug Discov Ther. 2012;6(1):9–17.

    PubMed  CAS  Google Scholar 

  22. Francis DB, Hart LV, Wilson PR, Beardmore GL. Curaderm—or is it? Med J Aust. 1989;151(9):541–2.

    Article  PubMed  CAS  Google Scholar 

  23. Punjabi S, Cook LJ, Kersey P, Marks R, Cerio R. Solasodine glycoalkaloids: a novel topical therapy for basal cell carcinoma. A double-blind, randomized, placebo-controlled, parallel group, multicenter study. Int J Dermatol. 2008;47(1):78–82.

    Article  PubMed  CAS  Google Scholar 

  24. Al Sinani SS, Eltayeb EA, Coomber BL, Adham SA. Solamargine triggers cellular necrosis selectively in different types of human melanoma cancer cells through extrinsic lysosomal mitochondrial death pathway. Cancer Cell Int. 2016;16:11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Beardmore G, Hart V, Wilson P, Francis D. Curaderm: preliminary findings. Med J Aust. 1989;150(1):46.

    Article  PubMed  CAS  Google Scholar 

  26. Yu S, Sheu HM, Lee CH. Extract (SR-T100) induces melanoma cell apoptosis and inhibits established lung metastasis. Oncotarget. 2017;8(61):103509–17.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Siller G, Gebauer K, Welburn P, Katsamas J, Ogbourne SM. PEP005 (ingenol mebutate) gel, a novel agent for the treatment of actinic keratosis: results of a randomized, double-blind, vehicle-controlled, multicentre, phase IIa study. Australas J Dermatol. 2009;50(1):16–22.

    Article  PubMed  Google Scholar 

  28. Lebwohl M, Shumack S, Stein Gold L, Melgaard A, Larsson T, Tyring SK. Long-term follow-up study of ingenol mebutate gel for the treatment of actinic keratoses. JAMA Dermatol. 2013;149(6):666–70.

    Article  PubMed  CAS  Google Scholar 

  29. Siller G, Rosen R, Freeman M, Welburn P, Katsamas J, Ogbourne SM. PEP005 (ingenol mebutate) gel for the topical treatment of superficial basal cell carcinoma: results of a randomized phase IIa trial. Australas J Dermatol. 2010;51(2):99–105.

    Article  PubMed  Google Scholar 

  30. Del Rosso JQ. Ingenol mebutate topical gel a status report on clinical use beyond actinic keratosis. J Clin Aesthet Dermatol. 2016;9(11 Suppl 1):S3–S11.

    PubMed  PubMed Central  Google Scholar 

  31. Bharadwaj R, Yu H. The spindle checkpoint, aneuploidy, and cancer. Oncogene. 2004;23(11):2016–27.

    Article  PubMed  CAS  Google Scholar 

  32. Marupudi NI, Han JE, Li KW, Renard VM, Tyler BM, Brem H. Paclitaxel: a review of adverse toxicities and novel delivery strategies. Expert Opin Drug Saf. 2007;6(5):609–21.

    Article  PubMed  CAS  Google Scholar 

  33. Bharadwaj R, Das PJ, Pal P, Mazumder B. Topical delivery of paclitaxel for treatment of skin cancer. Drug Dev Ind Pharm. 2016;42(9):1482–94.

    Article  PubMed  CAS  Google Scholar 

  34. Paolino D, Celia C, Trapasso E, Cilurzo F, Fresta M. Paclitaxel-loaded ethosomes®: potential treatment of squamous cell carcinoma, a malignant transformation of actinic keratoses. Eur J Pharm Biopharm. 2012;81(1):102–12.

    Article  PubMed  CAS  Google Scholar 

  35. Barceló R, Viteri A, Muñoz A, Gil-negrete A, Rubio I, López-Vivanco G. Paclitaxel for progressive basal cell carcinoma. J Am Acad Dermatol. 2006;54(2 Suppl):S50–2.

    Article  PubMed  Google Scholar 

  36. Linde K, Kriston L, Rücker G, et al. Efficacy and acceptability of pharmacological treatments for depressive disorders in primary care: systematic review and network meta-analysis. Ann Fam Med. 2015;13(1):69–79.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kleemann B, Loos B, Scriba TJ, Lang D, Davids LM. St John’s Wort (Hypericum perforatum L.) photomedicine: hypericin-photodynamic therapy induces metastatic melanoma cell death. PLoS One. 2014;9(7):e103762.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Kacerovská D, Pizinger K, Majer F, Smíd F. Photodynamic therapy of nonmelanoma skin cancer with topical hypericum perforatum extract—a pilot study. Photochem Photobiol. 2008;84(3):779–85.

    Article  PubMed  CAS  Google Scholar 

  39. Alecu M, Ursaciuc C, Hãlãlãu F, et al. Photodynamic treatment of basal cell carcinoma and squamous cell carcinoma with hypericin. Anticancer Res. 1998;18(6B):4651–4.

    PubMed  CAS  Google Scholar 

  40. Boiy A, Roelandts R, De Witte PA. Photodynamic therapy using topically applied hypericin: comparative effect with methyl-aminolevulinic acid on UV induced skin tumours. J Photochem Photobiol B Biol. 2011;102(2):123–31.

    Article  CAS  Google Scholar 

  41. Knüppel L, Linde K. Adverse effects of St. John’s Wort: a systematic review. J Clin Psychiatry. 2004;65(11):1470–9.

    Article  PubMed  Google Scholar 

  42. Nelson KM, Dahlin JL, Bisson J, Graham J, Pauli GF, Walters MA. The essential medicinal chemistry of Curcumin. J Med Chem. 2017;60(5):1620–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Huang MT, Ma W, Yen P, et al. Inhibitory effects of topical application of low doses of curcumin on 12-O-tetradecanoylphorbol-13-acetate-induced tumor promotion and oxidized DNA bases in mouse epidermis. Carcinogenesis. 1997;18(1):83–8.

    Article  PubMed  CAS  Google Scholar 

  44. Conney AH, Lysz T, Ferraro T, et al. Inhibitory effect of curcumin and some related dietary compounds on tumor promotion and arachidonic acid metabolism in mouse skin. Adv Enzym Regul. 1991;31:385–96.

    Article  CAS  Google Scholar 

  45. Sonavane K, Phillips J, Ekshyyan O, et al. Topical curcumin-based cream is equivalent to dietary curcumin in a skin cancer model. J Skin Cancer. 2012;2012:147863.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Limtrakul P, Lipigorngoson S, Namwong O, Apisariyakul A, Dunn FW. Inhibitory effect of dietary curcumin on skin carcinogenesis in mice. Cancer Lett. 1997;116(2):197–203.

    Article  PubMed  CAS  Google Scholar 

  47. Nakamura Y, Ohto Y, Murakami A, Osawa T, Ohigashi H. Inhibitory effects of curcumin and tetrahydrocurcuminoids on the tumor promoter-induced reactive oxygen species generation in leukocytes in vitro and in vivo. Jpn J Cancer Res. 1998;89(4):361–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Lao CD, Ruffin MT, Normolle D, et al. Dose escalation of a curcuminoid formulation. BMC Complement Altern Med. 2006;6:10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Rusciani L, Proietti I, Rusciani A, et al. Low plasma coenzyme Q10 levels as an independent prognostic factor for melanoma progression. J Am Acad Dermatol. 2006;54(2):234–41.

    Article  PubMed  Google Scholar 

  50. Rusciani L, Proietti I, Paradisi A, et al. Recombinant interferon alpha-2b and coenzyme Q10 as a postsurgical adjuvant therapy for melanoma: a 3-year trial with recombinant interferon-alpha and 5-year follow-up. Melanoma Res. 2007;17(3):177–83.

    Article  PubMed  CAS  Google Scholar 

  51. Jacobsen BK, Bjelke E, Kvåle G, Heuch I. Coffee drinking, mortality, and cancer incidence: results from a Norwegian prospective study. J Natl Cancer Inst. 1986;76(5):823–31.

    PubMed  CAS  Google Scholar 

  52. Abel EL, Hendrix SO, McNeeley SG, et al. Daily coffee consumption and prevalence of nonmelanoma skin cancer in Caucasian women. Eur J Cancer Prev. 2007;16(5):446–52.

    Article  PubMed  Google Scholar 

  53. Corona R, Dogliotti E, D'Errico M, et al. Risk factors for basal cell carcinoma in a Mediterranean population: role of recreational sun exposure early in life. Arch Dermatol. 2001;137(9):1162–8.

    Article  PubMed  CAS  Google Scholar 

  54. Rees JR, Stukel TA, Perry AE, Zens MS, Spencer SK, Karagas MR. Tea consumption and basal cell and squamous cell skin cancer: results of a case-control study. J Am Acad Dermatol. 2007;56(5):781–5.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Asgari MM, White E, Warton EM, Hararah MK, Friedman GD, Chren MM. Association of tea consumption and cutaneous squamous cell carcinoma. Nutr Cancer. 2011;63(2):314–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Katiyar S, Elmets CA, Katiyar SK. Green tea and skin cancer: photoimmunology, angiogenesis and DNA repair. J Nutr Biochem. 2007;18(5):287–96.

    Article  PubMed  CAS  Google Scholar 

  57. Katiyar SK. Green tea prevents non-melanoma skin cancer by enhancing DNA repair. Arch Biochem Biophys. 2011;508(2):152–8.

    Article  PubMed  CAS  Google Scholar 

  58. Katta R, Brown DN. Diet and skin cancer: the potential role of dietary antioxidants in nonmelanoma skin cancer prevention. J Skin Cancer. 2015;2015:893149.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Greenberg ER, Baron JA, Stukel TA, et al. A clinical trial of beta carotene to prevent basal-cell and squamous-cell cancers of the skin. The Skin Cancer Prevention Study Group. N Engl J Med. 1990;323(12):789–95.

    Article  PubMed  CAS  Google Scholar 

  60. Frieling UM, Schaumberg DA, Kupper TS, Muntwyler J, Hennekens CH. A randomized, 12-year primary-prevention trial of beta carotene supplementation for nonmelanoma skin cancer in the physician’s health study. Arch Dermatol. 2000;136(2):179–84.

    Article  PubMed  CAS  Google Scholar 

  61. Wei H, Saladi R, Lu Y, et al. Isoflavone genistein: photoprotection and clinical implications in dermatology. J Nutr. 2003;133(11 Suppl 1):3811S–9S.

    Article  PubMed  CAS  Google Scholar 

  62. Wei H, Bowen R, Zhang X, Lebwohl M. Isoflavone genistein inhibits the initiation and promotion of two-stage skin carcinogenesis in mice. Carcinogenesis. 1998;19(8):1509–14.

    Article  PubMed  CAS  Google Scholar 

  63. Irrera N, Pizzino G, D'Anna R, et al. Dietary management of skin health: the role of genistein. Nutrients. 2017;9(6)

    Google Scholar 

  64. Yang X, Yang S, Mckimmey C, et al. Genistein induces enhanced growth promotion in ER-positive/erbB-2-overexpressing breast cancers by ER-erbB-2 cross talk and p27/kip1 downregulation. Carcinogenesis. 2010;31(4):695–702.

    Article  PubMed  CAS  Google Scholar 

  65. Ju YH, Allred KF, Allred CD, Helferich WG. Genistein stimulates growth of human breast cancer cells in a novel, postmenopausal animal model, with low plasma estradiol concentrations. Carcinogenesis. 2006;27(6):1292–9.

    Article  PubMed  CAS  Google Scholar 

  66. Sahin I, Bilir B, Ali S, Sahin K, Kucuk O. Soy isoflavones in integrative oncology: increased efficacy and decreased toxicity of cancer therapy. Integr Cancer Ther. 2019;18:1534735419835310.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Zhao J, Wang J, Chen Y, Agarwal R. Anti-tumor-promoting activity of a polyphenolic fraction isolated from grape seeds in the mouse skin two-stage initiation-promotion protocol and identification of procyanidin B5-3′-gallate as the most effective antioxidant constituent. Carcinogenesis. 1999;20(9):1737–45.

    Article  PubMed  CAS  Google Scholar 

  68. Katiyar SK. Dietary proanthocyanidins inhibit UV radiation-induced skin tumor development through functional activation of the immune system. Mol Nutr Food Res. 2016;60(6):1374–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Mittal A, Elmets CA, Katiyar SK. Dietary feeding of proanthocyanidins from grape seeds prevents photocarcinogenesis in SKH-1 hairless mice: relationship to decreased fat and lipid peroxidation. Carcinogenesis. 2003;24(8):1379–88.

    Article  PubMed  CAS  Google Scholar 

  70. Yang L, Xian D, Xiong X, Lai R, Song J, Zhong J. Proanthocyanidins against oxidative stress: from molecular mechanisms to clinical applications. Biomed Res Int. 2018;2018:8584136.

    PubMed  PubMed Central  Google Scholar 

  71. Sano A. Safety assessment of 4-week oral intake of proanthocyanidin-rich grape seed extract in healthy subjects. Food Chem Toxicol. 2017;108(Pt B):519–23.

    Article  PubMed  CAS  Google Scholar 

  72. Millsop JW, Sivamani RK, Fazel N. Botanical agents for the treatment of nonmelanoma skin cancer. Dermatol Res Pract. 2013;2013:837152.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Fazekas Z, Gao D, Saladi RN, Lu Y, Lebwohl M, Wei H. Protective effects of lycopene against ultraviolet B-induced photodamage. Nutr Cancer. 2003;47(2):181–7.

    Article  PubMed  CAS  Google Scholar 

  74. Rizwan M, Rodriguez-Blanco I, Harbottle A, Birch-Machin MA, Watson RE, Rhodes LE. Tomato paste rich in lycopene protects against cutaneous photodamage in humans in vivo: a randomized controlled trial. Br J Dermatol. 2011;164(1):154–62.

    Article  PubMed  CAS  Google Scholar 

  75. Cooperstone JL, Tober KL, Riedl KM, et al. Tomatoes protect against development of UV-induced keratinocyte carcinoma via metabolomic alterations. Sci Rep. 2017;7(1):5106.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Jatoi A, Burch P, Hillman D, et al. A tomato-based, lycopene-containing intervention for androgen-independent prostate cancer: results of a phase II study from the North Central Cancer Treatment Group. Urology. 2007;69(2):289–94.

    Article  PubMed  Google Scholar 

  77. Wright TI, Spencer JM, Flowers FP. Chemoprevention of nonmelanoma skin cancer. J Am Acad Dermatol. 2006;54(6):933–46.

    Article  PubMed  Google Scholar 

  78. Katiyar SK, Korman NJ, Mukhtar H, Agarwal R. Protective effects of silymarin against photocarcinogenesis in a mouse skin model. J Natl Cancer Inst. 1997;89(8):556–66.

    Article  PubMed  CAS  Google Scholar 

  79. Lahiri-Chatterjee M, Katiyar SK, Mohan RR, Agarwal R. A flavonoid antioxidant, silymarin, affords exceptionally high protection against tumor promotion in the SENCAR mouse skin tumorigenesis model. Cancer Res. 1999;59(3):622–32.

    PubMed  CAS  Google Scholar 

  80. Katiyar SK. Silymarin and skin cancer prevention: anti-inflammatory, antioxidant and immunomodulatory effects (review). Int J Oncol. 2005;26(1):169–76.

    PubMed  CAS  Google Scholar 

  81. Lin TK, Zhong L, Santiago JL. Anti-inflammatory and skin barrier repair effects of topical application of some plant oils. Int J Mol Sci. 2017;19(1)

    Google Scholar 

  82. Hakkim FL, Bakshi HA, Khan S, et al. Frankincense essential oil suppresses melanoma cancer through down regulation of Bcl-2/Bax cascade signaling and ameliorates heptotoxicity via phase I and II drug metabolizing enzymes. Oncotarget. 2019;10(37):3472–90.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Park SM, Li T, Wu S, et al. Niacin intake and risk of skin cancer in US women and men. Int J Cancer. 2017;140(9):2023–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Chen AC, Martin AJ, Choy B, et al. A phase 3 randomized trial of nicotinamide for skin-cancer chemoprevention. N Engl J Med. 2015;373(17):1618–26.

    Article  PubMed  CAS  Google Scholar 

  85. Gilmore SJ. Nicotinamide and skin cancer chemoprevention: the jury is still out. Australas J Dermatol. 2018;59(1):6–9.

    Article  PubMed  Google Scholar 

  86. Snaidr VA, Damian DL, Halliday GM. Nicotinamide for photoprotection and skin cancer chemoprevention: a review of efficacy and safety. Exp Dermatol. 2019;28(Suppl 1):15–22.

    Article  PubMed  CAS  Google Scholar 

  87. Gale EA, Bingley PJ, Emmett CL, Collier T. European nicotinamide diabetes intervention trial (ENDIT): a randomised controlled trial of intervention before the onset of type 1 diabetes. Lancet. 2004;363(9413):925–31.

    Article  PubMed  CAS  Google Scholar 

  88. Ernst E. Acupuncture: what does the most reliable evidence tell us? J Pain Symptom Manag. 2009;37(4):709–14.

    Article  Google Scholar 

  89. Knip M, Douek IF, Moore WP, et al. Safety of high-dose nicotinamide: a review. Diabetologia. 2000;43(11):1337–45.

    Article  PubMed  CAS  Google Scholar 

  90. Takahashi Y, Tanaka A, Nakamura T, et al. Nicotinamide suppresses hyperphosphatemia in hemodialysis patients. Kidney Int. 2004;65(3):1099–104.

    Article  PubMed  CAS  Google Scholar 

  91. Young DO, Cheng SC, Delmez JA, Coyne DW. The effect of oral niacinamide on plasma phosphorus levels in peritoneal dialysis patients. Perit Dial Int. 2009;29(5):562–7.

    Article  PubMed  CAS  Google Scholar 

  92. Nestor M, Bucay V, Callender V, Cohen JL, Sadick N, Waldorf H. Polypodium leucotomos as an adjunct treatment of pigmentary disorders. J Clin Aesthet Dermatol. 2014;7(3):13–7.

    PubMed  PubMed Central  Google Scholar 

  93. Choudhry SZ, Bhatia N, Ceilley R, et al. Role of oral Polypodium leucotomos extract in dermatologic diseases: a review of the literature. J Drugs Dermatol. 2014;13(2):148–53.

    PubMed  Google Scholar 

  94. Berman B, Ellis C, Elmets C. Polypodium leucotomos—an overview of basic investigative findings. J Drugs Dermatol. 2016;15(2):224–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  95. Middelkamp-Hup MA, Pathak MA, Parrado C, et al. Oral Polypodium leucotomos extract decreases ultraviolet-induced damage of human skin. J Am Acad Dermatol. 2004;51(6):910–8.

    Article  PubMed  Google Scholar 

  96. Kohli I, Shafi R, Isedeh P, et al. The impact of oral Polypodium leucotomos extract on ultraviolet B response: a human clinical study. J Am Acad Dermatol. 2017;77(1):33–41.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Del Rosso JQ. Use of Polypodium leucotomas extract in clinical practice: a primer for the clinician. J Clin Aesthet Dermatol. 2016;9(5):37–42.

    PubMed  PubMed Central  Google Scholar 

  98. Nestor MS, Berman B, Swenson N. Safety and efficacy of Oral Polypodium leucotomos extract in healthy adult subjects. J Clin Aesthet Dermatol. 2015;8(2):19–23.

    PubMed  PubMed Central  Google Scholar 

  99. Winkelmann RR, Del Rosso J, Rigel DS. Polypodium leucotomos extract: a status report on clinical efficacy and safety. J Drugs Dermatol. 2015;14(3):254–61.

    PubMed  Google Scholar 

  100. Goh CL, Chuah SY, Tien S, Thng G, Vitale MA, Delgado-Rubin A. Double-blind, placebo-controlled trial to evaluate the effectiveness of Polypodium Leucotomos extract in the treatment of melasma in Asian skin: a pilot study. J Clin Aesthet Dermatol. 2018;11(3):14–9.

    PubMed  PubMed Central  Google Scholar 

  101. Kazandjieva J, Grozdev I, Tsankov N. Temporary henna tattoos. Clin Dermatol. 2007;25(4):383–7.

    Article  PubMed  Google Scholar 

  102. Ali BH, Bashir AK, Tanira MO. Anti-inflammatory, antipyretic, and analgesic effects of Lawsonia inermis L. (henna) in rats. Pharmacology. 1995;51(6):356–63.

    Article  PubMed  CAS  Google Scholar 

  103. Yucel I, Guzin G. Topical henna for capecitabine induced hand-foot syndrome. Invest New Drugs. 2008;26(2):189–92.

    Article  PubMed  Google Scholar 

  104. Ilyas S, Wasif K, Saif MW. Topical henna ameliorated capecitabine-induced hand-foot syndrome. Cutan Ocul Toxicol. 2014;33(3):253–5.

    Article  PubMed  CAS  Google Scholar 

  105. Papoiu AD, Chaudhry H, Hayes EC, Chan YH, Herbst KD. TriCalm(®) hydrogel is significantly superior to 2% diphenhydramine and 1% hydrocortisone in reducing the peak intensity, duration, and overall magnitude of cowhage-induced itch. Clin Cosmet Investig Dermatol. 2015;8:223–9.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Kircik L. The effect of desonide hydrogel on pruritus associated with atopic dermatitis. J Drugs Dermatol. 2014;13(6):725–8.

    PubMed  CAS  Google Scholar 

  107. Draelos ZD. Antipruritic hydrogel for the treatment of atopic dermatitis: an open-label pilot study. Cutis. 2012;90(2):97–102.

    PubMed  Google Scholar 

  108. Leung TH, Zhang LF, Wang J, Ning S, Knox SJ, Kim SK. Topical hypochlorite ameliorates NF-κB-mediated skin diseases in mice. J Clin Invest. 2013;123(12):5361–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Perez-Nazario N, Yoshida T, Fridy S, De Benedetto A, Beck LA. Bleach baths significantly reduce itch and severity of atopic dermatitis with no significant change in S aureus colonization and only modest effects on skin barrier function. J Invest Dermatol. 2015;135:S37.

    Google Scholar 

  110. Hon KL, Tsang YC, Lee VW, et al. Efficacy of sodium hypochlorite (bleach) baths to reduce Staphylococcus aureus colonization in childhood onset moderate-to-severe eczema: a randomized, placebo-controlled cross-over trial. J Dermatolog Treat. 2016;27(2):156–62.

    Article  PubMed  CAS  Google Scholar 

  111. Siemens W, Xander C, Meerpohl JJ, Antes G, Becker G. Drug treatments for pruritus in adult palliative care. Dtsch Arztebl Int. 2014;111(50):863–70.

    PubMed  PubMed Central  Google Scholar 

  112. Anttila SA, Leinonen EV. A review of the pharmacological and clinical profile of mirtazapine. CNS Drug Rev. 2001;7(3):249–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Davis MP, Frandsen JL, Walsh D, Andresen S, Taylor S. Mirtazapine for pruritus. J Pain Symptom Manag. 2003;25(3):288–91.

    Article  Google Scholar 

  114. Hundley JL, Yosipovitch G. Mirtazapine for reducing nocturnal itch in patients with chronic pruritus: a pilot study. J Am Acad Dermatol. 2004;50(6):889–91.

    Article  PubMed  Google Scholar 

  115. Khanna R, Boozalis E, Belzberg M, Zampella JG, Kwatra SG. Mirtazapine for the treatment of chronic pruritus. Medicines (Basel). 2019;6(3).

    Google Scholar 

  116. Jilani TN, Gibbons JR, Faizy RM, Saadabadi A. Mirtazapine. StatPearls; 2020.

    Google Scholar 

  117. Smith PF, Corelli RL. Doxepin in the management of pruritus associated with allergic cutaneous reactions. Ann Pharmacother. 1997;31(5):633–5.

    Article  PubMed  CAS  Google Scholar 

  118. Steinhoff M, Cevikbas F, Ikoma A, Berger TG. Pruritus: management algorithms and experimental therapies. Semin Cutan Med Surg. 2011;30(2):127–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Pour-Reza-Gholi F, Nasrollahi A, Firouzan A, Nasli Esfahani E, Farrokhi F. Low-dose doxepin for treatment of pruritus in patients on hemodialysis. Iran J Kidney Dis. 2007;1(1):34–7.

    PubMed  Google Scholar 

  120. Almasi A, Meza CE. Doxepin. StatPearls; 2019.

    Google Scholar 

  121. He A, Alhariri JM, Sweren RJ, Kwatra MM, Kwatra SG. Aprepitant for the treatment of chronic refractory pruritus. Biomed Res Int. 2017;2017:4790810.

    PubMed  PubMed Central  Google Scholar 

  122. Huh JW, Jeong YI, Choi KH, Park HJ, Jue MS. Treatment for refractory pruritus using oral aprepitant. Ann Dermatol. 2016;28(1):124–5.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Hauser JM, Azzam JS, Kasi A. Antiemetic medications. StatPearls; 2019.

    Google Scholar 

  124. Dawn AG, Yosipovitch G. Butorphanol for treatment of intractable pruritus. J Am Acad Dermatol. 2006;54(3):527–31.

    Article  PubMed  Google Scholar 

  125. Lee H, Naughton NN, Woods JH, Ko MC. Effects of butorphanol on morphine-induced itch and analgesia in primates. Anesthesiology. 2007;107(3):478–85.

    Article  PubMed  CAS  Google Scholar 

  126. Papoiu ADP, Kraft RA, Coghill RC, Yospovitch G. Butorphanol suppression of histamine itch is mediated by nucleus accumbens and septal nuclei. A pharmacological fMRI study. J Invest Dermatol. 2015;135(2):560–8.

    Article  PubMed  CAS  Google Scholar 

  127. Adams A, Eschman J, Ge W. Acupressure for chronic low back pain: a single system study. J Phys Ther Sci. 2017;29(8):1416–20.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Lee KC, Keyes A, Hensley JR, et al. Effectiveness of acupressure on pruritus and lichenification associated with atopic dermatitis: a pilot trial. Acupunct Med. 2012;30(1):8–11.

    Article  PubMed  Google Scholar 

  129. Kiliç Akça N, Taşçi S, Karataş N. Effect of acupressure on patients in Turkey receiving hemodialysis treatment for uremic pruritus. Altern Ther Health Med. 2013;19(5):12–8.

    PubMed  Google Scholar 

  130. Yan CN, Yao WG, Bao YJ, et al. Effect of auricular acupressure on uremic pruritus in patients receiving hemodialysis treatment: a randomized controlled trial. Evid Based Complement Alternat Med. 2015;2015:593196.

    PubMed  PubMed Central  Google Scholar 

  131. Che-yi C, Wen CY, Min-tsung K, Chiu-ching H. Acupuncture in haemodialysis patients at the Quchi (LI11) acupoint for refractory uraemic pruritus. Nephrol Dial Transplant. 2005;20(9):1912–5.

    Article  PubMed  Google Scholar 

  132. Badiee Aval S, Ravanshad Y, Azarfar A, Mehrad-Majd H, Torabi S, Ravanshad S. A systematic review and meta-analysis of using acupuncture and acupressure for uremic pruritus. Iran J Kidney Dis. 2018;12(2):78–83.

    PubMed  Google Scholar 

  133. Yu C, Zhang P, Lv ZT, et al. Efficacy of acupuncture in itch: a systematic review and meta-analysis of clinical randomized controlled trials. Evid Based Complement Alternat Med. 2015;2015:208690.

    PubMed  PubMed Central  Google Scholar 

  134. Ernst E, Lee MS, Choi TY. Acupuncture: does it alleviate pain and are there serious risks? A review of reviews. Pain. 2011;152(4):755–64.

    Article  PubMed  CAS  Google Scholar 

  135. Pennesi CM, Neely J, Marks AG, Basak SA. Use of isoquercetin in the treatment of Prurigo nodularis. J Drugs Dermatol. 2017;16(11):1156–8.

    PubMed  Google Scholar 

  136. Oku H, Ueda Y, Ishiguro K. Antipruritic effects of the fruits of Chaenomeles sinensis. Biol Pharm Bull. 2003;26(7):1031–4.

    Article  PubMed  CAS  Google Scholar 

  137. EFSA. Scientific opinion on the substantiation of health claims related to quercetin and protection of DNA, proteins and lipids from oxidative damage (ID 1647), “cardiovascular system” (ID 1844), “mental state and performance” (ID 1845), and “liver, kidneys” (ID 1846) pursuant to article 13(1) of regulation (EC) no 1924/2006. EFSA J. 2011;9(4):1–15.

    Google Scholar 

  138. Maramaldi G, Togni S, Pagin I, et al. Soothing and anti-itch effect of quercetin phytosome in human subjects: a single-blind study. Clin Cosmet Investig Dermatol. 2016;9:55–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Grant JE, Odlaug BL, Kim SW. N-acetylcysteine, a glutamate modulator, in the treatment of trichotillomania: a double-blind, placebo-controlled study. Arch Gen Psychiatry. 2009;66(7):756–63.

    Article  PubMed  CAS  Google Scholar 

  140. Grant JE, Chamberlain SR, Redden SA, Leppink EW, Odlaug BL, Kim SW. N-acetylcysteine in the treatment of excoriation disorder: a randomized clinical trial. JAMA Psychiatry. 2016;73(5):490–6.

    Article  PubMed  Google Scholar 

  141. Adil M, Amin SS, Mohtashim M. N-acetylcysteine in dermatology. Indian J Dermatol Venereol Leprol. 2018;84(6):652–9.

    Article  PubMed  Google Scholar 

  142. Ershad M, Vearrier D. N acetylcysteine. StatPearls; 2019.

    Google Scholar 

  143. Oku H, Ishiguro K. Antipruritic and antidermatitic effect of extract and compounds of Impatiens balsamina L. in atopic dermatitis model NC mice. Phytother Res. 2001;15(6):506–10.

    Article  PubMed  CAS  Google Scholar 

  144. Ishiguro K, Oku H, Kato T. Testosterone 5alpha-reductase inhibitor bisnaphthoquinone derivative from Impatiens balsamina. Phytother Res. 2000;14(1):54–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zafar, F., Lio, P. (2021). Complementary and Alternative Medicine and Dermatooncology. In: Liu, V. (eds) Dermato-Oncology Study Guide. Springer, Cham. https://doi.org/10.1007/978-3-030-53437-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53437-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53436-3

  • Online ISBN: 978-3-030-53437-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics