Skip to main content
Log in

The Flavonoid Glycosides, Myricitrin, Gossypin and Naringin Exert Anxiolytic Action in Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The consumption of flavonoid-rich foods, in particular fruits and vegetables, has been epidemiologically associated with a reduced risk of heart disease, neurodegenerative disease, cancer and other chronic diseases. Flavonoid glycosides, the main class of flavonoids, have been shown to exert CNS-mediated activities, particularly as sedative-hypnotics, analgesics or both, nevertheless no studies have evaluated these agents in anxiety. This study assessed the potential anxiolytic effect of three flavonoid glycosides, myrcitrin, naringin and gossypin, in the elevated plus maze test (EPM). Myricitrin (1 mg/kg) was effective on the EPM showing a clear anxiolytic effect with no signs of sedation. However, higher doses showed possible sedative and myorelaxation effects. Gossypin and naringin both shared a similar profile, with low doses (1 mg/kg) inducing a robust anxiolytic effect which diminished with increasing doses of the flavonoids. Higher doses of these two flavonoids showed a dramatic increase in the open arm exploration accompanied by a decrease in locomotor activity. Hence, naringin (30 mg/kg) and gossypin (30 mg/kg) induce both anxiolytic and sedative effects. These results suggest that flavonoid glycosides have the potential to exert a range of CNS-mediated biological activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Harborne JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504. doi:10.1016/S0031-9422(00)00235-1

    Article  PubMed  CAS  Google Scholar 

  2. Havsteen BH (2002) The biochemistry and medical significance of the flavonoids. Pharmacol Ther 96:67–202. doi:10.1016/S0163-7258(02)00298-X

    Article  PubMed  CAS  Google Scholar 

  3. Messina M, Ho S, Alekel DL (2004) Skeletal benefits of soy isoflavones: a review of the clinical trial and epidemiologic data. Curr Opin Clin Nutr Metab Care 7:649–658. doi:10.1097/00075197-200411000-00010

    Article  PubMed  CAS  Google Scholar 

  4. Grendys EC Jr, Blessing JA, Burger R et al (2005) A phase II evaluation of flavopiridol as second-line chemotherapy of endometrial carcinoma: a gynaecologic oncology group study. Gynecol Oncol 98:249–253. doi:10.1016/j.ygyno.2005.05.017

    Article  PubMed  CAS  Google Scholar 

  5. Katsenis K (2005) Micronized purified flavonoid fraction (MPFF): a review of its pharmacological effects, therapeutic efficacy and benefits in the management of chronic venous insufficiency. Curr Vasc Pharmacol 3:1–9. doi:10.2174/1570161052773870

    Article  PubMed  CAS  Google Scholar 

  6. Fernandez SP, Wasowski C, Loscalzo LM et al (2006) Central nervous system depressant action of flavonoid glycosides. Eur J Pharmacol 539:168–176. doi:10.1016/j.ejphar.2006.04.004

    Article  PubMed  CAS  Google Scholar 

  7. Viswanathan S, Sambantham PT, Reddy K et al (1984) Gossypin-induced analgesia in mice. Eur J Pharmacol 98:289–291. doi:10.1016/0014-2999(84)90604-6

    Article  PubMed  CAS  Google Scholar 

  8. Meotti FC, Luiz AP, Pizzolatti MG et al (2006) Analysis of the antinociceptive effect of the flavonoid myricitrin: evidence for a role of the l-arginine-nitric oxide and protein kinase C pathways. J Pharmacol Exp Ther 316:789–796. doi:10.1124/jpet.105.092825

    Article  PubMed  CAS  Google Scholar 

  9. Martínez-Vázquez M, Ramírez Apan TO, Lastra AL et al (1998) A comparative study of the analgesic and anti-inflammatory activities of pectolinarin isolated from Cirsium subcoriaceum and linarin isolated from Buddelia cordata. Planta Med 64:134–137. doi:10.1055/s-2006-957390

    Article  PubMed  Google Scholar 

  10. Loscalzo LM, Wasowski C, Paladini AC et al (2008) Opioid receptors are involved in the sedative and antinociceptive effects of hesperidin as well as in its potentiation with benzodiazepines. Eur J Pharmacol 580:306–313. doi:10.1016/j.ejphar.2007.11.011

    Article  PubMed  CAS  Google Scholar 

  11. Kissin I, Brown PT, Bradley EL Jr (1990) Sedative and hypnotic midazolam-morphine interactions in rats. Anesth Analg 71:137–143

    PubMed  CAS  Google Scholar 

  12. Zarrindast MR, Rostami P, Zarei M et al (2005) Intracerebroventricular effects of histaminergic agents on morphine-induced anxiolysis in the elevated plus-maze in rats. Basic Clin Pharmacol Toxicol 97:276–281. doi:10.1111/j.1742-7843.2005.pto_116.x

    Article  PubMed  CAS  Google Scholar 

  13. Shin IC, Kim HC, Swanson J et al (2003) Anxiolyic effects of acute morphine can be modulate by nitric oxide systems. Pharmacology 68:183–189. doi:10.1159/000070457

    Article  PubMed  CAS  Google Scholar 

  14. Agmo A, Galvan A, Heredia A et al (1995) Naloxone blocks the antianxiety but not the motor effects of benzodiazepines and pentobarbital: experimental studies and literature review. Psychopharmacology (Berl) 120:186–194. doi:10.1007/BF02246192

    Article  CAS  Google Scholar 

  15. Filliol D, Ghozland S, Chluba J et al (2000) Mice deficient for delta- and mu-opioid receptors exhibit opposing alterations of emotional responses. Nat Genet 25:195–200. doi:10.1038/76061

    Article  PubMed  CAS  Google Scholar 

  16. Knabl J, Witschi R, Hösl K et al (2008) Reversal of pathological pain through specific spinal GABAA receptor subtypes. Nature 451:330–334. doi:10.1038/nature06493

    Article  PubMed  CAS  Google Scholar 

  17. Pick CG (1997) Antinociceptive interaction between alprazolam and opioids. Brain Res Bull 42:239–243. doi:10.1016/S0361-9230(96)00265-1

    Article  PubMed  CAS  Google Scholar 

  18. Fernandez SP, Mewett KN, Hanrahan JR et al (2008) Flavan-3-ol derivatives are positive modulators of GABA(A) receptors with higher efficacy for the alpha(2) subtype and anxiolytic action in mice. Neuropharmacology 55:900–907. doi:10.1016/j.neuropharm.2008.06.069

    Article  PubMed  CAS  Google Scholar 

  19. File SE (2001) Factors controlling measures of anxiety and responses to novelty in the mouse. Behav Brain Res 125:151–157. doi:10.1016/S0166-4328(01)00292-3

    Article  PubMed  CAS  Google Scholar 

  20. Bonetti EP, Pierri L, Cumin R et al (1982) Benzodiazepine antagonist RO 15–1788: neurological and behavioral effects. Psychopharmacology (Berl) 78:8–18. doi:10.1007/BF00470579

    Article  CAS  Google Scholar 

  21. Ashton CH (2003) Insomnia and anxiety. In: clinical pharmacy and therapeutics, 3rd edn. Churchill Livingstone, Sydney, pp 423–438

    Google Scholar 

  22. Ipser JC, Carey P, Dhansay Y, et al. (2006) Pharmacotherapy augmentation strategies in treatment-resistant anxiety disorders. Cochrane Database Syst Rev CD005473

  23. Cryan JF, Holmes A (2005) The ascent of mouse: advances in modelling human depression and anxiety. Nat Rev Drug Discov 4:775–790. doi:10.1038/nrd1825

    Article  PubMed  CAS  Google Scholar 

  24. Marder M, Paladini AC (2002) GABAA-receptor ligands of flavonoid structure. Curr Top Med Chem 2:853–867. doi:10.2174/1568026023393462

    Article  PubMed  CAS  Google Scholar 

  25. Zitron E, Scholz E, Owen RW et al (2005) QTc prolongation by grapefruit juice and its potential pharmacological basis: HERG channel blockade by flavonoids. Circulation 111:835–838. doi:10.1161/01.CIR.0000155617.54749.09

    Article  PubMed  CAS  Google Scholar 

  26. Kobayashi T, Ikeda K, Ichikawa T et al (1995) Molecular cloning of a mouse G-protein-activated K+ channel (mGIRK1) and distinct distributions of three GIRK (GIRK1, 2 and 3) mRNAs in mouse brain. Biochem Biophys Res Commun 208:1166–1173. doi:10.1006/bbrc.1995.1456

    Article  PubMed  CAS  Google Scholar 

  27. Guasti L, Cilia E, Crociani O et al (2005) Expression pattern of the ether-a-go-go-related (ERG) family proteins in the adult mouse central nervous system: evidence for coassembly of different subunits. J Comp Neurol 491:157–174. doi:10.1002/cne.20721

    Article  PubMed  CAS  Google Scholar 

  28. Chu CP-Y (2006) Three Pharmacological studies on nicotinic acetylcholine receptors: β-amyloid peptides, flavonoids and α-conotoxins. Ph. D Thesis, University of Sydney, Sydney

  29. Picciotto MR, Brunzell DH, Caldarone BJ (2002) Effect of nicotine and nicotinic receptors on anxiety and depression. NeuroReport 13:1097–1106. doi:10.1097/00001756-200207020-00006

    Article  PubMed  CAS  Google Scholar 

  30. Meotti FC, Posser T, Missau FC et al (2007) Involvement of p38MAPK on the antinociceptive action of myricitrin in mice. Biochem Pharmacol 74:924–931. doi:10.1016/j.bcp.2007.06.024

    Article  PubMed  CAS  Google Scholar 

  31. Walle T (2004) Absorption and metabolism of flavonoids. Free Radic Biol Med 36:829–837. doi:10.1016/j.freeradbiomed.2004.01.002

    Article  PubMed  CAS  Google Scholar 

  32. Manach C, Williamson G, Morand C et al (2005) Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 81:230S–242S

    PubMed  CAS  Google Scholar 

  33. Bokkenheuser VD, Shackleton CH, Winter J (1987) Hydrolysis of dietary flavonoid glycosides by strains of intestinal bacteroides from humans. Biochem J 248:953–956

    PubMed  CAS  Google Scholar 

  34. Day AJ, DuPont MS, Ridley S et al (1998) Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver beta-glucosidase activity. FEBS Lett 436:71–75. doi:10.1016/S0014-5793(98)01101-6

    Article  PubMed  CAS  Google Scholar 

  35. Day AJ, Canada FJ, Diaz JC et al (2000) Dietary flavonoid and isoflavones glycosides are hydrolysed by the lactase site of the lactase phlorizin hydrolase. FEBS Lett 468:166–170. doi:10.1016/S0014-5793(00)01211-4

    Article  PubMed  CAS  Google Scholar 

  36. Tsai TH (2002) Determination of naringin in rat blood, brain, liver, and bile using microdialysis and its interaction with cyclosporin a, a p-glycoprotein modulator. J Agric Food Chem 50:6669–6674. doi:10.1021/jf020603p

    Article  PubMed  CAS  Google Scholar 

  37. Peng HW, Cheng FC, Huang YT et al (1998) Determination of naringenin and its glucuronide conjugate in rat plasma and brain tissue by high-performance liquid chromatography. J Chromatogr A 714:369–374

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Dr. Alejandro A. Paladini (INGEBI, Buenos Aires, Argentina) for designing the behavioural apparatus. This research was supported by a grant from the National Health and Medical Research Council (NH&MRC) of Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Chebib.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandez, S.P., Nguyen, M., Yow, T.T. et al. The Flavonoid Glycosides, Myricitrin, Gossypin and Naringin Exert Anxiolytic Action in Mice. Neurochem Res 34, 1867–1875 (2009). https://doi.org/10.1007/s11064-009-9969-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-009-9969-9

Keywords

Navigation