Skip to main content

Size Variation Amongst the Non-volant Mammals from the Early Eocene Cambay Shale Deposits of Western India: Paleobiogeographic implications

  • Chapter
  • First Online:
Biological Consequences of Plate Tectonics

Part of the book series: Vertebrate Paleobiology and Paleoanthropology ((VERT))

Abstract

Within the Indian subcontinent, the oldest Cenozoic record of non-volant mammals comprises various groups including perissodactyls, artiodactyls, primates, lagomorphs, tillodonts, proteutherians, rodents and didelphimorphs. These mammals have been reported from the subsurface horizons of the Cambay Shale which are dated at ~54.5 Ma (Early Eocene). A statistical analysis (at the ordinal level) of size variation(s) in the lower dentitions of these taxa from the Cambay Shale allows their size categorization into three broad groups: small, medium and large. Based on the data on (a) phylogenetic relationships of large perissodactyls (e.g., cambaytheres), (b) an Early Eocene age of the fauna, (c) the timing of collision between the Indian plate and Eurasia, and (d) considering that it was unlikely for the large-sized component (perissodactyls) to disperse across oceanic barriers, the potential presence of a short-lived corridor for dispersal between Indian subcontinent and Eurasia prior to ~54.5 Ma cannot be ruled out. Further, the overall data hint at the presence of cambaythere-like mammals during the late Paleocene of the Indian and/or Eurasian continent(s), emphasizing the need for rigorous reconnoitering for Paleocene mammals (presently unknown) within the Indian subcontinent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acton, G. D. (1999). Apparent polar wander of India since the Cretaceous with implications for regional tectonics and true polar wander. The Indian subcontinent and Gondwana: A paleomagnetic and rock magnetic perspective. Memoir Geological Society of India, 44, 129–175.

    Google Scholar 

  • Afzal, J., Khan, R. F., Khan, S. N., Alam, S., & Jalal, M. (2005). Foraminiferal biostratigraphy and paleoenvironments of the paleocene lockhart limestone from Kotal Pass, Kohat, Northern Pakistan. Pakistan Journal of Hydrocarbon Research, 15, 9–23.

    Google Scholar 

  • Aitchison, J. C., Ali, J. R., & Davis, A. M. (2007). When and where did India and Asia collide? Journal of Geophysical Research. https://doi.org/10.1029/2006JB004706.

    Article  Google Scholar 

  • Ali, J. R., & Aitchison, J. C. (2004). Problem of positioning Paleogene Eurasia: A review, efforts to resolve the issue, implications for the India–Asia collision. Monograph-American Geophysical Union, 149, 23–35.

    Google Scholar 

  • Ali, J. R., & Aitchison, J. C. (2008). Gondwana to Asia: Plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the Middle Jurassic through latest Eocene (166–35 Ma). Earth Science Reviews, 88(3–4), 145–166.

    Article  Google Scholar 

  • Ali, J. R., & Krause, D. W. (2011). Late Cretaceous bioconnections between Indo-Madagascar and Antarctica: Refutation of the Gunner vs. Ridge causeway hypothesis. Journal of Biogeography, 38, 1855–1872.

    Article  Google Scholar 

  • Bai, B., Wang, Y.-Q., & Meng, J. (2018). The divergence and dispersal of early perissodactyls as evidenced by Early Eocene equids from Asia. Communications Biology. https://doi.org/10.1038/s42003-018-0116-5.

    Article  Google Scholar 

  • Bajpai, S. (2009). Biotic perspective of the Deccan volcanism and India–Asia collision: Recent advances. Current trends in Science, Platinum Jubilee Special Publication, Indian Academy of Sciences, 505–516.

    Google Scholar 

  • Bajpai, S., Das, D. P., Kapur, V. V., Tiwari, B. N., & Srivastava, S. S. (2007a). Early Eocene rodents (Mammalia) from Vastan Lignite Mine, Gujarat, India. Gondwana Geological Magazine, 22(2), 91–95.

    Google Scholar 

  • Bajpai, S., & Gingerich, P. D. (1998). A new Eocene Archaeocete (Mammalia, Cetacea) from India and the time of the origin of whales. Proceedings of the National Academy of Sciences, USA, 95, 15464–15468.

    Article  Google Scholar 

  • Bajpai, S., & Kapur, V. V. (2004). Oldest known gobiids from Vastan Lignite Mine (Early Eocene), district Surat, Gujarat. Current Science, 87(4), 433–435.

    Google Scholar 

  • Bajpai, S., Kapur, V. V., Das, D. P., & Tiwari, B. N. (2007b). New early Eocene primate (Mammalia) from Vastan Lignite Mine, district Surat (Gujarat), western India. Journal of the Palaeontological Society of India, 52(2), 231–234.

    Google Scholar 

  • Bajpai, S., Kapur, V. V., Das, D. P., Tiwari, B. N., Saravanan, N., & Sharma, R. (2005a). Early Eocene land mammals from Vastan Lignite Mine, district Surat (Gujarat), western India. Journal of the Palaeontological Society of India, 50(1), 101–113.

    Google Scholar 

  • Bajpai, S., Kapur, V. V., & Thewissen, J. G. M. (2009). Creodont and Condylarth from the Cambay Shale (Early Eocene, ~55–54 Ma), Vastan Lignite Mine, Gujarat, Western India. Journal of the Palaeontological Society of India, 54(1), 103–109.

    Google Scholar 

  • Bajpai, S., Kapur, V. V., Thewissen, J. G. M., Das, D. P., & Tiwari, B. N. (2006a). New early Eocene cambaythere (Perissodactyla, Mammalia) from the Vastan Lignite Mine (Gujarat, India) and an evaluation of cambaythere relationships. Journal of the Palaeontological Society of India, 51(1), 101–110.

    Google Scholar 

  • Bajpai, S., Kapur, V. V., Thewissen, J. G. M., Tiwari, B. N., & Das, D. P. (2005b). First fossil marsupials from India: Early Eocene Indodelphis n.gen. and Jaegeria n.gen from Vastan lignite mine, district Surat, Gujarat. Journal of the Palaeontological Society of India, 50(1), 147–151.

    Google Scholar 

  • Bajpai, S., Kapur, V. V., Thewissen, J. G. M., Tiwari, B. N., Das, D. P., Sharma, R., et al. (2005c). Early Eocene primates from Vastan lignite mine, Gujarat, western India. Journal of the Palaeontological Society of India, 50(2), 43–54.

    Google Scholar 

  • Bajpai, S., Kay, R. F., Williams, B. A., Das, D. P., Kapur, V. V., & Tiwari, B. N. (2008). The oldest Asian record of Anthropoidea. Proceedings of the National Academy of Sciences of the USA, 105, 11093–11098.

    Article  Google Scholar 

  • Bajpai, S., & Thewissen, J. G. M. (2002). Vertebrate fauna from Panandhro lignite field (Lower Eocene), district Kachchh, western India. Current Science, 82, 507–509.

    Google Scholar 

  • Bajpai, S., & Thewissen, J. G. M. (2014). Protocetid cetaceans (Mammalia) from the Eocene of India. Palaeontologia Electronica, 17(3), 34A, 19.

    Google Scholar 

  • Bajpai, S., Thewissen, J. G. M., Kapur, V. V., Tiwari, B. N., & Sahni, A. (2006b). Eocene and Oligocene sirenians (Mammalia) from Kachchh, India. Journal of Vertebrate Paleontology, 26, 400–410.

    Article  Google Scholar 

  • Bardintzeff, J. M., Liégeois, J. P., Bonin, B., Bellon, H., & Rasamimanana, G. (2010). Madagascar volcanic provinces linked to the Gondwana break-up: Geochemical and isotopic evidences for contrasting mantle sources. Gondwana Research, 18, 295–314.

    Article  Google Scholar 

  • Beard, K. C. (1998). East of Eden: Asia as an important center of taxonomic origination in mammalian evolution. Bulletin of the Carnegie Museum of Natural History, 34, 5–39.

    Google Scholar 

  • Beard, K. C. (2016). Out of Asia: Anthropoid origins and the colonization of Africa. Annual Review of Anthropology, 45, 199–213.

    Article  Google Scholar 

  • Beck, R. A., Burbank, D. W., Sercombe, W. J., Riley, G. W., Barndt, J. K., Berry, J. R., et al. (1995). Stratigraphic evidence for an early collision between Northwest India and Asia. Nature, 373(6509), 55–58.

    Article  Google Scholar 

  • Besse, J., & Courtillot, V. (2002). Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 Myr. Journal of Geophysical Research, 107(B11), 2300. https://doi.org/10.1029/2000JB000050.

    Article  Google Scholar 

  • Bown, T. M., Holroyd, P. A., & Rose, K. D. (1994). Mammal extinctions, body size, and paleotemperature. Proceedings of the National Academy of Sciences, USA, 91, 10403–10406.

    Article  Google Scholar 

  • Cai, F. L., Ding, L., & Yue, Y. H. (2011). Provenance analysis of upper Cretaceous strata in the Tethys Himalaya, southern Tibet: Implications for timing of India-Asia collision. Earth and Planetary Science Letters, 305(1–2), 195–206.

    Article  Google Scholar 

  • Carrano, M. T., Wilson, J. A., & Barrett, P. M. (2010). The history of dinosaur collecting in Central India. In R. T. J. Moody, E. Buffetaut, D. Naish, & D. M. Martill (Eds.), Dinosaurs and other extinct saurians: A historical perspective (pp. 1828–1947). London: Geological Society Special Publications.

    Google Scholar 

  • Chatterjee, S. (1978). Indosuchus and Indosaurus, Cretaceous carnosaurs from India. Journal of Paleontology, 52, 570–580.

    Google Scholar 

  • Clementz, M., Bajpai, S., Ravikant, V., Thewissen, J. G. M., Saravanan, N., Singh, I. B., et al. (2011). Early Eocene warming events and the timing of terrestrial faunal exchange between India and Asia. Geology, 39, 15–18.

    Article  Google Scholar 

  • Clift, P. D., Hannigan, R., Blusztajn, J., & Draut, A. E. (2002). Geochemical evolution of the Dras-Kohistan Arc during collision with Eurasia; evidence from the Ladakh Himalaya, India. Island Arc, 11, 255–273.

    Article  Google Scholar 

  • Clobert, J., Baguette, M., Benton, T. G., & Bullock, J. M. (2012). Dispersal ecology and evolution. United Kingdom: Oxford University Press.

    Book  Google Scholar 

  • Clyde, W. C., Khan, I. H., & Gingerich, P. D. (2003). Stratigraphic response and mammalian dispersal during initial India Asia collision: Evidence from the Ghazij Formation, Balochistan, Pakistan. Geology, 31, 1097–1100.

    Article  Google Scholar 

  • Cooper, L. N., Seiffert, E. R., Clementz, M., Madar, S. I., Bajpai, S., Hussain, S. T., et al. (2014). Anthracobunids from the Middle Eocene of India and Pakistan are stem perissodactyls. PLoS ONE, 9(10), e109232. https://doi.org/10.1371/journal.pone.0109232.

    Article  Google Scholar 

  • Coughlin, B. L., & Fish, F. E. (2009). Hippopotamus underwater locomotion: Reduced gravity movements for a massive mammal. Journal of Mammalogy, 90, 675–679.

    Google Scholar 

  • Crouchley, D., Nugent, G., & Edge, K.-A. (2011). Removal of red deer (Cervus elaphas) from Anchor and Secretary Islands, Fiordland, New Zealand. In C. R. Veitch, M. N. Clout, & D. R. Towns (Eds.), Island invasives: Eradication and management (pp. 422–425). Gland, Switzerland: IUCN.

    Google Scholar 

  • DeCelles, P., Kapp, P., Gehrels, G., & Ding, L. (2014). Paleocene – Eocene foreland basin evolution in the Himalaya of southern Tibet and Nepal: Implications for the age of initial India-Asia collision. Tectonics, 33(5), 824–849.

    Google Scholar 

  • Dehm, R., & Oettingen-Spielberg, T Zu. (1958). Palaeontologische und geologische Untersuchungen im Teriar von Pakistan, 2. Die Mitteleocaecen Saeugetiere von Ganda Kas bei Basal in Nordwest-Pakistan. Bayerische Akademie der wissenschaften, Mathematisch-Physikalische Klasse, 91, 1–54.

    Google Scholar 

  • Davies, P., & Lister, A. M. (2001). Palaeoloxodon cypriotes, the dwarf elephant of Cyprus: Size and scaling comparisons with P. falconeri (Sicily-Malta) and mainland P. antiques. The World of Elephants - International congress, Rome.

    Google Scholar 

  • De Queiroz, A. (2014). The monkey’s voyage: How improbable journeys shaped the history of life. New York: Basic Books.

    Google Scholar 

  • De Sigoyer, J., Chavagnac, V., Blichert-Toft, J., Villa, I. M., Luais, B., Guillot, S., et al. (2000). Dating the Indian continental subduction and collisional thickening in the northwest Himalaya: Multichronology of the Tso Morari eclogites. Geology, 28(6), 487–490.

    Article  Google Scholar 

  • Dewey, J. F., Cande, S., & Pitman, W. C., III. (1989). Tectonic evolution of the India/Eurasia collision zone. Eclogae Geologicae Helvetiae, 82(3), 717–734.

    Google Scholar 

  • Ding, L., Kapp, P., & Wan, X. Q. (2005). Paleocene – Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet. Tectonics, 24(3). https://doi.org/10.1029/2004tc001729.

  • Ding, L., Maksatbek, S., Cai, F. L., Wang, H. Q., Song, P. P., Ji, W. Q., et al. (2017). Processes of initial collision and suturing between India and Asia. Science China Earth Sciences, 60, 635–651.

    Article  Google Scholar 

  • Eltringham, S. K. (1999). The Hippos. London: Poyser.

    Google Scholar 

  • Fisher, R. E., Scott, K. M., & Naples, V. L. (2007). Forelimb myology of the pygmy Hippopotamus (Choeropsis liberiensis). Anatomical Record, 290, 673–693.

    Article  Google Scholar 

  • Garg, R., & Ateequzzaman, K. (2000). Dinoflagellate cysts from the Lakadong Sandstone, Cherrapunji area: Biostratigraphical and palaeoenvironmental significance and relevance to sea level changes in the Upper Paleocene of the Khasi Hills, South Shillong Plateau, India. The Palaeoboanist, 49, 461–484.

    Google Scholar 

  • Garg, R., Ateequzzaman, K., Prasad, V., Tripathi, S. K. M., Singh, I. B., Jauhri, A. K., et al. (2008). Age-diagnostic dinoflagellate cysts from the lignite-bearing sediments of the Vastan lignite mine, Surat District, Gujarat, Western India. Journal of the Palaeontological Society of India, 53, 99–105.

    Google Scholar 

  • Garland, T. J. (1983). The relation between maximal running speed and body mass in terrestrial mammals. Journal of Zoology, London, 199, 157–170.

    Article  Google Scholar 

  • Garzanti, E., & Van Haver, T. (1988). The Indus clastics: Forearc basin sedimentation in the Ladakh Himalaya (India). Sedimentary Geology, 59, 237–249.

    Article  Google Scholar 

  • Gheerbrant, E., Domning, D. P., & Tassy, P. (2005). Paenungulata (Sirenia, Proboscidea, Hyracoidea, and relatives). In K. D. Rose & D. J. Archibald (Eds.), The rise of placental mammals: Origins and relationships of the major extant clades (pp. 84–105). Baltimore (MD): Johns Hopkins University Press.

    Google Scholar 

  • Gingerich, P. D. (1976). Cranial anatomy and early evolution of early Tertiary Plesiadapidae (Mammalia, Primates). University of Michigan Papers Paleontology, 15, 1–140.

    Google Scholar 

  • Gingerich, P. D. (1986). Early Eocene Cantius torresi-oldest primate of modern aspect from North America. Nature, 319, 319–321.

    Article  Google Scholar 

  • Gingerich, P. D. (1989). New earliest Wasatchian mammalian fauna from the Eocene of northwestern Wyoming: Composition and diversity in a rarely sampled high-floodplain assemblage. University of Michigan Papers on Paleontology, 28, 1–97.

    Google Scholar 

  • Gingerich, P. D. (2006). Environment and evolution through the Paleocene-Eocene thermal maximum. Trends in Ecology & Evolution, 21, 246–253.

    Article  Google Scholar 

  • Gingerich, P. D., Abbas, S. G., & Arie, M. (1997). Early Eocene Quettacyon parachai (Condylarthra) from the Ghazij Formation of Baluchistan (Pakistan): Oldest Cenozoic land-mammal from South Asia. Journal of Vertebrate Paleontology, 17, 629–637.

    Article  Google Scholar 

  • Gingerich, P. D., Arif, M., Khan, I. H., Ul-Haq, M., Bloch, J. I., Clyde, W. C., et al. (2001). Gandhera Quarry, a unique mammalian faunal assemblage from the Early Eocene of Baluchistan (Pakistan). In G. F. Gunnell (Ed.), Eocene biodiversity: Unusual occurrences and rarely sampled habitats (pp. 251–262). New York: Kluwer Academic/Plenum Publishers.

    Chapter  Google Scholar 

  • Ginsburg, L., Durrani, K. H., Kassi, A. M., & Welcomme, J. L. (1999). Discovery of a new Anthracobunidae (Tethytheria, Mammalia) from the lower Eocene lignite of the Kach-Harnai area in Baluchistan (Pakistan). Comptes Rendus Académie des Sciences Paris, Sciences Terre Planétes, 328, 209–213.

    Google Scholar 

  • Gradstein, F. M., Ogg, J. G., Schmitz, M. D., & Ogg, G. M. (2012). The geological time scale 2012. Amsterdam: Elsevier.

    Google Scholar 

  • Guillot, S., de Sigoyer, J., Lardeaux, J. M., & Mascle, G. (1997). Eclogitic metasediments from the Tso Morari area (Ladakh, Himalaya): Evidence for continental subduction during India–Asia convergence. Contributions to Mineralogy and Petrology, 128(2–3), 197–212.

    Google Scholar 

  • Guillot, S., Garzanti, E., Baratoux, D., Marquer, D., Maheo, G., & de Sigoyer, J. (2003). Reconstructing the total shortening history of the NW Himalaya. Geochemistry Geophysics Geosystems, 4, 1064.

    Article  Google Scholar 

  • Haq, B. U., Hardenbol, J., & Vail, P. R. (1987). Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change. Sea-level changes: An integrated Approach, SEPM Special Publication no. 42.

    Google Scholar 

  • Henderson, A. L., Najman, Y., Parrish, R., BouDagher Fadel, M., Barford, D., Garzanti, E., et al. (2010). Geology of the Cenozoic Indus Basin sedimentary rocks: Paleoenvironmental interpretation of sedimentation from the western Himalaya during the early phases of India-Eurasia collision. Tectonics, 29(6). https://doi.org/10.1029/2009tc002651.

  • Herridge, V. L. (2010). Dwarf elephants on Mediterranean islands: A natural experiment in parallel evolution. Ph.D. Dissertation, University College London.

    Google Scholar 

  • Hibbard, C. W. (1949). Techniques in collecting microvertebrate fossils. Contributions from the Museum of Paleontology, University of Michigan, 8(2), 7–19.

    Google Scholar 

  • Hillebrand, H. (2004). On the generality of the latitudinal diversity gradient. The American Naturalist, 163(2), 192–211.

    Article  Google Scholar 

  • Holbrook, L. T. (2014). On the skull of Radinskya (Mammalia) and its phylogenetic position. Journal of Vertebrate Paleontology, 34(5), 1203–1215.

    Article  Google Scholar 

  • Hooker, J. J. (2005). Perissodactyla. In K. D. Rose & J. D. Archibald (Eds.), The rise of placental mammals (pp. 199–214). Baltimore and London: The Johns Hopkins University Press.

    Google Scholar 

  • Huggett, R. J. (1998). Fundamentals of biogeography. London: Routledge.

    Google Scholar 

  • Hu, X., Garzanti, E., Moore, T., & Raffi, I. (2015). Direct stratigraphic dating of India-Asia collision onset at the Selandian (middle Paleocene, 59 ± 1 Ma). Geology, 43(10), 859–862.

    Article  Google Scholar 

  • Hu, X., Garzanti, E., Wang, J., Huang, W., An, W., & Webb, A. (2016). The timing of India-Asia collision onset: Facts, theories, controversies. Earth Science Reviews, 160, 264–299.

    Article  Google Scholar 

  • Johnson, D. L. (1980). Problems in the land vertebrate zoogeography of certain islands and the swimming powers of elephants. Journal of Biogeography, 7(4), 383–398.

    Article  Google Scholar 

  • Kapur, V. V., & Bajpai, S. (2015). Oldest South Asian tapiromorph (Perissodactyla, Mammalia) from the Cambay Shale Formation, western India, with comments on its phylogenetic position and biogeographic implications. The Palaeobotanist, 64, 95–103.

    Google Scholar 

  • Kapur, V. V., Das, D. P., Bajpai, S., & Prasad, G. V. R. (2017a). First mammal of Gondwanan lineage in the Early Eocene of India. Comptes Rendus Palevol, 16, 721–737.

    Article  Google Scholar 

  • Kapur, V. V., Das, D. P., Bajpai, S., & Prasad, G. V. R. (2017b). Corrigendum to “First mammal of Gondwanan lineage in the Early Eocene of India”. Comptes Rendus Palevol, 16, 820.

    Article  Google Scholar 

  • Kapur, V. V., & Khosla, A. (2016). Late Cretaceous Terrestrial Biota from India with special reference to vertebrates and their implications for biogeographic connections. In A. Khosla & S. G. Lucas (Eds.), Cretaceous period: Biotic diversity and biogeography (pp. 161–172). New Mexico Museum of Natural History and Science Bulletin.

    Google Scholar 

  • Kapur, V. V., & Khosla, A. (2019). Faunal elements from the Deccan volcano-sedimentary sequences of India: A reappraisal of biostratigraphic, palaeoecologic, and palaeobiogeographic aspects. Geological Journal, 54, 2797–2828. https://doi.org/10.1002/gj.3379.

    Article  Google Scholar 

  • Kapur, V. V., Khosla, A., Tiwari, N. (2019). Palaeoenvironmental and palaeobiogeographical implications of the microfossil assemblage from the Late Cretaceous intertrappean beds of Manawar area, District Dhar, Madhya Pradesh, Central India. Historical Biology, 31(9), 1145–1160. https://doi.org/10.1080/08912963.2018.1425408.

  • Kay, R. F. (1975). The functional adaptations of Primate molar teeth. American Journal of Physical Anthropology, 43, 195–216.

    Article  Google Scholar 

  • Keller, G., Adatte, T., Bhowmick, P. K., Upadhyay, H., Dave, A., Reddy, A. N., et al. (2012). Nature and timing of extinctions in Cretaceous-Tertiary planktic foraminifera preserved in Deccan intertrappean sediments of the Krishna-Godavari Basin, India. Earth and Planetary Science Letters, 341, 211–221.

    Article  Google Scholar 

  • Klaus, S., Morley, R. J., Plath, M., Zhang, Ya-Ping, & Li, Jia-Tang. (2016). Biotic interchange between the Indian subcontinent and mainland Asia through time. Nature Communications, 7, 12132.

    Article  Google Scholar 

  • Klootwijk, C. T., Gee, J. S., Peirce, J. W., Smith, G. M., & McFadden, P. L. (1992). An early India-Eurasia contact: Paleomagnetic constraints from Ninety-East Ridge, ODP Leg 121. Geology, 20, 395–398.

    Article  Google Scholar 

  • Kondrashov, P. E., & Lucas, S. G. (2012). Nearly complete skeleton of Tetraclaenodon (Mammalia, Phenacodontidae) from the Early Paleocene of New Mexico: Morpho-functional analysis. Journal of Paleontology, 86(1), 25–43.

    Google Scholar 

  • Kumar, K. (1991). Anthracobune aijiensis nov. sp. (Mammalia: Proboscidea) from the Subathu Formation, Eocene from NW Himalaya, India. Geobios, 24, 221–239.

    Article  Google Scholar 

  • Krause, D. W., & Maas, M. C. (1990). The biogeographic origins of Late Paleocene – Early Eocene mammalian immigrants to the western interior of North America. Geological Society of America Special Paper, 243, 71–105.

    Google Scholar 

  • Kumar, K., Rana, R. S., & Paliwal, B. S. (2005). Osteoglossid and Lepisosteid fish remains from the Paleocene Palana Formation, Rajasthan, India. Palaeontology, 48(6), 1187–1209.

    Article  Google Scholar 

  • Kumar, K., Rose, K. D., Rana, R. S., Singh, L., Smith, T., & Sahni, A. (2010). Early Eocene artiodactyls (Mammalia) from western India. Journal of Vertebrate Paleontology, 30(4), 1245–1274.

    Article  Google Scholar 

  • Legendre, S., & Roth, C. (1988). Correlation of carnassial tooth size and body weight in Recent carnivores (Mammalia). Historical Biology, 1, 85–98.

    Article  Google Scholar 

  • Lydekker, R. (1877). Notices of new and other Vertebrata from Indian Tertiary and Secondary rocks. Records of the Geological Survey of India, 10, 30–43.

    Google Scholar 

  • Mao, F.-Y., Wang, Y.-Q., Li, Q., & Jin, X. (2016). New records of archaic ungulates from the Lower Eocene of Sanshui Basin, Guangdong, China. Historical Biology, 28(6), 787–802.

    Article  Google Scholar 

  • Masters, J. C., Lovegrove, B. G., & de Wit, M. J. (2007). Eyes wide shut: Can hypometabolism really explain the primate colonization of Madagascar? Journal of Biogeography, 34, 31–37.

    Google Scholar 

  • Matthew, W. D. (1915). Climate and evolution. Annals of the New York Academy of Sciences, 24, 171–318.

    Article  Google Scholar 

  • Matthew, W. D. (1939). Climate and evolution (2nd ed.). New York: New York Academy of Sciences.

    Google Scholar 

  • Mazza, P. A. P., Lovari, S., Masini, F., Masseti, M., & Rustioni, M. (2013). A multidisciplinary approach to the analysis of multifactorial land mammal colonization of islands. Bioscience, 63(12), 939–951.

    Article  Google Scholar 

  • McKenna, M. C. (1973). Sweepstakes, filters, corridors, Noah’s arks, and beached viking funeral ships in paleogeography. In D. H. Tarling & S. K. Runcorn (Eds.), Implications of continental drift to the earth sciences (Vol. 1, pp. 295–308). New York: Academic Press.

    Google Scholar 

  • McKenna, M. C., & Bell, S. K. (1997). Classification of mammals above the species level. New York: Columbia University Press.

    Google Scholar 

  • McKenna, M. C., Chow, M., Ting, S., & Luo, Z. (1989). Radinskya yupingae, a perissodactyl-like mammal from the late Paleocene of southern China. In D. R. Prothero & R. M. Schoch (Eds.), The evolution of perissodactyls (pp. 24–36). New York: Oxford University Press.

    Google Scholar 

  • Millien, V., & Bovy, H. (2010). When teeth and bones disagree: Body mass estimation of a giant extinct rodent. Journal of Mammalogy, 91(1), 11–18.

    Article  Google Scholar 

  • Missiaen, P., & Gingerich, P. D. (2012). New Early Eocene tapiromorph perissodactyls from the Ghazij Formation of Pakistan, with implications for mammalian biochronology in Asia. Acta Palaeontologica Polonica, 57, 21–34.

    Article  Google Scholar 

  • Molnar, P., & Tapponnier, P. (1975). Cenozoic tectonics of Asia: Effects of a continental collision. Science, 189, 419–426.

    Article  Google Scholar 

  • Najman, Y., Appel, E., Boudagher-Fadel, M., Bown, P., Carter, A., Garzanti, E., et al. (2010). Timing of India-Asia collision: Geological, biostratigraphic, and paleomagnetic constraints. Journal of Geopysical Research Solid Earth, 115(B12), B12416. https://doi.org/10.1029/2010JB007673.

    Article  Google Scholar 

  • Patriat, P., & Achache, J. (1984). India – Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature, 311, 615–621.

    Google Scholar 

  • Penkrot, T. A., Zack, S. P., Rose, K. D., & Bloch, J. I. (2008). Postcranial morphology of Apheliscus and Haplomylus (Condylarthra, Apheliscidae): Evidence for a Paleocene Holarctic origin of Macroscelidea. In E. J. Sargis, & M. Dagosto (Eds.), Mammalian evolutionary morphology: A tribute to Frederick S. Szalay (pp. 73–106). Dordrecht: Springer Science.

    Google Scholar 

  • Perfit, M. R., & Williams, E. E. (1989). Geological constraints and biological retrodictions in the evolution of the Caribbean Sea and its islands. In C. A. Woods (Ed.), Biogeography of the West Indies: Past, present, and future (pp. 47–102). Gainesville, FL: Sandhill Crane.

    Google Scholar 

  • Pielou, E. C. (1979). Biogeography. New York: Wiley.

    Google Scholar 

  • Pognante, U., & Spencer, D. A. (1991). First report of eclogites from the Himalayan belt, Kaghan valley (northern Pakistan). European Journal of Mineralogy, 3, 613–618.

    Article  Google Scholar 

  • Powell, C. M., Roots, S. R., & Veevers, J. J. (1988). Pre-breakup continental extension in eastern Gondwanaland and the early opening of the eastern Indian Ocean. Tectonophysics, 155, 261–283.

    Article  Google Scholar 

  • Prasad, G. V. R., & Sahni, A. (1988). First Cretaceous mammal from India. Nature, 332(6164), 638–640.

    Article  Google Scholar 

  • Prasad, G. V. R., & Sahni, A. (1999). Were there size constraints on biotic exchanges during the northward drift of the Indian plate? Proceedings of the Indian National Science Academy, 65A(3), 377–396.

    Google Scholar 

  • Prasad, G. V. R., Verma, O., Gheerbrant, E., Goswami, A., Khosla, A., Parmar, V., et al. (2010). First mammal evidence from the Late Cretaceous of India for biotic dispersal between India and Africa at the KT transition. Comptes Rendus Palevol, 9, 63–71.

    Article  Google Scholar 

  • Prasad, G. V. R., Verma, O., Sahni, A., Parmar, V., & Khosla, A. (2007). A Cretaceous hoofed mammal from India. Science, 318, 937.

    Article  Google Scholar 

  • Prescott, J. H. (1959). Rafting of jack rabbit on kelp. Journal of Mammalogy, 40, 443–444.

    Article  Google Scholar 

  • Radinsky, L. B. (1966). The adaptive radiation of the phenacodontid condylarths and the origin of the Perissodactyla. Evolution, 20, 408–417.

    Article  Google Scholar 

  • Rana, R. S., Kumar, K., Singh, H., & Rose, K. D. (2005). Lower vertebrates from the Late Paleocene-Earliest Eocene Akli Formation, Giral Lignite Mine, Barmer District, western India. Current Science, 89, 1606–1613.

    Google Scholar 

  • Renne, P. R., Deino, A. L., Hilgen, F. J., Kuiper, K. F., Mark, D. F., Mitchell, W. S., III, et al. (2013). Time scales of critical events around the Cretaceous – Paleogene boundary. Science, 339, 684–687.

    Google Scholar 

  • Rose, K. D. (1996). Skeleton of Early Eocene Homogalax and the origin of Perissodactyla. Palaeovertebrata, 25, 243–260.

    Google Scholar 

  • Rose, K. D., Holbrook, L. T., Rana, R. S., Kumar, K., Jones, K. E., Ahrens, H. E., et al. (2014). Early Eocene fossils suggest that the mammalian order Perissodactyla originated in India. Nature Communications, 5(5570), 1–9.

    Google Scholar 

  • Rose, K. D., Kumar, K., Rana, R. S., Sahni, A., & Smith, T. (2013). New hypsodont tillodont (Mammalia, Tillodontia) from the Early Eocene of India. Journal of Paleontology, 87(5), 842–853.

    Article  Google Scholar 

  • Rose, K. D., Rana, R. S., Sahni, A., & Smith, T. (2007). A new adapoid primate from the Early Eocene of India. Contributions from the Museum of Paleontology, University of Michigan, 31(14), 379–385.

    Google Scholar 

  • Rose, K. D., Rana, R. S., Sahni, A., Kumar, K., Missiaen, P., Singh, L., et al. (2009a). Early Eocene primates from Gujarat, India. Journal of Human Evolution, 56, 366–404.

    Article  Google Scholar 

  • Rose, K. D., Rana, R. S., Sahni, A., Kumar, K., Singh, L., & Smith, T. (2009b). First tillodont from India: Additional evidence for an Early Eocene faunal connection between Europe and India? Acta Palaeontologica Polonica, 54, 351–355.

    Article  Google Scholar 

  • Rose, K. D., Smith, T., Rana, R. S., Sahni, A., Singh, H., Missiaen, P., et al. (2006). Early Eocene (Ypresian) continental vertebrate assemblage from India, with description of a new anthracobunid (Mammalia, Tethytheria). Journal of Vertebrate Paleontology, 26, 219–225.

    Google Scholar 

  • Rowley, D. B. (1996). Age of initiation of collision between India and Asia; a review of stratigraphic data. Earth and Planetary Science Letters, 145, 1–13.

    Article  Google Scholar 

  • Sahni, A. (1968). Techniques in prospecting for terrestrial microvertebrates. Journal of the Palaeontological Society of India, 13(5), 38–43.

    Google Scholar 

  • Sahni, A., Saraswati, P. K., Rana, R. S., Kumar, K., Singh, H., Alimohammadian, H., et al. (2006). Temporal constraints and depositional paleoenvironments of the Vastan Lignite Sequence, Gujarat: Analogy for the Cambay Shale hydrocarbon source rock. Indian Journal of Petroleum Geology, 15, 1–20.

    Google Scholar 

  • Samant, B., & Bajpai, S. (2001). Fish otoliths from the subsurface Cambay shale (Lower Eocene), Surat lignite field, India. Current Science, 81(7), 758–759.

    Google Scholar 

  • Scotese, C. R. (2016). Continental flooding and orography. https://www.youtube.com/watch?v=y-Qh1Zp9WoM&t=31s.

  • Searle, M., Corfield, R. I., Stephenson, B., & McCarron, J. (1997). Structure of the North Indian continental margin in the Ladakh-Zanskar Himalayas: Implications for the timing of obduction of the Spontang ophiolite, India-Asia collision and deformation events in the Himalaya. Geological Magazine, 134(3), 297–316.

    Article  Google Scholar 

  • Simpson, G. G. (1940). Mammals and land bridges. Journal of the Washington Academy of Science, 30, 137–163.

    Google Scholar 

  • Singh, R. S., & Kar, R. K. (2002). Paleocene palynofossils from the Lalitpur Intertrappean beds, Uttar Pradesh, India. Journal of the Geological Society of India, 60, 213–216.

    Google Scholar 

  • Sleeman, W. H. (1844). Rambles and recollections of an Indian official. London: I. J. Hatchard and Sons.

    Google Scholar 

  • Smith, T., Kumar, K., Rana, R. S., Folie, A., Solé, F., Noiret, C., et al. (2016). New Early Eocene vertebrate assemblage from western India reveals a mixed fauna of European and Gondwanan affinities. Geoscience Frontiers. https://doi.org/10.1016/j.gsf.2016.05.001.

    Article  Google Scholar 

  • Smith, T., Rana, R. S., Missiaen, P., Rose, K. D., Sahni, A., Singh, H., et al. (2007). Highest diversity of earliest bats in the Early Eocene of India. Naturwissenschaften, 94, 1003–1009.

    Article  Google Scholar 

  • Smith, T., Solé, F., Missiaen, P., Rana, R. S., Kumar, K., Sahni, A., et al. (2015). First Early Eocene tapiroid from India and its implication for the paleobiogeographic origin of perissodactyls. Palaeovertebrata, 39(2), e5.

    Google Scholar 

  • Solé, F., & Smith, T. (2013). Dispersals of placental carnivorous mammals (Carnivoramorpha, Oxyaenodonta & Hyaenodontida) near the Paleocene – Eocene boundary: A climatic and almost worldwide story. Geologica Belgica, 16(4), 254–261.

    Google Scholar 

  • Springer, M. S., Meredith, R. W., Janecka, J. E., & Murphy, W. J. (2011). The historical biogeography of Mammalia. Philosophical Translations of the Royal Society B, 366, 2478–2502.

    Article  Google Scholar 

  • Stenseth, N. C., & Lidicker, W. Z. (2012). Animal dispersal. London: Chapman & Hall.

    Google Scholar 

  • Sukumar, R. (2006). A brief review of the status, distribution and biology of wild Asian elephants. International Zoo Yearbook, 40, 1–8.

    Article  Google Scholar 

  • Taylor, L. A., Rudd, J., Hummel, J., Clauss, M., & Schwitzer, C. (2013). Weight loss in pygmy hippos (Choeropsis liberiensis). In B. Steck (Ed.), International studbook for the year 2012: Pygmy Hippopotamus (pp. 20–25). Basel: Zoo Basel.

    Google Scholar 

  • Teitelbaum, C. S., Fagan, W. F., Fleming, C. H., Dressler, G., Calabrese, J. M., Leimgruber, P., et al. (2015). How far to go? Determination of migration distance in land mammals. Ecology Letters, 18, 545–552.

    Article  Google Scholar 

  • Tewari, V. C., Kumar, K., Lokho, K., & Siva Siddaiah, N. (2010). Lakadong limestone: Paleocene-Eocene boundary carbonate sedimentation in Meghalaya, northeastern India. Current Science, 98(1), 88–95.

    Google Scholar 

  • Thewissen, J. G. M., & Bajpai, S. (2009). A new Miocene sirenian from Kutch, India. Acta Palaeontologica Polonica, 54(1), 7–13.

    Article  Google Scholar 

  • Thewissen, J. G. M., & Domning, D. P. (1992). The role of the phenacodontids in the origin of the modern orders of ungulate mammals. Journal of Vertebrate Paleontology, 12, 494–504.

    Article  Google Scholar 

  • Thewissen, J. G. M., Williams, E. M., & Hussain, S. T. (2001). Eocene mammal faunas from northern Indo-Pakistan. Journal of Vertebrate Paleontology, 21, 347–366.

    Article  Google Scholar 

  • Ting, S. (1998). Paleocene and early Eocene land mammal ages of Asia. Bulletin of the Carnegie Museum of Natural History, 34, 124–147.

    Google Scholar 

  • Ting, S., Tong, Y., Clyde, W. C., Koch, P. L., Meng, J., Wang, Y., et al. (2011). Asian early Paleogene chronology and mammalian faunal turnover events. Vertebrata PalAsiatica, 49, 1–28.

    Google Scholar 

  • Tonarini, S., Villa, I. M., Oberli, F., Meier, M., Spencer, D. A., Pognante, U., et al. (1993). Eocene age of eclogite metamorphism in Pakistan Himalaya: Implications for India-Eurasia collision. Terra Nova, 5, 13–20.

    Article  Google Scholar 

  • Treloar, P. J., & Coward, M. P. (1991). Indian plate motion and shape: Constraints on the geometry of the Himalayan orogen. Tectonophysics, 191, 189–198.

    Article  Google Scholar 

  • Van der Geer, A., Lyras, G., de Vos, J., & Dermitzakis, M. (2010). Evolution of Island mammals. West Sussex: Wiley.

    Book  Google Scholar 

  • Van Duzer, C. (2004). Floating Islands: A global bibliography. California: Cantor Press.

    Google Scholar 

  • Van Valen, L. (1978). The beginning of the age of mammals. Evolutionary Theory, 4, 103–121.

    Google Scholar 

  • Wells, N. A., & Gingerich, P. D. (1983). Review of Eocene Anthracobunidae (Mammalia:Proboscide) with a new genus and species, Jozaria palustris, from the Kuldana Formation of Kohat (Pakistan). Contributions from the Museum of Paleontology, University of Michigan, 26, 117–139.

    Google Scholar 

  • West, R. M. (1980). Middle Eocene large mammal assemblage with Tethyan affinities, Ganda Kas region, Pakistan. Journal of Paleontology, 54, 508–533.

    Google Scholar 

  • West, R. M. (1983). South Asian Middle Eocene moeritheres (Mammalia: Tethytheria). Annals of the Carnegie Museum of Natural History, 52, 359–373.

    Google Scholar 

  • Willems, H., Zhou, Z., Zhang, B., & Grafe, K. U. (1996). Stratigraphy of the upper Cretaceous and lower Tertiary Strata in the Tethyan Himalayas of Tibet (Tingri area, China). Geologische Rundschau, 85(4), 723–754.

    Article  Google Scholar 

  • Yin, A. (2006). Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth Science Reviews, 76(1–2), 1–131.

    Article  Google Scholar 

  • Yin, A., & Harrison, M. T. (2000). Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28, 211–280.

    Article  Google Scholar 

  • Zhang, Q. H., Willems, H., Ding, L., Gräfe, K.-U., & Appel, E. (2012). Initial India-Asia continental collision and foreland basin evolution in the Tethyan Himalaya of Tibet: Evidence from stratigraphy and paleontology. Journal of Geology, 120(2), 175–189.

    Article  Google Scholar 

  • Zhu, B., Kidd, W. S. F., Rowley, D. B., Currie, B. S., & Shafique, N. (2005). Age of initiation of the India-Asia collision in the east-central Himalaya. The Journal of Geology, 113(3), 265–285.

    Article  Google Scholar 

  • Zhu, D.-C., Wang, Q., Zhao, Z.-D., Chung, S.-L., Cawood, P. A., Niu, Y., et al. (2015). Magmetic record of India-Asia collision. Scientific Reports, 5, 14289. https://doi.org/10.1038/srep14289(2015).

    Article  Google Scholar 

Download references

Acknowledgements

At the onset, I would like to thank Prof. G.V.R. Prasad and Prof. Rajeev Patnaik for the invitation to contribute to this volume. I would also like to acknowledge the Director (Birbal Sahni Institute of Palaeosciences, India) for constant encouragement and providing permission to contribute this research article. The author acknowledges funding support from BSIP in the form of in-house projects 2.17 (2017–2019) and 3.9 (2019–2021). Dr. Sebastian Klaus (Goethe Universität, Germany), Prof. M. P. Singh (University of Lucknow , India), Prof. Christopher R. Scotese (Director, PEOMAP Project, Illinois, USA) and Dr. (Mrs) Rajni Tewari (BSIP, Lucknow, India) kindly provided permission(s) to reproduce, reuse and redraw figure(s) for this article. I would also like to thank Prof. Daryl Paul Domning (Howard University, Washington DC, USA) for valuable discussions on the manuscript and also for providing grammatical enhancements. Prof. I.B. Singh (Lucknow , India) and Dr. Rahul Garg (Lucknow, India) are also acknowledged for insightful discussions. I also thank staff members of the Gujarat Industries Power Company Limited (GIPCL) and Gujarat Mineral Development Corporation (GMDC) for providing necessary permission(s) and extending logistic support during numerous field excursions and help in many other ways. I gratefully acknowledge Dr. David Krause (Denver Museum of Nature and Science, Colorado, USA) and two anonymous reviewers for a critical review of the manuscript and for their constructive and insightful comments which helped me in improving the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivesh V. Kapur .

Editor information

Editors and Affiliations

Appendix

Appendix

Table 5 Data on the area (length × width, in mm sq.) of premolar (p4) and molars (m1, m2, and m3) measurements for known non-volant mammalian orders: Perissodactyla, Artiodactyla, Creodonta, Tillodonta, Primates, Proteutheria, Rodentia, and Didelphimorphia from the Cambay Shale, Gujarat, western India that has been used in the present study for conducting the ANOVA test

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kapur, V.V. (2020). Size Variation Amongst the Non-volant Mammals from the Early Eocene Cambay Shale Deposits of Western India: Paleobiogeographic implications. In: Prasad, G.V., Patnaik, R. (eds) Biological Consequences of Plate Tectonics. Vertebrate Paleobiology and Paleoanthropology. Springer, Cham. https://doi.org/10.1007/978-3-030-49753-8_13

Download citation

Publish with us

Policies and ethics