Skip to main content
Log in

Processes of initial collision and suturing between India and Asia

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The initial collision between Indian and Asian continents marked the starting point for transformation of land-sea thermal contrast, uplift of the Tibet-Himalaya orogen, and climate change in Asia. In this paper, we review the published literatures from the past 30 years in order to draw consensus on the processes of initial collision and suturing that took place between the Indian and Asian plates. Following a comparison of the different methods that have been used to constrain the initial timing of collision, we propose that the tectono-sedimentary response in the peripheral foreland basin provides the most sensitive index of this event, and that paleomagnetism presents independent evidence as an alternative, reliable, and quantitative research method. In contrast to previous studies that have suggested collision between India and Asia started in Pakistan between ca. 55 Ma and 50 Ma and progressively closed eastwards, more recent researches have indicated that this major event first occurred in the center of the Yarlung Tsangpo suture zone (YTSZ) between ca. 65 Ma and 63 Ma and then spreading both eastwards and westwards. While continental collision is a complicated process, including the processes of deformation, sedimentation, metamorphism, and magmatism, different researchers have tended to define the nature of this event based on their own understanding, an intuitive bias that has meant that its initial timing has remained controversial for decades. Here, we recommend the use of reconstructions of each geological event within the orogenic evolution sequence as this will allow interpretation of collision timing on the basis of multidisciplinary methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrajevitch A, Ali J, Aitchison J, Badengzhu J, Davis A, Liu J, Ziabrev S. 2005. Neotethys and the India-Asia collision: Insights from a palaeomagnetic study of the Dazhuqu ophiolite, southern Tibet. Earth Planet Sci Lett, 233: 87–102

    Article  Google Scholar 

  • Achache J, Courtillot V, Xiu Z Y. 1984. Paleogeographic and tectonic evolution of southern Tibet since Middle Cretaceous time: NEw paleomagnetic data and synthesis. J Geophys Res, 89: 10311–10339

    Article  Google Scholar 

  • Aikman A B, Harrison T M, Lin D. 2008. Evidence for early (>44 Ma) Himalayan crustal thickening, Tethyan Himalaya, southeastern Tibet. Earth Planet Sci Lett, 274: 14–23

    Article  Google Scholar 

  • Aikman A B, Harrison T M, Hermann J. 2012. The origin of Eo-and Neohimalayan granitoids, Eastern Tibet. J Asian Earth Sci, 58: 143–157

    Article  Google Scholar 

  • Aitchison J C, Ali J R, Davis A M. 2007a. When and where did India and Asia collide? J Geophys Res, 112: B05423

    Article  Google Scholar 

  • Aitchison J C, Badengzhu J C, Davis A M, Liu J, Luo H, Malpas J G, McDermid I R C, Wu H, Ziabrev S V, Zhou M. 2000. Remnants of a Cretaceous intra-oceanic subduction system within the Yarlung-Zangbo suture (southern Tibet). Earth Planet Sci Lett, 183: 231–244

    Article  Google Scholar 

  • Aitchison J C, McDermid I R C, Ali J R, Davis A M, Zyabrev S V. 2007b. Shoshonites in Southern Tibet record Late Jurassic rifting of a Tethyan Intraoceanic Island Arc. J Geol, 115: 197–213

    Article  Google Scholar 

  • Ali J R, Aitchison J C. 2005. Greater India. Earth-Sci Rev, 72: 169–188

    Article  Google Scholar 

  • Ali J R, Aitchison J C. 2006. Positioning Paleogene Eurasia problem: Solution for 60–50 Ma and broader tectonic implications. Earth Planet Sci Lett, 251: 148–155

    Article  Google Scholar 

  • Allégre C J, Courtillot V, Tapponnier P, Hirn A, Mattauer M, Coulon C, Jaeger J J, Achache J, Schärer U, Marcoux J, Burg J P, Girardeau J, Armijo R, Gariépy C, Göpel C, Li T D, Xiao X C, Chang C F, Li G Q, Lin B Y, Teng J W, Wang N W, Chen G M, Han T L, Wang X B, Den W M, Sheng H B, Cao Y G, Zhou J, Qiu H G, Bao P S, Wang B X, Zhou Y X, Xu R H. 1984. Structure and evolution of the Himalaya-Tibet orogenic belt. Nature, 307: 17–22

    Article  Google Scholar 

  • Argand E. 1924. La tectonique de l' Asie. Brussels: Proceedings of the VIIIth International Geological Congress. 181–372

    Google Scholar 

  • Batra R S. 1989. A reinterpretation of the geology and biostratigraphy of the Lower Tertiary Formations exposed along the Bilaspur-Shimla Highway, Himachal Pradesh, India. J Geol Soc Ind, 33: 503–523

    Google Scholar 

  • Beck R A, Burbank D W, Sercombe W J, Riley G W, Barndt J K, Berry J R, Afzal J, Khan A M, Jurgen H, Metje J, Cheema A, Shafique N A, Lawrence R D, Khan M A. 1995. Stratigraphic evidence for an early collision between northwest India and Asia. Nature, 373: 55–58

    Article  Google Scholar 

  • Besse J, Courtillot V, Pozzi J P, Westphal M, Zhou Y X. 1984. Palaeomagnetic estimates of crustal shortening in the Himalayan thrusts and Zangbo suture. Nature, 311: 621–626

    Article  Google Scholar 

  • Bossart P, Ottiger R. 1989. Rocks of the Murree Formation in northern Pakistan: Indicators of a descending foreland basin of late Paleocene to middle Eocene age. Eclogae Geol Helv, 82: 133–165

    Google Scholar 

  • Bouilhol P, Jagoutz O, Hanchar J M, Dudas F O. 2013. Dating the India-Eurasia collision through arc magmatic records. Earth Planet Sci Lett, 366: 163–175

    Article  Google Scholar 

  • Brown B J, Müller R D, Struckmeyer H I M, Gaina C, Stagg H, Symonds P. 2003. Formation and evolution of Australian passive margins: Implications for locating the boundary between continental and oceanic crust. Geol Soc Am Spec, 372: 223–243

    Google Scholar 

  • Burg J P, Chen G M. 1984. Tectonics and structural zonation of southern Tibet, China. Nature, 311: 219–223

    Article  Google Scholar 

  • Cai F, Ding L, Yue Y. 2011. Provenance analysis of upper Cretaceous strata in the Tethys Himalaya, southern Tibet: Implications for timing of India-Asia collision. Earth Planet Sci Lett, 305: 195–206

    Article  Google Scholar 

  • Chen J, Huang B, Sun L. 2010. New constraints to the onset of the India-Asia collision: Paleomagnetic reconnaissance on the Linzizong Group in the Lhasa Block, China. Tectonophysics, 489: 189–209

    Article  Google Scholar 

  • Chen J, Huang B, Yi Z, Yang L, Chen L. 2014. Paleomagnetic and 40Ar/39Ar geochronological results from the Linzizong Group, Linzhou Basin, Lhasa Terrane, Tibet: Implications to Paleogene paleolatitude and onset of the India-Asia collision. J Asian Earth Sci, 96: 162–177

    Article  Google Scholar 

  • Chen W, Yang T, Zhang S, Yang Z, Li H, Wu H, Zhang J, Ma Y, Cai F. 2012. Paleomagnetic results from the Early Cretaceous Zenong Group volcanic rocks, Cuoqin, Tibet, and their paleogeographic implications. Gondwana Res, 22: 461–469

    Article  Google Scholar 

  • Clift P D, Carter A, Krol M, Kirby E. 2002. Constraints on India-Eurasia collision in the Arabian Sea region taken from the Indus Group, Ladakh Himalaya, India. In: Clift P D, Kroon D, Gaedicke C, et al, eds. The Tectonic and Climatic Evolution of the Arabian Sea Region. Geol Soc Lon Spec Pub, 195: 97–116

    Google Scholar 

  • Critelli S, Garzanti E. 1994. Provenance of the Lower Tertiary Murree redbeds (Hazara-Kashmir Syntaxis, Pakistan) and initial rising of the Himalayas. Sediment Geol, 89: 265–284

    Article  Google Scholar 

  • DeCelles P G, Gehrels G E, Najman Y, Martin A J, Carter A, Garzanti E. 2004. Detrital geochronology and geochemistry of Cretaceous-Early Miocene strata of Nepal: Implications for timing and diachroneity of initial Himalayan orogenesis. Earth Planet Sci Lett, 227: 313–330

    Article  Google Scholar 

  • DeCelles P G, Kapp P, Gehrels G E, Ding L. 2014. Paleocene-Eocene foreland basin evolution in the Himalaya of southern Tibet and Nepal: Implications for the age of initial India-Asia collision. Tectonics, 33: 824–849

    Article  Google Scholar 

  • DeCelles P G, Robinson D M, Zandt G. 2002. Implications of shortening in the Himalayan fold-thrust belt for uplift of the Tibetan Plateau. Tectonics, 21: 12-1–12-25

    Article  Google Scholar 

  • Ding H, Zhang Z, Dong X, Tian Z, Xiang H, Mu H, Gou Z, Shui X, Li W, Mao L. 2016a. Early Eocene (c. 50 Ma) collision of the Indian and Asian continents: Constraints from the North Himalayan metamorphic rocks, southeastern Tibet. Earth Planet Sci Lett, 435: 64–73

    Article  Google Scholar 

  • Ding L, Cai F L, Wang H Q, Li Z Y, Li Y P. 2013. The research methods of Continental collision time. In: Ding Z L, ed. The Research Methods of Solid Earth Science (in Chinese). Beijing: Science China Press. 842–853

    Google Scholar 

  • Ding L, Cai F L, Zhang Q H, Zhang L Y, Xu Q, Yang D, Liu D L, Zhong D L. 2009. Provenance and tectonic evolution of the foreland basin systems in the Gangdese-Himalayan collisional orogen belt (in Chinese). Chin J Geol, 44: 1289–1311

    Google Scholar 

  • Ding L, Kapp P, Wan X. 2005. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet. Tectonics, 24: TC3001

    Article  Google Scholar 

  • Ding L, Kapp P, Zhong D L, Deng W M. 2003. Cenozoic volcanism in Tibet: Evidence for a transition from oceanic to continental subduction. J Petrol, 44: 1833–1865

    Article  Google Scholar 

  • Ding L, Qasim M, Jadoon I A K, Khan M A, Xu Q, Cai F, Wang H, Baral U, Yue Y. 2016b. The India-Asia collision in north Pakistan: Insight from the U-Pb detrital zircon provenance of Cenozoic foreland basin. Earth Planet Sci Lett, 455: 49–61

    Article  Google Scholar 

  • Ding L, Zhong D, Yin A, Kapp P, Harrison T M. 2001. Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa). Earth Planet Sci Lett, 192: 423–438

    Article  Google Scholar 

  • Ding L, Zhong D. 1999. Metamorphic characteristics and geotectonic implications of the high-pressure granulites from Namjagbarwa, eastern Tibet. Sci China Ser D-Earth Sci, 42: 491–505

    Article  Google Scholar 

  • Ding L. 2003. Paleocene deep-water sediments and radiolarian faunas: Implications for evolution of Yarlung-Zangbo foreland basin, southern Tibet. Sci China Ser D-Earth Sci, 46: 84–96

    Article  Google Scholar 

  • Donaldson D G, Webb A A G, Menold C A, Kylander-Clark A R C, Hacker B R. 2013. Petrochronology of Himalayan ultrahigh-pressure eclogite. Geology, 41: 835–838

    Article  Google Scholar 

  • Fuchs G, Willems H. 1990. The final stages of sedimentation in the Tethyan zone of Zanskarr and their geodynamic significance (Ladakh-Himalaya). Jahrbuche Geol Bundenstalt, 133: 259–273

    Google Scholar 

  • Gaetani M, Garzanti E. 1991. Multicyclic History of the Northern India Continental-Margin (Northwestern Himalaya). AAPG Bull, 75: 1427–1446

    Google Scholar 

  • Garzanti E, Baud A, Mascle G. 1987. Sedimentary record of the northward flight of India and its collision with Eurasia (Ladakh Himalaya, India). Geodin Acta, 1: 297–312

    Article  Google Scholar 

  • Gilder S, Chen Y, Sen S. 2001. Oligo-Miocene magnetostratigraphy and rock magnetism of the Xishuigou section, Subei (Gansu Province, western China) and implications for shallow inclinations in central Asia. J Geophys Res, 106: 30505–30521

    Article  Google Scholar 

  • Hall R. 2012. Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics, 570-571: 1–41

    Article  Google Scholar 

  • Henderson A L, Najman Y, Parrish R, Mark D F, Foster G L. 2011. Constraints to the timing of India-Eurasia collision: A re-evaluation of evidence from the Indus Basin sedimentary rocks of the Indus-Tsangpo Suture Zone, Ladakh, India. Earth-Sci Rev, 106: 265–292

    Article  Google Scholar 

  • Hou Z Q, Zheng Y C, Zeng L S, Gao L E, Huang K X, Li W, Li Q Y, Fu Q, Liang W, Sun Q Z. 2012. Eocene-Oligocene granitoids in southern Tibet: Constraints on crustal anatexis and tectonic evolution of the Himalayan orogen. Earth Planet Sci Lett, 349-350: 38–52

    Article  Google Scholar 

  • Hu X, Garzanti E, Moore T, Raffi I. 2015. Direct stratigraphic dating of India-Asia collision onset at the Selandian (middle Paleocene, 59±1 Ma). Geology, 43: 859–862

    Article  Google Scholar 

  • Hu X, Garzanti E, Wang J, Huang W, An W, Webb A. 2016a. The timing of India-Asia collision onset—Facts, theories, controversies. Earth-Sci Rev, 160: 264–299

    Article  Google Scholar 

  • Hu X, Sinclair H D, Wang J, Jiang H, Wu F. 2012. Late Cretaceous-Palaeogene stratigraphic and basin evolution in the Zhepure Mountain of southern Tibet: Implications for the timing of India-Asia initial collision. Basin Res, 24: 520–543

    Article  Google Scholar 

  • Hu X, Wang J, BouDagher-Fadel M, Garzanti E, An W. 2016b. New insights into the timing of the India-Asia collision from the Paleogene Quxia and Jialazi formations of the Xigaze forearc basin, South Tibet. Gondwana Res, 32: 76–92

    Article  Google Scholar 

  • Huang W, Dupont-Nivet G, Lippert P C, van Hinsbergen D J J, Dekkers M J, Waldrip R, Ganerød M, Li X, Guo Z, Kapp P. 2015a. What was the Paleogene latitude of the Lhasa terrane? A reassessment of the geochronology and paleomagnetism of Linzizong volcanic rocks (Linzhou basin, Tibet). Tectonics, 34: 594–622

    Article  Google Scholar 

  • Huang W, Dupont-Nivet G, Lippert P C, van Hinsbergen D J J, Hallot E. 2013. Inclination shallowing in Eocene Linzizong sedimentary rocks from Southern Tibet: Correction, possible causes and implications for reconstructing the India-Asia collision. Geophys J Int, 194: 1390–1411

    Article  Google Scholar 

  • Huang W, van Hinsbergen D J J, Lippert P C, Guo Z, Dupont-Nivet G. 2015b. Paleomagnetic tests of tectonic reconstructions of the India-Asia collision zone. Geophys Res Lett, 42: 2642–2649

    Article  Google Scholar 

  • Huang W, van Hinsbergen D J J, Maffione M, Orme D A, Dupont-Nivet G, Guilmette C, Ding L, Guo Z, Kapp P. 2015c. Lower Cretaceous Xigaze ophiolites formed in the Gangdese forearc: Evidence from paleomagnetism, sediment provenance, and stratigraphy. Earth Planet Sci Lett, 415: 142–153

    Article  Google Scholar 

  • Jaeger J J, Courtillot V, Tapponnier P. 1989. Paleontological view of the ages of the Deccan Traps, the Cretaceous/Tertiary boundary, and the India-Asia collision. Geology, 17: 316–319

    Article  Google Scholar 

  • Ji W Q, Wu F Y, Chung S L, Wang X C, Liu C Z, Li Q L, Liu Z C, Liu X C, Wang J G. 2016. Eocene Neo-Tethyan slab breakoff constrained by 45 Ma oceanic island basalt-type magmatism in southern Tibet. Geology, 44: 283–286

    Article  Google Scholar 

  • Kaneko Y, Katayama I, Yamamoto H, Misawa K, Ishikawa M, Rehman H U, Kausar A B, Shiraishi K. 2003. Timing of Himalayan ultrahigh-pressure metamorphism: Sinking rate and subduction angle of the Indian continental crust beneath Asia. J Metamorph Geol, 21: 589–599

    Article  Google Scholar 

  • Klootwijk C T, Conaghan P J, Nazirullah R, de Jong K A. 1994. Further palaeomagnetic data from Chitral (Eastern Hindukush): Evidence for an early India-Asia contact. Tectonophysics, 237: 1–25

    Article  Google Scholar 

  • Klootwijk C T, Gee J S, Peirce J W, Smith G M, McFadden P L. 1992. An early India-Asia contact: Paleomagnetic constraints from Ninetyeast Ridge, ODP Leg 121. Geology, 20: 395–398

    Article  Google Scholar 

  • Kodama K P. 2012. Paleomagnetism of Sedimentary Rocks: Process and Interpretation. Hoboken: John Wiley & Sons

    Book  Google Scholar 

  • Leech M L, Singh S, Jain A K, Klemperer S L, Manickavasagam R M. 2005. The onset of India-Asia continental collision: Early, steep subduction required by the timing of UHP metamorphism in the western Himalaya. Earth Planet Sci Lett, 234: 83–97

    Article  Google Scholar 

  • Li G B, Wan X Q, Qi H, Liang D Y, Liu W C. 2002. Eocene fossil carbonate microfacies and sedimentary enviroment in Gangba-Tingri, Southern Tibet (in Chinese). Geol China, 29: 401–406

    Google Scholar 

  • Li Z, Ding L, Song P, Fu J, Yue Y. 2017. Paleomagnetic constraints on the paleolatitude of the Lhasa block during the Early Cretaceous: Implications for the onset of India-Asia collision and latitudinal shortening estimates across Tibet and stable Asia. Gondwana Res, 41: 352–372

    Article  Google Scholar 

  • Li Z, Ding L, Lippert P C, Song P, Yue Y, van Hinsbergen D J J. 2016. Paleomagnetic constraints on the Mesozoic drift of the Lhasa terrane (Tibet) from Gondwana to Eurasia. Geology, 44: 727–730

    Article  Google Scholar 

  • Liebke U, Appel E, Ding L, Neumann U, Antolin B, Xu Q. 2010. Position of the Lhasa terrane prior to India-Asia collision derived from palaeomagnetic inclinations of 53 Ma old dykes of the Linzhou Basin: Constraints on the age of collision and post-collisional shortening within the Tibetan Plateau. Geophys J Int, 182: 1199–1215

    Article  Google Scholar 

  • Lin J, Watts D R. 1988. Palaeomagnetic results from the Tibetan Plateau. Philos Trans R Soc A-Math Phys Eng Sci, 327: 239–262

    Article  Google Scholar 

  • Lippert P C, van Hinsbergen D J J, Dupont-Nivet G. 2014. Early Cretaceous to present latitude of the central proto-Tibetan Plateau: A paleomagnetic synthesis with implications for Cenozoic tectonics, paleogeography, and climate of Asia. Geol Soc Am Spec Pap, 507: 1–21

    Google Scholar 

  • Liu Z C, Wu F Y, Ji W Q, Wang J G, Liu C Z. 2014. Petrogenesis of the Ramba leucogranite in the Tethyan Himalaya and constraints on the channel flow model. Lithos, 208-209: 118–136

    Article  Google Scholar 

  • Ma Y, Yang T, Bian W, Jin J, Zhang S, Wu H, Li H. 2016. Early Cretaceous paleomagnetic and geochronologic results from the Tethyan Himalaya: Insights into the Neotethyan paleogeography and the India-Asia collision. Sci Rep, 6: 21605

    Article  Google Scholar 

  • Ma Y, Yang T, Yang Z, Zhang S, Wu H, Li H, Li H, Chen W, Zhang J, Ding J. 2014. Paleomagnetism and U-Pb zircon geochronology of Lower Cretaceous lava flows from the western Lhasa terrane: New constraints on the India-Asia collision process and intracontinental deformation within Asia. J Geophys Res-Solid Earth, 119: 7404–7424

    Article  Google Scholar 

  • Meng J, Wang C, Zhao X, Coe R, Li Y, Finn D. 2012. India-Asia collision was at 24°N and 50 Ma: Palaeomagnetic proof from southernmost Asia. Sci Rep, 2: 925

    Article  Google Scholar 

  • Najman Y. 2005. The detrital record of orogenesis: A review of approaches and techniques used in the Himalayan sedimentary basins. Earth-Sci Rev, 74: 1–72

    Google Scholar 

  • Najman Y, Appel E, Boudagher-Fadel M, Bown P, Carter A, Garzanti E, Godin L, Han J, Liebke U, Oliver G, Parrish R, Vezzoli G. 2010. Timing of India-Asia collision: Geological, biostratigraphic, and palaeomagnetic constraints. J Geophys Res, 115: B12416

    Article  Google Scholar 

  • Najman Y, Pringle M, Godin L, Oliver G. 2001. Dating of the oldest continental sediments from the Himalayan foreland basin. Nature, 410: 194–197

    Article  Google Scholar 

  • Patriat P, Achache J. 1984. India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature, 311: 615–621

    Article  Google Scholar 

  • Patzelt A, Li H, Wang J, Appel E. 1996. Palaeomagnetism of Cretaceous to Tertiary sediments from southern Tibet: Evidence for the extent of the northern margin of India prior to the collision with Eurasia. Tectonophysics, 259: 259–284

    Article  Google Scholar 

  • Pozzi J P, Westphal M, Xiu Zhou Y, Sheng Xing L, Yao Chen X. 1982. Position of the Lhasa block, South Tibet, during the late Cretaceous. Nature, 297: 319–321

    Article  Google Scholar 

  • Pullen A, Kapp P, DeCelles P G, Gehrels G E, Ding L. 2011. Cenozoic anatexis and exhumation of Tethyan Sequence rocks in the Xiao Gurla Range, Southwest Tibet. Tectonophysics, 501: 28–40

    Article  Google Scholar 

  • Qi X X, Zeng L S, Meng X J, Xu Z Q, Li T F. 2008. Zircon SHRIMP U-Pb dating for Dala granite in the Tethyan Himalaya and its geological implication (in Chinese). Acta Petrol Sin, 24: 1501–1508

    Google Scholar 

  • Ratschbacher L, Frisch W, Liu G, Chen C. 1994. Distributed deformation in southern and western Tibet during and after the India-Asia collision. J Geophys Res, 99: 19917–19945

    Article  Google Scholar 

  • Rowley D B. 1996. Age of initiation of collision between India and Asia: A review of stratigraphic data. Earth Planet Sci Lett, 145: 1–13

    Article  Google Scholar 

  • Rowley D B. 1998. Minimum age of initiation of collision between India and Asia North of everest based on the subsidence history of the Zhepure Mountain section. J Geol, 106: 220–235

    Article  Google Scholar 

  • Searle M P, Windley B F, Coward M P, Cooper D J W, Rex A J, Rex D, Tingdong L, Xuchang X, Jan M Q, Thakur V C, Kumar S. 1987. The closing of Tethys and the tectonics of the Himalaya. Geol Soc Am Bull, 98: 678–701

    Article  Google Scholar 

  • Sun Z, Jiang W, Li H, Pei J, Zhu Z. 2010. New paleomagnetic results of Paleocene volcanic rocks from the Lhasa block: Tectonic implications for the collision of India and Asia. Tectonophysics, 490: 257–266

    Article  Google Scholar 

  • Sun Z, Pei J, Li H, Xu W, Jiang W, Zhu Z, Wang X, Yang Z. 2012. Palaeomagnetism of late Cretaceous sediments from southern Tibet: Evidence for the consistent palaeolatitudes of the southern margin of Eurasia prior to the collision with India. Gondwana Res, 21: 53–63

    Article  Google Scholar 

  • Tan X, Gilder S, Kodama K P, Jiang W, Han Y, Zhang H, Xu H, Zhou D. 2010. New paleomagnetic results from the Lhasa block: Revised estimation of latitudinal shortening across Tibet and implications for dating the India-Asia collision. Earth Planet Sci Lett, 293: 396–404

    Article  Google Scholar 

  • Tang X D, Huang B C, Yang L K, Yi Z Y, Qiao Q Q, Chen L W. 2013. Paleomagnetism and Ar-Ar geochronology of Cretaceous volcanic rock in the middle Lhasa terrane, China and tectonic implications (in Chinese). Chin J Geophy, 56: 136–149

    Google Scholar 

  • Tapponnier P, Mercier J L, Proust F, Andrieux J, Armijo R, Bassoullet J P, Brunel M, Burg J P, Colchen M, Dupré B, Girardeau J, Marcoux J, Mascle G, Matte P, Nicolas A, Li T D, Xiao X C, Chang C F, Lin P Y, Li G C, Wang G M, Han T L, Wang X B, Den W M, Zhen H X, Sheng H B, Cao Y G, Qiu H R. 1981. The Tibetan side of the India-Eurasia collision. Nature, 294: 405–410

    Article  Google Scholar 

  • Tapponnier P, Peltzer G, Le Dain A Y, Armijo R, Cobbold P. 1982. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology, 10: 611–616

    Article  Google Scholar 

  • Tauxe L. 2005. Inclination flattening and the geocentric axial dipole hypothesis. Earth Planet Sci Lett, 233: 247–261

    Article  Google Scholar 

  • Tonarini S, Villa I M, Oberli F, Meier M, Spencer D A, Pognante U, Ramsay J G. 1993. Eocene age of eclogite metamorphism in Pakistan Himalaya: Implications for India-Eurasia collision. Terra Nova, 5: 13–20

    Article  Google Scholar 

  • Treloar P J, O'Brien P J, Parrish R R, Khan M A. 2003. Exhumation of early Tertiary, coesite-bearing eclogites from the Pakistan Himalaya. J Geol Soc, 160: 367–376

    Article  Google Scholar 

  • van Hinsbergen D J J, Lippert P C, Dupont-Nivet G, McQuarrie N, Doubrovine P V, Spakman W, Torsvik T H. 2012. Greater India Basin hypothesis and a two-stage Cenozoic collision between India and Asia. Proc Natl Acad Sci USA, 109: 7659–7664

    Article  Google Scholar 

  • Wan X Q, Liang D Y, Li G B. 2001. Palaeocene strata in Gamba, Tibet and influence of Tectonism (in Chinese). Acta Geol Sin, 76: 155–162

    Google Scholar 

  • Wang C, Li X, Hu X, Jansa L F. 2002. Latest marine horizon north of Qomolangma (Mt Everest): Implications for closure of Tethys seaway and collision tectonics. Terra Nova, 14: 114–120

    Article  Google Scholar 

  • Wang C, Dai J, Zhao X, Li Y, Graham S A, He D, Ran B, Meng J. 2014. Outward-growth of the Tibetan Plateau during the Cenozoic: A review. Tectonophysics, 621: 1–43

    Article  Google Scholar 

  • Wang H Q, Ding L, Cai F L, Xu Q, Li S, Fu J J, Lai Q Z, Yue Y H, Li X. 2017. Early Tertiary deformation of the Zhongba-Gyangze Thrust in central southern Tibet. Gondwana Res, 41: 235–248

    Article  Google Scholar 

  • Wang J, Hu X, Jansa L, Huang Z. 2011. Provenance of the Upper Cretaceous-Eocene Deep-Water Sandstones in Sangdanlin, Southern Tibet: Constraints on the Timing of Initial India-Asia Collision. J Geol, 119: 293–309

    Article  Google Scholar 

  • Westphal M, Pozzi J P. 1983. Paleomagnetic and plate tectonic constraints on the movement of Tibet. Tectonophysics, 98: 1–10

    Article  Google Scholar 

  • Wilke F D H, O'Brien P J, Gerdes A, Timmerman M J, Sudo M, Khan M A. 2010. The multistage exhumation history of the Kaghan Valley UHP series, NW Himalaya, Pakistan from U-Pb and 40Ar/39Ar ages. Eur J Mineral, 22: 703–719

    Article  Google Scholar 

  • Willems H, Zhou Z, Zhang B, Gräfe K U. 1996. Stratigraphy of the upper cretaceous and lower tertiary strata in the Tethyan Himalayas of Tibet (Tingri area, China). Geol Rundsch, 85: 723–754

    Article  Google Scholar 

  • Wu F Y, Clift P D, Yang J H. 2007. Zircon Hf isotopic constraints on the sources of the Indus Molasse, Ladakh Himalaya, India. Tectonics, 26: TC2014

    Article  Google Scholar 

  • Wu F Y, Ji W Q, Wang J G, Liu C Z, Chung S L, Clift P D. 2014. Zircon U-Pb and Hf isotopic constraints on the onset time of India-Asia collision. Am J Sci, 314: 548–579

    Article  Google Scholar 

  • Wu F Y, Liu Z C, Liu X C, Ji W Q. 2015. Himalayan leucogranite: Petrogenesis and implications to orogenesis and plateau uplift (in Chinese). Acta Petrol Sin, 31: 1–36

    Google Scholar 

  • Xie K J, Zeng L S, Liu J, Gao L E. 2010. Late Eocene Dala adakitic granite, Southern Tibet and geological implication (in Chinese). Acta Petrol Sin, 26: 1016–1026

    Google Scholar 

  • Xu Z, Ji S, Cai Z, Zeng L, Geng Q, Cao H. 2012. Kinematics and dynamics of the Namche Barwa Syntaxis, eastern Himalaya: Constraints from deformation, fabrics and geochronology. Gondwana Res, 21: 19–36

    Article  Google Scholar 

  • Yan M, Van der Voo R, Tauxe L, Fang X, M Parés J. 2005. Shallow bias in Neogene palaeomagnetic directions from the Guide Basin, NE Tibet, caused by inclination error. Geophys J Int, 163: 944–948

    Article  Google Scholar 

  • Yang T, Ma Y, Bian W, Jin J, Zhang S, Wu H, Li H, Yang Z, Ding J. 2015a. Paleomagnetic results from the Early Cretaceous Lakang Formation lavas: Constraints on the paleolatitude of the Tethyan Himalaya and the India-Asia collision. Earth Planet Sci Lett, 428: 120–133

    Article  Google Scholar 

  • Yang T, Ma Y, Zhang S, Bian W, Yang Z, Wu H, Li H, Chen W, Ding J. 2015b. New insights into the India-Asia collision process from Cretaceous paleomagnetic and geochronologic results in the Lhasa terrane. Gondwana Res, 28: 625–641

    Article  Google Scholar 

  • Yi Z Y, Huang B C, Chen J, Wang H. 2011. Paleomagnetism of early Paleogene marine sediments in southern Tibet, China: Implications to onset of the India-Asia collision and size of Greater India. Earth Planet Sc Lett, 309: 153–165

    Google Scholar 

  • Yi Z, Huang B, Yang L, Tang X, Yan Y, Qiao Q, Zhao J, Chen L. 2015. A quasi-linear structure of the southern margin of Eurasia prior to the India-Asia collision: First paleomagnetic constraints from Upper Cretaceous volcanic rocks near the western syntaxis of Tibet. Tectonics, 34: 1431–1451

    Article  Google Scholar 

  • Yin A, Harrison T M. 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annu Rev Earth Planet Sci, 28: 211–280

    Article  Google Scholar 

  • Zeng L S, Gao L E, Tang S, Hou K J, Guo C L, Hu G Y. 2014. Eocene magmatism in the Tethyan Himalaya, southern Tibet. Geol Soc Lon Spec Pub, 412: 287–316

    Article  Google Scholar 

  • Zeng L, Gao L E, Xie K, Liu-Zeng J. 2011. Mid-Eocene high Sr/Y granites in the Northern Himalayan Gneiss Domes: Melting thickened lower continental crust. Earth Planet Sci Lett, 303: 251–266

    Article  Google Scholar 

  • Zhang J, Ji J, Zhong D, Ding L, He S. 2004. Structural pattern of eastern Himalayan syntaxis in Namjagbarwa and its formation process. Sci China Ser D-Earth Sci, 47: 138–150

    Article  Google Scholar 

  • Zhang L L, Liu C Z, Wu F Y, Ji W Q, Wang J G. 2014. Zedong terrane revisited: An intra-oceanic arc within Neo-Tethys or a part of the Asian active continental margin? J Asian Earth Sci, 80: 34–55

    Article  Google Scholar 

  • Zhang Q, Willems H, Ding L, Gräfe K U, Appel E. 2012. Initial India-Asia Continental Collision and Foreland Basin Evolution in the Tethyan Himalaya of Tibet: Evidence from Stratigraphy and Paleontology. J Geol, 120: 175–189

    Article  Google Scholar 

  • Zhu B, Kidd W S F, Rowley D B, Currie B S, Shafique N. 2005. Age of Initiation of the India-Asia Collision in the East-Central Himalaya. J Geol, 113: 265–285

    Article  Google Scholar 

  • Zhuang G, Najman Y, Guillot S, Roddaz M, Antoine P O, Métais G, Carter A, Marivaux L, Solangi S H. 2015. Constraints on the collision and the pre-collision tectonic configuration between India and Asia from detrital geochronology, thermochronology, and geochemistry studies in the lower Indus basin, Pakistan. Earth Planet Sci Lett, 432: 363–373

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to two anonymous reviewers for their critical reviews to improve the manuscript. This work was supported by the Chinese Academy of Sciences (Grant No. XDB03010401), the National Key Research and Development Plan (Grant No. 2016YFC0600303) and National Natural Science Foundation of China (Grant No. 41490615).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, L., Maksatbek, S., Cai, F. et al. Processes of initial collision and suturing between India and Asia. Sci. China Earth Sci. 60, 635–651 (2017). https://doi.org/10.1007/s11430-016-5244-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-016-5244-x

Keywords

Navigation