Skip to main content

Adhesive Features of the Theraphosid Tarantulas

  • Chapter
  • First Online:
New World Tarantulas

Part of the book series: Zoological Monographs ((ZM,volume 6))

  • 532 Accesses

Abstract

Tarantulas are large spiders with adhesive setae on their legs, which enable them to climb on smooth vertical surfaces. The mechanism proposed to explain adhesion in tarantulas is anisotropic friction, where friction is higher when the leg pushes compared to when it pulls. The static friction of live theraphosid spiders on different surfaces and at different inclines was measured and compared between burrowing and arboreal species to test the hypothesis of higher friction in arboreal tarantulas. We analyzed the complementary participation of claw tufts and scopulae of anterior and posterior legs when the tarantula climbs. We also considered the morphology of scopulae and claw tufts setae and compared with similar structures in other families. Adhesive setae, as well as some other setae types found on ventral tarsi are described and characterized. The adhesive face of setae varied in the orientation in different parts of the tarsi, and this variation is more conspicuous in the spiders that have only claw tufts or scopulae. The mechanics of climbing in association with the biological characteristics of the species are analyzed. We discuss the association of adhesive scopulae and claw tufts with burrowing/cursorial mygalomorphs as within Theraphosidae, as was suggested for free-hunter spiders. The morphology, functions, and evolution of scopula and claw tufts are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Autumn K, Niewiarowski PH, Puthoff JB (2014) Gecko adhesion as a model system for integrative biology, interdisciplinary science, and bioinspired engineering. Ann Rev Ecol Evol Syst 45:445–470

    Article  Google Scholar 

  • Barnes W, Jon P (2011) Functional morphology and design constraints of smooth adhesive pads. MRS Bull 32:479–485

    Article  Google Scholar 

  • Beutel RG, Gorb SN (2001) Ultrastructure of attachment specializations of hexapods (Arthropoda): evolutionary patterns inferred from a revised ordinal phylogeny. J Zool Syst Evol Res 39:177–207

    Article  Google Scholar 

  • Beutel RG, Gorb SN (2006) A revised interpretation of the evolution of attachment structures in Hexapoda with special emphasis on Mantophasmatodea. Arthropod Syst Phylo 64:3–25

    Google Scholar 

  • Bond JE, Opell BD (2002) Phylogeny and taxonomy of the genera of south-western North American Euctenizinae trapdoor spiders and their relatives (Araneae: Mygalomorphae, Cyrtaucheniidae). Zool J Linn Soc Lond 136:487–534

    Article  Google Scholar 

  • Bond JE, Hendrixson BE, Hamilton CA, Hedin M (2012) A reconsideration of the classification of the spider infraorder Mygalomorphae (Arachnida: Araneae) based on three nuclear genes and morphology. PLoS One 7(6):e38753. https://doi.org/10.1371/journal.pone.0038753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bullock JM, Drechsler P, Federle W (2008) Comparison of smooth and hairy attachment pads in insects: friction, adhesion and mechanisms for direction-dependence. J Exp Biol 211:3333–3343

    Article  PubMed  Google Scholar 

  • Coddington JA, Agnarsson I, Hamilton CA, Bond JE (2019) Spiders did not repeatedly gain, but repeatedly lost, foraging webs. PeerJ 7:e6703. https://doi.org/10.7717/peerj.6703

    Article  PubMed  PubMed Central  Google Scholar 

  • Dirks JH, Federle W (2011a) Fluid-based adhesion in insects—principles and challenges. Soft Matter 7:11047

    Article  CAS  Google Scholar 

  • Dirks JH, Federle W (2011b) Mechanisms of fluid production in smooth adhesive pads of insects. J R Soc Interface 8:952–960

    Article  PubMed  PubMed Central  Google Scholar 

  • Dunlop JA (1994) Movements of scopulate claw tufts at the tarsus tip of a tarantula spider. Neth J Zool 45:513–520

    Article  Google Scholar 

  • Eggs B, Wolff JW, Khun-Nentwig L, Gorb SN, Nentwig W (2015) Hunting without a web: how lycosoid spiders subdue their prey. Ethology 121:1166–1177

    Article  Google Scholar 

  • Federle W (2006) Why are so many adhesive pads hairy? J Exp Biol 209:2611–2621

    Article  PubMed  Google Scholar 

  • Ferretti N, Pompozzi G, Copperi S, Wehitt A, Galíndez E, González A, Pérez-Miles F (2017) A comparative morphological study of the epiandrous apparatus inmygalomorph spiders (Araneae, Mygalomorphae). Micron 93:9–19

    Article  CAS  PubMed  Google Scholar 

  • Foelix RF (1970) Structure and function of tarsal sensilla in the spider Araneus diadematus. J Exp Zool 175:99–124

    Article  Google Scholar 

  • Foelix RF (2011) Biology of spiders, 3rd edn. Oxford University Press, New York, pp 188–217

    Google Scholar 

  • Foelix RF, Chu-Wang IW (1975) The structure of scopula hairs in spiders. In: Proc 6th Int Congr Arachnol, Amsterdam, pp 56–58

    Google Scholar 

  • Foelix R, Erb B, Rast B (2013) Alleged silk spigots on tarantula feet: Electron microscopy reveals sensory innervation, no silk. Arthropod Structure and Development 42:209–217

    Google Scholar 

  • Foelix RF, Jackson RR, Henksmeyer A, Hallas S (1984) Tarsal hairs specialized for prey capture in the salticid Portia. Rev Arachnol 5:329–334

    Google Scholar 

  • Foelix RF, Rast B, Erb B (2012a) Hafthaare bei Vogelspinnen: Vergleich einer bodenlebenden Brachypelma mit einer baumlebenden Poecilotheria. Arachne 17:16–23

    Google Scholar 

  • Foelix R, Rast B, Peattie AM (2012b) Silk secretion from tarantula feet revisited: alleged spigots are probably chemoreceptors. J Exp Biol 215:1084–1089

    Article  PubMed  Google Scholar 

  • Gerschman de Pikelin BS, Schiapelli RD (1973) La subfamilia “Ischnocolinae” (Araneae: Theraphosidae). Rev Mus Arg C Nat “Bernardino Rivadavia”, Entomologia 4:43–77

    Google Scholar 

  • Gorb SN (1998) The design of the fly adhesive pad: distal tenent setae are adapted to the delivery of an adhesive secretion. Proc R Soc Lond B 265:747–752

    Article  Google Scholar 

  • Gorb SN (2001) Attachment devices of insect cuticle. Kluwer Academic, Dordrecht

    Google Scholar 

  • Gorb SN, Niederegger S, Hayashi CY, Summers AP, Vötsch W, Walther P (2006) Silk-like secretion from tarantula feet. Nature 443:407

    Article  CAS  PubMed  Google Scholar 

  • Gorb SN, Sinha M, Peressadko A, Daltorio KA, Quinn RD (2007) Insects did it first: a micropatterned adhesive tape for robotic applications. Bioinspir Biomim 2:117–125

    Article  Google Scholar 

  • Guadanucci JPL (2005) Tarsal scopula significance in Ischnocolinae phylogenetics (Araneae, Mygalomorphae, Theraphosidae). J Arachnol 33:456–467

    Article  Google Scholar 

  • Hanna G, Barnes WJP (1991) Adhesion and detachment of the toe pads of tree frogs. J Exp Biol 155:103–125

    Google Scholar 

  • Harris DJ, Mill PJ (1973) The ultrastructure of chemoreceptor sensilla in Ciniflo (Araneida, Arachnida). Tissue Cell 5:679–689

    Article  CAS  PubMed  Google Scholar 

  • Hill DE (2010) Jumping spider feet (Araneae, Salticidae). Peckhamia 85:1–41

    Google Scholar 

  • Homann H (1957) Haften Spinnen an einer Wasserhaut? Naturwissenschaften 44:318–319

    Article  Google Scholar 

  • Huber G, Mantz H, Spolenak R, Mecke K, Jacobs K, Gorb SN, Arzt E (2005) Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements. Proc Natl Acad Sci USA 102:16293–16296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irschick DJ, Austin CC, Petren K, Fisher RN, Losos JB, Ellers O (1996) A comparative analysis of clinging ability among pad-bearing lizards. Biol J Linn Soc 59:21–35

    Article  Google Scholar 

  • IUPAC (2006) Compendium of chemical terminology, 2nd ed. (the “Gold Book”). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). XML on-line corrected version: http://goldbook.iupac.org. Created by M. Nic, J. Jirat, B. Kosata; updates compiled by A. Jenkins. ISBN 0-9678550-9-8. https://doi.org/10.1351/goldbook

  • Jagota A, Hui CY (2011) Adhesion, friction, and compliance of bio-mimetic and bio-inspired structured interfaces. Mater Sci Eng Rep 72:253

    Google Scholar 

  • Kesel AB, Martin A, Seidl T (2003) Adhesion measurements on the attachment devices of the jumping spider Evarcha arcuata. J Exp Biol 206:2733–2738

    Article  CAS  PubMed  Google Scholar 

  • Kesel AB, Martin A, Seidl T (2004) Getting a grip on spider attachment: an AFM approach to microstructure adhesion in arthropods. Smart Mater Struct 13:512–518

    Article  Google Scholar 

  • Labarque FM, Wolff JO, Michalik P, Griswold CE, Ramírez MJ (2017) The evolution and function of spider feet (Araneae: Arachnida): multiple acquisitions of distal articulations. Zool J Linnean Soc 20:1–34

    Google Scholar 

  • Labonte D, Clemente CJ, Dittrich A, Kuo CY, Crosby AJ, Irschick DJ, Federle W (2016) Extreme positive allometry of animal adhesive pads and the size limits of adhesion-based climbing. Proc Natl Acad Sci 113:1297–1302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lapinski W, Walther P, Tschapka M (2015) Morphology reflects microhabitat preferences in an assemblage of neotropical wandering spiders. Zoomorphology 134:219–236

    Article  Google Scholar 

  • Marples BJ (1967) The spinnerets and epiandrous glands of spiders. Zool J Linn Soc 46:209–223

    Article  Google Scholar 

  • Miller GL, Miller PR, Brady AR (1988) Adhesive hairs in lycosid spiders of various life styles, including the occurrence of claw tufts in Lycosa hentzi banks. Bull Br Arachnol Soc 7:213–216

    Google Scholar 

  • Millot J (1930) Glandes venimeuses et glandes sèricigènes chez les Sicariides. Bull Soc Zool Fr 55:150–174

    Google Scholar 

  • Monterroso B (1928) Observazioni preliminar sella del genere Scytodes (Walk) (Araneae Verae: Sicariidae). Rend Reale Accad Naz Lincei Ser 6(6):171–174

    Google Scholar 

  • Niederegger S (2013) Functional aspects of spider scopulae. In: Nentwig W (ed) Spider ecophysiology. Springer, Berlin, pp 57–66

    Chapter  Google Scholar 

  • Niederegger S, Gorb SN (2006) Friction and adhesion in the tarsal and metatarsal scopulae of spiders. J Comp Physiol A 192:1223–1232

    Article  Google Scholar 

  • Peattie AM, Full JR (2007) Phylogenetic analysis of the scaling of wet and dry biological fibrillar adhesives. Proc Natl Acad Sci 104:18595–18600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peattie AM, Dirks JH, Henriques S, Federle W (2011) Arachnids secrete a fluid over their adhesive pads. PLoS One 6(5):e20485. https://doi.org/10.1371/journal.pone.0020485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pekar S, Sobotnıik J, Lubin Y (2011) Armoured spiderman: morphological and behavioural adaptations of a specialised araneophagous predator (Araneae: Palpimanidae). Naturwissenschaften 98:593–603

    Article  CAS  PubMed  Google Scholar 

  • Penney D, Selden PA (2011) Fossil spiders: the evolutionary history of a megadiverse order, Monograph series, volume 1. Siri Scientific Press, Manchester, p 128

    Google Scholar 

  • Pérez-Miles F (1994) Tarsal scopula division in Theraphosinae (Araneae, Theraphosidae): its systematic significance. J Arachnol 22:46–53

    Google Scholar 

  • Pérez-Miles F, Ortíz-Villatoro D (2012) Tarantulas do not shoot silk from their legs: evidence in four species of New World tarantulas. J Exp Biol 215:1749–1752

    Article  PubMed  Google Scholar 

  • Pérez-Miles F, Weinmann D (2010) Agnostopelma: a new genus of tarantula without a scopula on leg IV (Araneae: Theraphosidae: Theraphosinae). J Arachnol 38:104–112

    Article  Google Scholar 

  • Pérez-Miles F, Panzera A, Ortíz-Villatoro D, Perdomo C (2009) Silk production from tarantula feet questioned. Nature 461:E9–E10

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Miles F, Perafán C, Santamaría L (2015) Tarantulas (Araneae: Theraphosidae) use different adhesive pads complementary during climbing on smooth surfaces: experimental approach in eight arboreal and burrower species. Biol Open 4:1643–1648

    Article  PubMed  PubMed Central  Google Scholar 

  • Pérez-Miles F, Guadanucci JPL, Jurgilas JP, Becco R, Perafán C (2017) Morphology and evolution of scopula, pseudoscopula and claw tufts in Mygalomorphae (Araneae). Zoomorphology 136:435–459

    Article  Google Scholar 

  • Pocock RI (1897) On the spiders of the suborder Mygalomorphae from the Ethiopian Region, contained in the collection of the British Museum. Proc Zool Soc London 1897:724–774

    Google Scholar 

  • Ramírez MJ (2014) The morphology and phylogeny of dionychan spiders (Araneae, Areneomorphae). Bull Am Mus Nat Hist 390:1–374

    Article  Google Scholar 

  • Raven R (1985) The spider infraorder Mygalomorphae (Araneae): cladistics and systematics. Bull Am Mus Nat Hist 182:1–180

    Google Scholar 

  • Richards AG, Richards PA (1979) The cuticular protuberances of insects. Int J Insect Morphol Embryol 8:143–157

    Article  Google Scholar 

  • Rind FC, Birkett CL, Duncan BJ, Ranken AJ (2011) Tarantulas cling to smooth vertical surfaces by secreting silk from their feet. J Exp Biol 214:1874–1879

    Article  PubMed  Google Scholar 

  • Riskin DK, Racey PA (2010) How do sucker-footed bats hold on, and why do they roost head-up? Biol J Linn Soc 99:233–240

    Article  Google Scholar 

  • Roscoe DT, Walker G (1991) The adhesion of spiders to smooth surfaces. Bull Br Arachnol Soc 8:224–226

    Google Scholar 

  • Rovner JS (1978) Adhesive hairs in spiders: behavioral functions and hydraulically mediated movement. Symp Zool Soc Lond 42:99–108

    Google Scholar 

  • Rovner JS (1980) Morphological and ethological adaptations for prey capture in wolf spiders (Araneae, Lycosidae). J Arachnol 8:201–215

    Google Scholar 

  • Shultz JW (1989) Morphology of locomotor appendages in Arachnida: evolutionary trends and phylogenetic implications. Zool J Linnean Soc 97:1–56

    Article  Google Scholar 

  • Simon E (1892) Histoire Naturelle des Araigneés, vol 1. Roret, Paris, p 256

    Google Scholar 

  • Speck J, Barth FG (1982) Vibration sensitivity of pretarsal slit sensilla in the spider leg. J Comp Physiol A 148:187–194

    Article  Google Scholar 

  • Vollrath F, Knight DP (2001) Liquid crystalline spinning of spider silk. Nature 410:541–548

    Article  CAS  PubMed  Google Scholar 

  • Von Byern J, Grunwald I (eds) (2010) Biological adhesive systems: from nature to technical and medical application. Springer, Wien

    Google Scholar 

  • Williams EE, Peterson JA (1982) Convergent and alternative designs in the digital adhesive pads of Scincid lizards. Science 215:1509–1511

    Article  CAS  PubMed  Google Scholar 

  • Wohlfart E, Wolff JO, Arzt E, Gorb SN (2014) The whole is more than the sum of all its parts: collective effect of spider attachment organs. J Exp Biol 217:222–224

    Article  PubMed  Google Scholar 

  • Wolff J, Seiter M, Gorb SN (2015) Functional anatomy of the pretarsus in whip spiders (Arachnida, Amblypygi). Arthropod Structure and Development 44:524–540

    Google Scholar 

  • Wolff JO, Gorb SN (2012a) Comparative morphology of pretarsal scopulae in eleven spider families. Arthropod Struct Dev 41:419–433

    Article  PubMed  Google Scholar 

  • Wolff JO, Gorb SN (2012b) The influence of humidity on the attachment ability of the spider Philodromus dispar (Araneae, Philodromidae). Proc R Soc B Biol Sci 279:139–143

    Article  Google Scholar 

  • Wolff JO, Gorb SN (2012c) Surface roughness effects on attachment ability of the spider Philodromus dispar (Araneae, Philodromidae). J Exp Biol 215:179–184

    Article  PubMed  Google Scholar 

  • Wolff JO, Gorb SN (2013) Radial arrangement of Janus-like setae permits friction control in spiders. Sci Rep 3:1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolff JO, Gorb SN (2015) Adhesive foot pads: an adaptation to climbing? An ecological surveyin hunting spiders. Zoology 118:1–7

    Article  PubMed  Google Scholar 

  • Wolff JO, Gorb SN (2016) Attachment structures and adhesive secretions in arachnids. Springer International Publishing, Cham, p 184. https://doi.org/10.1007/978-3-319-45713-0

    Book  Google Scholar 

  • Wolff JO, Nentwig W, Gorb SN (2013) The great silk alternative: multiple co-evolution of web loss and sticky hairs in spiders. PLoS One 8(5):e62682. https://doi.org/10.1371/journal.pone.0062682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Pérez-Miles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pérez-Miles, F., Perafán, C., Ortiz-Villatoro, D. (2020). Adhesive Features of the Theraphosid Tarantulas. In: Pérez-Miles, F. (eds) New World Tarantulas. Zoological Monographs, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-030-48644-0_12

Download citation

Publish with us

Policies and ethics