Skip to main content
Log in

Morphology and evolution of scopula, pseudoscopula and claw tufts in Mygalomorphae (Araneae)

  • Original paper
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

We studied the morphology of scopula, claw tufts and a scopula-like feature (pseudoscopula) of tarsi on representatives of all Mygalomorphae spider families. The pseudoscopula is constituted by groups of non-microtriched conical setae. The taxonomic distribution of all these features was studied and mapped on a recent phylogeny of Mygalomorphae and the association of them with the lifestyles of the spiders was analyzed. Adhesive setae, as well as some other setal types found on ventral tarsi are described and characterized. The adhesive face of setae varied in the orientation in different parts of the tarsi, and this variation is more conspicuous in the spiders which only have claw tufts or scopula. We found an association of adhesive scopulae and claw tufts with burrower/cursorial or thin wafer lid trapdoor mygalomorphs as suggested for free hunter spiders, but we found that the pseudoscopula is associated with males of some trap-door and some weavers mygalomorphs. The presence of pseudoscopula widely extended among Mygalomorphae seems to be ancestral for the infraorder. The setal morphology of pseudoscopula suggests chemosensorial function; sparse chemosensory setae were also found in almost all Mygalomorphae. The morphology, functions and evolution of scopula, claw tufts and pseudoscopula are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Baerg WJ (1928) The life cycle and mating habits of the male tarantula. Q Rev Biol 3:109–116

    Article  Google Scholar 

  • Barth FG (1970) Die Feinstruktur des Spinneninteguments. II. Die räumliche Anordnung der Mikrofasern in der lamellierten Cuticula und ihre Beziehung zur Gestalt der Porenkanäle (Cupiennius salei Keys., adult, häutungsfern, Tarsus). Z Zellforsch 104:87–106

    Article  CAS  PubMed  Google Scholar 

  • Barth FG (2001) Sinne und Verhalten: aus dem Leben einer Spinne. Springer, Berlin

    Book  Google Scholar 

  • Bond JE, Opell BD (2002) Phylogeny and taxonomy of the genera of south-western North American Euctenizinae trapdoor spiders and their relatives (Araneae: Mygalomorphae, Cyrtaucheniidae). Zool J Linn Soc-Lond 136:487–534

    Article  Google Scholar 

  • Bond JE, Hendrixson BE, Hamilton CA, Hedin M (2012) A reconsideration of the classification of the spider infraorder Mygalomorphae (Arachnida: Araneae) based on three nuclear genes and morphology. PLoS One 7:e38753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardoso P, Pekár S, Jocqué R, Coddington JA (2011) Global patterns of guild composition and functional diversity of spiders. PLoS One 6(6):e21710. doi:10.1371/journal.pone.0021710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa FG, Pérez-Miles F (1998) Behavior, life cycle and webs of Mecicobothrium thorelli (Araneae, Mygalomorphae, Mecicobothriidae). J Arachnol 26:317–329

    Google Scholar 

  • Costa FG, Pérez-Miles F (2002) Reproductive biology of Uruguayan theraphosids (Araneae, Theraphosidae). J Arachnol 30:571–587

    Article  Google Scholar 

  • Coyle FA (1971) Systematics and natural history of the mygalomorph spider genus Antrodiaetus and related genera (Araneae: Antrodiaetidae). Bull Mus Comp Zool 141:269–402

    Google Scholar 

  • Coyle FA (1985) Observations on the mating behaviour of the tiny mygalomorph spider, Microhexura montivaga Crosby & Bishop (Araneae, Dipluridae). Bull Br Arachnol Soc 6:328–330

    Google Scholar 

  • Coyle FA, Shear WA (1981) Observations on the natural history of Sphodros abboti and Sphodros rufipes (Araneae, Atypidae), with evidence for a contact sex pheromone. J Arachnol 9:317–326

    Google Scholar 

  • Dunlop JA (1994) Movements of scopulate claw tufts at the tarsus tip of a tarantula spider. Neth J Zool 45:513–520

    Article  Google Scholar 

  • Eggs W, Wolff JW, Khun-Nentwig L, Gorb SN, Nentwig W (2015) Hunting without a web: how lycosoid spiders subdue their prey. Ethology 121:1166–1177

    Article  Google Scholar 

  • Ferretti N, Ferrero A (2008) Courtship and mating behavior of Grammostola schulzei (Schmidt 1994) a burrowing tarantula from Argentina. J Arachnol 36:480–483

    Article  Google Scholar 

  • Ferretti N, Pompozzi G, Pérez-Miles F (2011) Sexual behavior of Acanthogonatus centralis (Araneae: Mygalomorphae: Nemesiidae) from Argentina, with some notes on their burrows. J Arachnol 39:533–536

    Article  Google Scholar 

  • Ferretti N, Pompozzi G, Copperi S, Pérez-Miles F, González A (2012) Copulatory behavior of Microstigmatidae (Araneae: Mygalomorphae): a study with Xenonemesia platensis from Argentina. J Arachnol 40:252–255

    Article  Google Scholar 

  • Ferretti N, Pompozzi G, Copperi S, Pérez-Miles F (2013) Sexual behaviour of mygalomorph spiders: when simplicity becomes complex; an update of the last 21 years. Arachnology 16(3):85–93

    Article  Google Scholar 

  • Foelix RF (2011) Biology of spiders. Oxford University Press, New York

    Google Scholar 

  • Foelix RF, Chu-Wang IW (1975) The structure of scopula hairs in spiders. In: Proceedings of the 6th international arachnological Congress. Amsterdam, pp 56–58

  • Foelix RF, Jackson RR, Henksmeyer A, Hallas S (1984) Tarsal hairs specialized for prey capture in the salticid Portia. Rev Arachnol 5:329–334

    Google Scholar 

  • Foelix RF, Erb B, Michalik P (2010) Scopulate hairs in male Liphistius spiders: probable contact chemoreceptors. J Arachnol 38:599–603

    Article  Google Scholar 

  • Foelix RF, Rast B, Erb B (2012) Hafthaare bei Vogelspinnen: Vergleich einer bodenlebenden Brachypelma mit einer baumlebenden Poecilotheria. Arachne 6:16–23

    Google Scholar 

  • Guadanucci JPL (2005) Tarsal scopula significance in Ischnocolinae phylogenetics (Araneae, Mygalomorphae, Theraphosidae). J Arachnol 33:456–467

    Article  Google Scholar 

  • Hill DE (1977) The pretarsus of salticid spiders. Zool J Linn Soc 60:319–338

    Article  Google Scholar 

  • Homann H (1957) Haften Spinnen an einer Wasserhaut? Naturwissenschaften 44:318–319

    Article  Google Scholar 

  • Jocqué R, Alderweireldt M (2005) Lycosidae: the grassland spiders. In: Deltshev C, Stoev P (eds) European Colloquium of Arachnology 2005, Blagoevgrad, Bulgaria, Acta Zool Bulg, Suppl No.1. Institute of Zoology and National Museum of Natural History, Bulgarian Academy of Sciences, pp 125–130

  • Jocqué R, Dippenaar-Schoeman AS (2007) Spider families of the world. Royal Museum for Central Africa, Tervuren

    Google Scholar 

  • Junk WJ (1997) The central amazonian floodplain: ecology of a pulsing system. Ecological studies, vol 126. Springer, Berlin

    Book  Google Scholar 

  • Keane PN, Hovgaard MB, Mostaert AS, Jarvis SP (2012) Asymmetric spatula heads combined with lateral forces provide a mechanism for controlling the adhesive attachment of a range of spider species. J Adhes Sci Technol 28(3–4):256–272

    Article  CAS  Google Scholar 

  • Kesel AB, Martin A, Seidl T (2003) Adhesion measurements on the attachment devices of the jumping spider Evarcha arcuata. J Exp Biol 206:2733–2738

    Article  CAS  PubMed  Google Scholar 

  • Kesel AB, Martin A, Seidl T (2004) Getting a grip on spider attachment: an AFM approach to microstructure adhesion in arthropods. Smart Mater Struct 13:512–518

    Article  Google Scholar 

  • Keyserling E (1877) Ueber amerikanische Spinnenarten der Unterordnung Citigradae. Verhandlungen der Kaiserlich-Königlichen Zoologisch-Botanischen Gesellschaft in Wien 26:609–708

    Google Scholar 

  • Labarque FM, Wolff JO, Michalik P, Griswold CE, Ramírez MJ (2017) The evolution and function of spider feet (Araneae: Arachnida): multiple acquisitions of distal articulations. Zool J Linnean Soc 20:1–34

    Google Scholar 

  • Lapinski W, Walther P, Tschapka M (2015) Morphology reflects microhabitat preferences in an assemblage of Neotropical wandering spiders. Zoomorphology. doi:10.1007/s00435-015-0247-8

    Google Scholar 

  • Maddison WP, Maddison DR (2017) Mesquite: a modular system for evolutionary analysis. Version 3.2. http://mesquiteproject.org. Accessed 1 July 2017

  • Montes de Oca L, Pérez-Miles F (2013) Two new species of Chaco Tullgren from the Atlantic coast of Uruguay (Araneae, Mygalomorphae, Nemesiidae). Zookeys 337:73–87

    Article  Google Scholar 

  • Niederegger S (2013) Functional aspects of spider scopulae. In: Nentiw W (ed) Spider Ecophysiology. Springer, Berlin

    Google Scholar 

  • Niederegger S, Gorb S (2006) Friction and adhesion in the tarsal and metatarsal scopulae of spiders. J Comp Physiol A 192:1223–1332

    Article  Google Scholar 

  • Pekar S, Sobotnik J, Lubin J (2011) Armoured spiderman: morpological and behavioural adaptations of a specialised araneophagous predator (Araneae: Palpimanidae). Naturwissenschaften 98:593–603

    Article  CAS  PubMed  Google Scholar 

  • Perafán C, Galvis W, Gutiérrez M, Pérez-Miles F (2016) Kankuamo, a new Theraphosid genus from Colombia (Araneae, Mygalomorphae), with a new type of urticating setae and divergent male genitalia. Zookeys 601:89–109

    Article  Google Scholar 

  • Pérez-Miles F (1994) Tarsal scopula division in Theraphosinae (Araneae, Theraphosidae): its systematic significance. J Arachnol 22:46–53

    Google Scholar 

  • Pérez-Miles F, Perafán C, Santamaría L (2015) Tarantulas (Araneae: Theraphosidae) use different adhesive pads complementary during climbing on smooth surfaces: experimental approach in eight arboreal and burrower species. Biol Open 4:1643–1648

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramírez MJ (2014) The morphology and phylogeny of dionychan spiders (Araneae, Areneomorphae). Bull Am Mus Nat Hist 390:1–374

    Article  Google Scholar 

  • Raven RJ (1985) The spider infraorder Mygalomorphae (Araneae): cladistics and systematics. Bull Am Mus Nat Hist 182:1–180

    Google Scholar 

  • Raven RJ (1988) Preliminary observations on the mating behaviour of the Australian mygalomorph spider Australothele jamiesoni (Dipluridae, Araneae, Arachnida). Mem Queensl Mus 25:471–474

    Google Scholar 

  • Richards AG, Richards PA (1979) The cuticular protuberances of insects. Int J Insect Morphol Embryol 8:143–157

    Article  Google Scholar 

  • Ridley M (1983) The explanation of organic diversity. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Rovner JS (1978) Adhesive hairs in spiders: behavioral functions and hydraulically mediated movement. Symp Zool Soc Lond 42:99–108

    Google Scholar 

  • Rovner JS (1980) Morphological and ethological adaptations for prey capture in wolf spiders (Araneae, Lycosidae). J Arachnol 8:201–215

    Google Scholar 

  • Schiapelli RD, de Gerschman P (1975) Calathotarsus simoni sp. nov. (Araneae, Migidae). Physis Revista de la Sociedad Argentina de Ciencias Naturales (C) 34:17–21

    Google Scholar 

  • Schwendinger PJ (1991) Two new trap-door spiders from Thailand (Araneae, Mygalomorphae, Idiopidae). Bull Br Arachnol Soc 8:233–240

    Google Scholar 

  • Simon E (1889) Etudes arachnologiques. 21e Mémoire. XXX. Descriptions de quelques arachnides du Chili et remarques synonymiques sur quelques unes des espèces décrites par Nicolet. Ann Soc entomol Fr 8(6):217–222

    Google Scholar 

  • Simon E (1892) Histoire Naturelle des Araignées, vol 1, Paris, pp 1–256

  • Tietjen WJ, Rovner JS (1980) Trail-following behaviour in two species of wolf spiders: sensory and etho-ecological concomitants. Anim Behav 28:735–741

    Article  Google Scholar 

  • Varenberg M, Pugno NM, Gorb SN (2010) Spatulate structures in biological fibrillar adhesion. Soft Matter 6:3269–3272

    Article  CAS  Google Scholar 

  • Wohlfart E, Wolff JO, Arz E, Gorb SN (2014) The whole is more than the sum of all its parts: collective effect of spider attachment organs. J Exp Biol 217:222–224

    Article  PubMed  Google Scholar 

  • Wolff JO, Gorb SN (2012a) Comparative morphology of pretarsal scopulae in eleven spider families. Arthropod Struct Dev 41:419–433

    Article  PubMed  Google Scholar 

  • Wolff JO, Gorb SN (2012b) The influence of humidity on the attachment ability of the spider Philodromus dispar (Araneae, Philodromidae). Proc R Soc B 279:139–143

    Article  PubMed  Google Scholar 

  • Wolff JO, Gorb SN (2013) Radial arrangement of Janus-like setae permits friction control in spiders. Scientific Reports. doi:10.1038/srep01101

    Google Scholar 

  • Wolff JO, Gorb SN (2015) Adhesive foot pads: an adaptation to climbing? An ecological surveyin hunting spiders. Zoology 118:1–7

    Article  PubMed  Google Scholar 

  • Wolff JO, Gorb SN (2016) Tape- and spatula-shaped microstructures. In: Wolff JO, Gorb SN (eds) Attachment structures and adhesive secretions in arachnids, Springer, Biologically-Inspired Systems 7, Switzerland, pp 53–30. doi:10.1007/978-3-319-45713-0_3

  • Wolff JO, Nentwig W, Gorb SN (2013) The great silk alternative: multiple co-evolution of web loss and sticky hairs in spiders. PLoS One 8:1–13

    Google Scholar 

Download references

Acknowledgements

This research was funded by Comisión Sectorial de Investigación Científica (CSIC), Universidad de la República, Uruguay, CSIC I+D [C609-348] and also by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) [479377/2012-0]. We greatly thank Witold Lapinski and Jonas Wolff for the exhaustive revision of an early version of this manuscript. Laura Montes de Oca is thanked for providing us photos of some species and Nelson Ferretti for the loan of specimens. We also thank two anonymous reviewers for valuable suggestions and critiques. CP thanks Agencia Nacional de Investigación e Innovación (ANNI), Uruguay, for the financial support under postgraduate scholarship POS_NAC_2011_1_3624 code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Perafán.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 15 kb)

Supplementary material 2 (PDF 443 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Miles, F., Guadanucci, J.P.L., Jurgilas, J.P. et al. Morphology and evolution of scopula, pseudoscopula and claw tufts in Mygalomorphae (Araneae). Zoomorphology 136, 435–459 (2017). https://doi.org/10.1007/s00435-017-0364-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-017-0364-9

Keywords

Navigation