Skip to main content

Phsiological Ecology of Tarantulas: Thermoregulation, Metabolism, and Performance Traits

  • Chapter
  • First Online:
New World Tarantulas

Part of the book series: Zoological Monographs ((ZM,volume 6))

  • 588 Accesses

Abstract

Tarantulas represent interesting models for examining metabolism and performance traits (e.g., sprint speed) because of their large size and sex dimorphism at maturity that leads to different selective pressures. As ectotherms, these traits are also dependent on body temperature and their ability to behaviorally thermoregulate (dealing with both extreme heat and cold) can in turn, have significant impacts on growth, survival, and reproduction. After reaching sexual maturity, most males change their sedentary habits and leave their retreats or webs to search actively for females. Males are relatively short-lived and costs of locomotion may be high. Exposure to large fluctuations in environmental conditions makes males more vulnerable to heat stress, desiccation, and predation. In comparison, females tend to remain in close proximity to their burrows and maintain a larger body size over a longer life span. Because of their sit-and-wait predatory strategy, they may undergo long periods with limited food availability and tend to have very low resting metabolic rates that enables survival with low and unpredictable food resources. This chapter will review various aspects of thermoregulation and coldhardiness, metabolism and performance traits in tarantulas with particular emphasis on differences between males and females and examining these traits in the context of selection pressures due the animal’s natural history and life history strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfaro C, Figueroa DP, Torres H, Veloso C, Venegas F, Canals L, Canals M (2013) Effect of thermal acclimation on preferred temperatures in two mygalomorph spiders inhabiting contrasting habitats. Physiol Entomol 38:20–25

    Article  Google Scholar 

  • Altmann SA (1987) The impact of locomotor energetics on mammalian foraging. J Zool Soc Lond 211:215–225

    Article  Google Scholar 

  • Anderson JF (1970) Metabolic rates of spiders. Comp Biochem Physiol 33:51–72

    Article  CAS  PubMed  Google Scholar 

  • Anderson JF (1996) Metabolic rates of resting salticid and thomosid spiders. J Arachnol 24:129–140

    Google Scholar 

  • Anderson JF, Prestwich KN (1982) Respiratory gas exchange in spiders. Physiol Zool 55:72–90

    Article  Google Scholar 

  • Anderson JF, Prestwich KN (1985) The physiology of exercise at and above maximal aerobic capacity in a theraphosid (tarantula) spider, Brachypelma smithi (F.O. Pickard-Cambridge). J Comp Physiol B 155:529–539

    Article  Google Scholar 

  • Baerg WJ (1928) The life cycle and mating habits of the male tarantula. Q Rev Biol 3:109–116

    Article  Google Scholar 

  • Baerg WJ (1958) The tarantula. University of Kansas Press, Lawrence, KS

    Google Scholar 

  • Baerg WJ (1963) Tarantula life history records. J N Y Entomol Soc 71:233–238

    Google Scholar 

  • Bakken GS (1981) A two-dimensional operative-temperature model for thermal energy management by animals. J Therm Biol 6:23–30

    Article  Google Scholar 

  • Bakken GS (1992) Measurement and application of operative and standard operative temperatures in ecology. Am Zool 32:194–216

    Article  Google Scholar 

  • Beaupre SJ (1993) An ecological study of oxygen consumption in the mottled rock rattlesnake, Crotalus lepidus lepidus, and the black-tailed rattlesnake, Crotalus molossus molossus, from two populations. Physiol Zool 66:437–545

    Article  Google Scholar 

  • Beaupre SJ, Dunham AE, Overall KL (1993) Metabolism of a desert lizard: the effects of mass, sex, population of origin, temperature, time of day, and feeding on oxygen consumption of Sceloporus merriami. Physiol Zool 66:128–147

    Article  Google Scholar 

  • Bennett AF (1982) The energetics of reptilian activity. In: Gans C, Pough FH (eds) Biology of the reptilian. Academic, New York, pp 155–199

    Google Scholar 

  • Bennett AF, Dawson WR (1976) Metabolism. In: Gans C, Pough FH (eds) Biology of the reptilian. Academic, New York, pp 127–224

    Google Scholar 

  • Biancardi CM, Fabrica CG, Polero P, Fegundes Loss J, Minetti AE (2011) Biomechanics of octopedal locomotion: kinematic and kinetic analysis of the spider Grammostola mollicoma. J Exp Biol 214:3433–3442

    Article  PubMed  Google Scholar 

  • Booster NA, Su FY, Adolph SC, Ahn AN (2015) Effect of temperature on leg kinematics in sprinting tarantulas (Aphonopelma hentzi): high speed may limit hydraulic joint actuation. J Exp Biol 218:977–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradley R (1982) Digestion time and reemergence in the desert grassland scorpion Paruroctonus utahensis. Oecologia 55:316–318

    Article  PubMed  Google Scholar 

  • Brian BL, Gaffney FG, Fitzpatrick LC, Scholes VE (1972) Fatty acid distribution of lipids from carcass, liver and fat bodies in the lizard Cnemidophorus tigris, before hibernation. Comp Biochem Physiol B 41:661–664

    Article  CAS  PubMed  Google Scholar 

  • Canals M, Salazar MJ, Dúran C, Figueroa D, Veloso C (2008) Respiratory refinements in the mygalomorph spider Grammostola rosea Walckenaer 1837 (Araneae, Theraphosidae). J Arachnol 35:481–486

    Article  Google Scholar 

  • Canals M, Figueroa D, Alfaro C, Kawamoto T, Torres-Conteraras H, Sabat P, Veloso C (2011) Effects of diet and water supply on energy intake and water loss in a mygalomorph spider in a fluctuating environment of the Central Andes. J Insect Physiol 57:1489–1494

    Article  CAS  PubMed  Google Scholar 

  • Careau V, Garland T Jr (2012) Performance, personality, and energetics: correlation, causation, and mechanism. Physiol Biochem Zool B 85:543–571

    Article  Google Scholar 

  • Carrel JE (1978) Behavioral thermoregulation during winter in an orb-weaving spider. Symp Zool Soc Lond 42:41–50

    Google Scholar 

  • Casey TM (1981) Behavioral mechanisms of thermoregulation. In: Heinrich B (ed) Insect thermoregulation. Wiley, New York, pp 79–109

    Google Scholar 

  • Carrel JE (1990) Water and hemolymph content in the wolf spider Lycosa ceratiola (Aranea, Lycosidae). Journal of Arachnology 18:35–40

    Google Scholar 

  • Casey TM (1992) Biophysical ecology and heat exchange in insects. Am Zool 32:225–237

    Article  Google Scholar 

  • Chew RM (1961) Ecology of the spiders of a desert community. J N Y Entomol Soc 69:5–41

    Google Scholar 

  • Cloudsley-Thompson JL (1991) Ecophysiology of desert arthropods and reptiles. Springer, Berlin

    Book  Google Scholar 

  • Cloudsley-Thompson JL (1993) Ecophysiology of desert Arachnida. Boll. Accad. Gioenia Sci. Nat. 26:53–63

    Google Scholar 

  • Cubillos C, Cáceres JC, Villablanca C, Villarreal P, Baeza M, Cabrera R, Graether SP, Veloso C (2018) Cold tolerance mechanisms of two arthropods from the Andean range of Central Chile: Agathemera crassa (Insecta: Agathemeridae) and Euathlus condorito (Arachnida: Theraphosidae). J Therm Biol 74:133–139

    Article  PubMed  Google Scholar 

  • Cullum AJ (1998) Sexual dimorphism in physiological performance of whiptail lizards (genus Cnemidophorus). Physiol Zool 71:54–552

    Article  Google Scholar 

  • Daan S, Masman D, Groenewold A (1990) Avian metabolic rates: their association with body composition in nature. Am J Phys 259:R333–R340

    CAS  Google Scholar 

  • Davies ME, Edney EB (1952) The evaporation of water from spiders. J Exp Biol 29:571–582

    Google Scholar 

  • Duman JG (1979) Subzero temperature tolerance in spiders: the role of thermal-hysteresis-factors. J Comp Physiol B 352:347–352

    Article  Google Scholar 

  • Figueroa DP, Sabat P, Torres-Contreras H, Veloso C, Canals M (2010) Participation of book lungs in evaporative water loss in Paraphysa parvula, a mygalopmorph spider from Chilean Andes. J Insect Physiol 56:731–735

    Article  CAS  PubMed  Google Scholar 

  • Fincke T, Paul R (1989) Book lung function in arachnids III. The function and control of spiracles. Comp Biochem Physiol B 159:433–441

    Google Scholar 

  • Foelix RF (1996) Biology of spiders. Oxford University Press, Oxford

    Google Scholar 

  • Ford MJ (1977) Metabolic costs of the predation strategy of the spider Pardosa amentata (Clerck) (Lycosidae). Oecologia 28:333–340

    Article  PubMed  Google Scholar 

  • Full RJ (1987) Locomotion energetics of the ghost crab I. Metabolic cost and endurance. J Exp Biol 130:137–153

    Google Scholar 

  • Full RJ (1997) Invertebrate locomotor systems. In Handbook of Physiology, section 13: Comparative Physiology (ed. W. H. Dantzler) New York: Oxford University Press, pp. 853–930

    Google Scholar 

  • Gatten RE Jr, Miller K, Full RJ (1992) Energetics at rest and during locomotion. In: Feder ME, Burggren WW (eds) Environmental physiology of the amphibians. University of Chicago Press, Chicago, pp 314–377

    Google Scholar 

  • Greenstone MH, Bennett AF (1980) Foraging strategy and metabolic rate in spiders. Ecology 61:1255–1259

    Article  Google Scholar 

  • Grossi B, Solis R, Veloso C, Canals M (2016a) Consequences of sexual size dimorphism on energetics and locomotor performance of Grammostola rosea (Araneae; Theraphosidae). Physiol Entomol 41:281–288

    Article  Google Scholar 

  • Grossi B, Veloso C, Taucare-Ríos A, Canals M (2016b) Allometry of locomotor organs and sexual size dimorphism in the mygalomorph spider Grammostola rosea (Walckenaer, 1837) (Araneae, Theraphosidae). J Arachnol 44:99–102

    Article  Google Scholar 

  • Hammerstein P, Reichert SE (1988) Payoffs and strategies in territorial contests: ESS analyses of two ecotypes of spider Agelenopsis aperta. Evol Ecol 2:115–138

    Article  Google Scholar 

  • Herreid CF II (1981) Energetics of pedestrian arthropods. In: Herreid CF II, Fourtner CR (eds) Locomotion and energetics in arthropods. Plenum Press, New York, pp 491–526

    Chapter  Google Scholar 

  • Herreid CF II, Full RJ (1984) Cockroaches on a treadmill: aerobic running. J Insect Physiol 30:395–403

    Article  Google Scholar 

  • Hertz PE, Huey RB, Stevenson RD (1993) Evaluating temperature regulation by field-active ecotherms: the fallacy of the inappropriate question. Am Nat 145:796–818

    Article  Google Scholar 

  • Higgins LE, Ezcurra E (1996) A mathematical simulation of thermoregulatory behaviour in an orb-weaving spider. Funct Ecol 10:322–327

    Article  Google Scholar 

  • Huey RB (1991) Physiological consequences of habitat selection. Am Nat 137:91–115

    Article  Google Scholar 

  • Humphreys WF (1974) Behavioural thermoregulation in a wolf spider. Nature 251:502–503

    Article  CAS  PubMed  Google Scholar 

  • Humphreys WF (1977) Respiration studies on Geolycosa godeffroyi (Araneae: Lycosidae) and their relationship to field estimates of metabolic heat loss. Comp Biochem Physiol A 57:555–563

    Article  Google Scholar 

  • Humphreys WF (1978) The thermal biology of Geolycosa godeffroyi and other burrow inhabiting Lycosidae (Araneae) in Australia. Oecologia 31:319–347

    Article  CAS  PubMed  Google Scholar 

  • Iber B, Michalik P, Fischer K (2013) Factors affecting lifespan in bird-eating spiders (Arachnida: Mygalmorphae, Theraphosidae) – a multi-species approach. Zool Anz 253:126–136

    Article  Google Scholar 

  • Janowski-Bell ME, Horner NV (1999) Movement of the male brown tarantula, Aphonopelma hentzi (Araneae, Theraphosidae), using radio telemetry. J Arachnol 27:503–512

    Google Scholar 

  • Jensen KD, Mayntz T, Wang SJ, Simpson J, Overgaard J (2010) Metabolic consequences of feeding and fasting on nutritionally different diets in the wolf spider Pardosa prativaga. J Insect Physiol 56:1095–1100

    Article  CAS  PubMed  Google Scholar 

  • Kingsolver JG (1989) Weather and the population dynamics of insects: integrating physiological and population ecology. Physiol Zool 62:314–334

    Article  Google Scholar 

  • Koteja P (1991) On the relation between basal and field metabolic rates in birds and mammals. Funct Ecol 5:56–64

    Article  Google Scholar 

  • Kotiaho JS (1998) Sexual differences in metabolic rates of spiders. J Arachnol 26:401–402

    Google Scholar 

  • Le Galliard J, Paquet M, Cisel M, Montes-Poloni L (2013) Personality and the pace-of-life syndrome: variation and selection on exploration, metabolism and locomotor performances. Funct Ecol 27:136–144

    Article  Google Scholar 

  • Lee RE (2010) A primer on insect cold-tolerance. In: Lee RE, Denlinger DL (eds) Low temperature biology of insects. Cambridge University Press, New York, pp 3–34

    Chapter  Google Scholar 

  • Lighton JR (1985) Minimum cost of transport and ventilatory patterns in three African beetles. Physiol Zool 58:390–399

    Article  Google Scholar 

  • Lighton J, Fielden LJ (1995) Mass scaling of standard metabolism in ticks: a valid case of low metabolic rates in sit-and wait strategists. Physiol Zool 68:43–62

    Article  Google Scholar 

  • Lighton JRB, Brownell PH, Joos B, Turner RJ (2001) Low metabolic rate in scorpions: implications for population biomass and cannibalism. J Exp Biol 204:607–613

    CAS  PubMed  Google Scholar 

  • Linzen B, Gallowitz P (1975) Enzyme activity patterns in the muscles of the lycosid spider Cupennius salei. J Comp Physiol 96:101–109

    Article  CAS  Google Scholar 

  • Lubin YD, Henshcel JR (1990) Foraging at the thermal limit: burrowing spiders (Seothyra Eresidae) in the Namib desert dunes. Oecologia 84:461–467

    Article  CAS  PubMed  Google Scholar 

  • McGinley RH, Prenter J, Taylor PW (2013) Whole-organism performance in a jumping spider, Servaea incana (Araneae: Salticidae): links with morphology and between performance traits. Biol J Linn Soc:110644–110657

    Google Scholar 

  • McQueen DJ (1980) Active respiration rates for the burrowing wolf spider Geolycosa domifex (Hancock). Can J Zool 58:1066–10794

    Article  CAS  PubMed  Google Scholar 

  • Minch EW (1978) Daily activity patterns in the tarantula Aphonopelma chalcodes Chamberlin. Bull Br Arachnol Soc 4:231–237

    Google Scholar 

  • Miyashita K (1969) Effects of locomotory activity, temperature and hunger on respiratory rates of Lycosa T-insignita (Araneaa: Lycoslidae). Appl Entomol Zool 4:105–113

    Article  Google Scholar 

  • Nespolo RF, Franco M (2007) Whole-animal metabolic rate is a repeatable trait: a meta-analysis. J Exp Biol 210:2000–2005

    Article  PubMed  Google Scholar 

  • Nespolo RF, Correa L, Pérez-Apablaza CX, Cortés P, Bartheld JL (2011) Energy metabolism and the postprandial response of the Chilean tarantuals, Euathlus truculentus (Araneae: Theraphosidae). Comp Biochem Physiol A 159:379–382

    Article  CAS  Google Scholar 

  • Packard GC, Boardman TJ (1988) The misuse of ratios, indices, and percentages in ecophysiological research. Physiol Zool 61:1–9

    Article  Google Scholar 

  • Paul R, Fincke T, Linzen B (1989) Book lung function in arachnids. J Comp Physiol 159:409–418

    Article  Google Scholar 

  • Peakall DB, Witt PN (1976) The energy budget of an orb web-building spider. Comp Biochem Physiol 54A:187–190

    Article  Google Scholar 

  • Perafan C, Perez-Miles F (2014) The Andea tarantulas Euathlus Auuserer, 1875, Paraphysa Simon, 1892 and Phrixothrichus Sio, 1889 (Araneae: Theraphosidae): phylogenetic analysis, genera redefinition and new species descriptions. J Nat Hist 48: 39–40

    Google Scholar 

  • Perez-Miles F, Costa FG, Toscano-Gadea C, Mignone A (2005) Ecology and behavior of the “road tarantulas” Eupalaestrus weijenberghi and Acanthoscurria suina (Araneae, Therphosidae) from Uruguay. J Nat Hist 39:483–498

    Article  Google Scholar 

  • Peterson CR, Gibson AR, Dorcas ME (1993) Snake thermal ecology: the causes and consequences of body-temperature variation. In: Seigel RA, Collins JT (eds) Snake ecology and behavior. McGraw-Hill, New York, pp 241–314

    Google Scholar 

  • Philip BN, Shillington C (2010) The effect of prey availability on metabolism and activity in the tarantula Phormictopus cancerides. Can J Zool 88:90–98

    Article  Google Scholar 

  • Porter WP, Gates DM (1969) Thermodynamic equilibria of animals with environment. Ecol Monogr 29:227–244

    Article  Google Scholar 

  • Prentice TR (1992) A new species of North American tarantula, Aphonopelma paloma (Araneae, Mygalomorphae, Theraphosidae). J Arachnol 20:189–199

    Google Scholar 

  • Prestwich KN (1983a) The roles of aerobic and anaerobic metabolism in active spiders. Physiol Zool 56:122–132

    Article  Google Scholar 

  • Prestwich KN (1983b) Anaerobic metabolism in spiders. Physiol Zool 56:112–121

    Article  CAS  Google Scholar 

  • Prestwich KN (1988) The constraints on maximal activity in spiders. J Comp Physiol B 158:437–447

    Article  Google Scholar 

  • Prestwich KN (2006) Aerobic metabolism and maximal running in the scorpion Centruroides henti (Banks) (Scorpiones, Buthidae). J Arachnol 34:351–356

    Article  Google Scholar 

  • Pulz R (1987) Thermal and water regulations. In: Nentwig W (ed) Ecophysiology of spiders. Springer, Berlin, pp 26–55

    Chapter  Google Scholar 

  • Punzo F (1991) Intraspecific variation in responses to thermal stress in the tarantula, Dugesiella echina Chamberlin (Orthognatha: Theraphosidae). Bull Br Arachnol Soc 8:277–283

    Google Scholar 

  • Punzo F, Henderson L (1999) Aspects of the natural history and behavioral ecology of the tarantula, Aphonopelma hentzi (Girard 1854) (Orthognatha: Theraphosidae). Bull Br Arachnol Soc 11:121–128

    Google Scholar 

  • Punzo F, Jellies J (1983) Comparative water relations of araneid and lycosid spiderlings. Comp Biochem Physiol 74A:981–988

    Article  Google Scholar 

  • Ramirez MG, Wall EA, Medina M (2003) Web orientations of the banded garden spider Argiope trifasciata (Araneae, Araneidae) in a California costal population. J Arachnol 31:405–411

    Article  Google Scholar 

  • Ramløv H (2000) Aspects of natural cold tolerance in ectothermic animals. Hum Reprod 5:26–46

    Article  Google Scholar 

  • Reichert SE (1981) Games spiders play. II. Resource assessment strategies. Behav Ecol Sociobiol 6:121–128

    Article  Google Scholar 

  • Reichert SE (1985) Decisions in multiple goal contexts: habitat selection of the spider, Agelenopsis aperata (Gertsch). Zietschr Tierpsychol 70:53–69

    Article  Google Scholar 

  • Reichert SE, Tracy CR (1975) Thermal balance and prey availability: bases for a model relating web-site characteristics to spider reproductive success. Ecology 56:265–284

    Article  Google Scholar 

  • Reinhold K (1999) Energetically costly behavior and the evolution of resting metabolic rates in insects. Funct Ecol 13:217–224

    Article  Google Scholar 

  • Ricklefs RE, Miles DB (1994) Ecological and evolutionary inferences from morphology: an ecological perspective. In: Wainwright PC, Reilly SM (eds) Ecological morphology: integrative organismal biology. University of Chicago Press, Chicago, pp 13–41

    Google Scholar 

  • Rittschof CC (2012) The effects of temperature on egg development and web site selection in Nephila clavipes. J Arachnol 40:141–145

    Article  Google Scholar 

  • Robinson MH, Robinson B (1978) Thermoregulation in orb-web spiders: new descriptions of thermoregulatory postures and experiments on the effect of posture and coloration. Zool J Linnean Soc 64:87–102

    Article  Google Scholar 

  • Rogowitz GL, Chappell MA (2000) Energy metabolism of eucalyptus-boring beetles at rest and during locomotion: gender makes a difference. J Exp Biol 203:1131–1139

    CAS  PubMed  Google Scholar 

  • Schartau W, Leidescher T (1983) Composition of the hemolymph of the tarantula Eurypelma californicum. J Comp Physiol Biochem 152B:72–77

    Google Scholar 

  • Schmitz A (2005) Spiders on a treadmill: influence of running activity on metabolic rates in Pardosa lugubris (Araneae, Lycosidae) and Marpissa muscosa (Araneae, Saticidae). J Exp Biol 208:1401–1411

    Article  PubMed  Google Scholar 

  • Secor SM (2009) Specific dynamic action: a review of the postprandial metabolic response. J Comp Physiol B 179:1–56

    Article  PubMed  Google Scholar 

  • Seymour RS, Vinegar A (1973) Thermal regulations, water loss and oxygen consumption of a North American tarantula. Comp Biochem Physiol A 44:83–96

    Article  CAS  Google Scholar 

  • Shillington C (2002) Thermal ecology of male tarantulas (Aphonopelma anax) during the mating season. Can J Zool 80:251–259

    Article  Google Scholar 

  • Shillington C (2005) Inter-sexual differences in resting metabolic rates in the Texas tarantula, Aphonopelma anax. Comp Biochem Physiol A 142:439–445

    Article  CAS  Google Scholar 

  • Shillington C, Peterson CC (2002) Energy metabolism of male and female tarantulas (Aphonopelma anax) during locomotion. J Exp Biol 205:2909–2914

    PubMed  Google Scholar 

  • Shillington C, Verrell P (1997) Sexual strategies of a North American ‘tarantula’ (Araneae: Theraphosidae). Ethology 103:588–598

    Article  Google Scholar 

  • Stoltey T, Shillington C (2009) Metabolic rates and movements of the male tarantula Aphonopelma anax during the mating season. Can J Zool 87:1210–1220

    Article  Google Scholar 

  • Storey KB, Storey JM (2013) Molecular biology of freezing tolerance. Compr Physiol 3:1283–1308

    PubMed  Google Scholar 

  • Stradling DJ (1994) Distribution and behavioral ecology of an arboreal “tarantula” spider of Trinidad. Biotropica 26:84–97

    Article  Google Scholar 

  • Tanaka K, Ito Y (1982) Decrease in respiratory rate in a wolf spider, Pardosa astigera (L. Koch), under starvation. Res Popul Ecol 24:360–374

    Article  Google Scholar 

  • Taylor CR, Heglund NC (1982) Energetics and mechanics of terrestrial locomotion. Annu Rev Physiol 44:97–107

    Article  CAS  PubMed  Google Scholar 

  • Taylor CR, Schmidt-Nielsen K, Raab J (1970) Scaling of energetic cost of running to body size in mammals. Am J Phys 219:1104–1107

    Article  CAS  Google Scholar 

  • Terblanch JS, Klock CJ, Marais E, Chown SL (2004) Metabolic rate in the whip-spider, Damon annulatipes (Arachnida: Amblypygi). J Insect Physiol 50:637–645

    Article  CAS  Google Scholar 

  • Thornhill R, Alcock J (1983) The evolution of insect mating systems. Harvard University Press, Cambridge

    Google Scholar 

  • Veloso C, Luhr D, Marfull R, Torres-Contreras H, Pérez DF, Sabat P, Canals M (2012) Characterization of the thermal micro-environment of Paraphysa parvula Pocock 1903 (Araneae: Theraphosidae), a spider from the Chilean Andes. J Arachnolog 40:34–38

    Article  Google Scholar 

  • Walker SE, Irwin JT (2006) Sexual dimorphism in metabolic rate of two species of wolf spider (Araneae, Lycosidae). J Arachnol 34:368–373

    Article  Google Scholar 

  • Watson PJ, Lighton JR (1994) Sexual selection and the energetics of copulatory courtship in the Sierra dome spider, Linyphia litigiosa. Anim Behav 48:615–626

    Article  Google Scholar 

  • Young SR, Block W (1980) Some factors affecting metabolic rate in an Antarctic mite. Oikos 74:178–185

    Article  Google Scholar 

  • Zachariah TT, Mitchell MA, Guichard CM, Singh RS (2007) Hemolymph biochemistry reference ranges for wild-caught Goliath birdeater spiders (Theraphosa blondi) and Chilean rose spiders (Grammostola rosea). J Zoo Wildl Med 38:245–251

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks to Claudio Patricio Veloso Iriarte for sharing photos of E. condorito and for his comments on a draft of this chapter. Also to Fernando Pérez-Miles for the opportunity to contribute to a book on tarantulas. Finally, to Brian McEwen, for his help and support on many field trips.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cara Shillington .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shillington, C. (2020). Phsiological Ecology of Tarantulas: Thermoregulation, Metabolism, and Performance Traits. In: Pérez-Miles, F. (eds) New World Tarantulas. Zoological Monographs, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-030-48644-0_10

Download citation

Publish with us

Policies and ethics