Skip to main content

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 129))

Abstract

This chapter is devoted to the study of the key principles of AM value chain, including materials (in particular fibre-reinforced thermoplastics—FRTP), pre-processing, process and control aspects, design features, quality and robustness issues, applications and sustainability concerns. It will label the technological challenges involved and outline the potential of applicability of a roadmap. After starting with materials, processes and applications mapping, we will address new strategies for AM FRTP parts performance improvement. Then, FRTP parts certification and quality assurance will be discussed and a LCA/LCC analysis of composite materials is presented. Finally, a AM and composites research roadmap is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu, N., Luo, F., Wu, H., Liu, Y., Zhang, C., Chen, J.: One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv. Funct. Mater. 18(10), 1518–1525 (2008)

    Article  Google Scholar 

  2. Kumar, S., Kruth, J.P.: Composites by rapid prototyping technology. Mater. Des. 31(2), 850–856 (2010)

    Article  Google Scholar 

  3. Paszkiewicz, S., et al.: Synergetic effect of single-walled carbon nanotubes (SWCNT) and graphene nanoplatelets (GNP) in electrically conductive PTT-block-PTMO hybrid nanocomposites prepared by in situ polymerization. Compos. Sci. Technol. 118, 72–77 (2015)

    Article  Google Scholar 

  4. Kostagiannakopoulou, C., Maroutsos, G., Sotiriadis, G., Vavouliotis, A., Kostopoulos, V.: Study on the synergistic effects of graphene/carbon nanotubes polymer nanocomposites. In: Third International Conference on Smart Materials and Nanotechnology in Engineering, SPIE (2012)

    Google Scholar 

  5. Ma, P.C., Siddiqui, N.A., Marom, G., Kim, J.K.: Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos. Part A Appl. Sci. Manuf. 41(10), 1345–1367 (2010)

    Article  Google Scholar 

  6. Hu, K., Kulkarni, D.D., Choi, I., Tsukruk, V.V.: Graphene-polymer nanocomposites for structural and functional applications. Prog. Polym. Sci. 39(11), 1934–1972 (2014)

    Article  Google Scholar 

  7. Song, P., Cao, Z., Cai, Y., Zhao, L., Fang, Z., Fu, S.: Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties. Polymer (Guildf) 52(18), 4001–4010 (2011)

    Article  Google Scholar 

  8. Rahmat, M., Hubert, P.: Carbon nanotube–polymer interactions in nanocomposites: a review. Compos. Sci. Technol. 72(1), 72–84 (2011)

    Article  Google Scholar 

  9. Alig, I., et al.: Establishment, morphology and properties of carbon nanotube networks in polymer melts. Polymer (Guildf) 53(1), 4–28 (2012)

    Article  Google Scholar 

  10. Scurati, A., Feke, D.L., Manas-Zloczower, I.: Analysis of the kinetics of agglomerate erosion in simple shear flows. Chem. Eng. Sci. 60(23), 6564–6573 (2005)

    Article  Google Scholar 

  11. Domingues, N., Gaspar-Cunha, A., Covas, J.A., Camesasca, M., Kaufman, M., Manas-Zloczower, I.: Dynamics of filler size and spatial distribution in a plasticating single screw extruder—modeling and experimental observations. Int. Polym. Process. 25(3), 188–198 (2010)

    Article  Google Scholar 

  12. Kasaliwal, G.R., Villmow, T., Pegel, S., Pötschke, P.: Influence of material and processing parameters on carbon nanotube dispersion in polymer melts. In: Polymer–Carbon Nanotube Composites, pp. 92–132. Elsevier (2011)

    Google Scholar 

  13. Socher, R., Krause, B., Müller, M.T., Boldt, R., Pötschke, P.: The influence of matrix viscosity on MWCNT dispersion and electrical properties in different thermoplastic nanocomposites. Polymer (Guildf) 53(2), 495–504 (2012)

    Article  Google Scholar 

  14. Jamali, S., Paiva, M.C., Covas, J.A.: Dispersion and re-agglomeration phenomena during melt mixing of polypropylene with multi-wall carbon nanotubes. Polym. Test. 32(4), 701–707 (2013)

    Article  Google Scholar 

  15. Vilaverde, C., Santos, R.M., Paiva, M.C., Covas, J.A.: Dispersion and re-agglomeration of graphite nanoplates in polypropylene melts under controlled flow conditions. Compos. Part A Appl. Sci. Manuf. 78, 143–151 (2015)

    Article  Google Scholar 

  16. Santos, R.M., Vilaverde, C., Cunha, E., Paiva, M.C., Covas, J.A.: Probing dispersion and re-agglomeration phenomena upon melt-mixing of polymer-functionalized graphite nanoplates. Soft Matter 12(1), 77–86 (2016)

    Article  Google Scholar 

  17. Cicala, G., Latteri, A., Del Curto, B., Lo Russo, A., Recca, G., Farè, S.: Engineering thermoplastics for additive manufacturing: a critical perspective with experimental evidence to support functional applications. J. Appl. Biomater. Funct. Mater. 15(1), 10–18 (2017)

    Google Scholar 

  18. Vaezi, M., Yang, S.: Extrusion-based additive manufacturing of PEEK for biomedical applications. Virtual Phys. Prototyp. 10(3), 123–135 (2015)

    Article  Google Scholar 

  19. Yang, S., Zhao, Y.F.: Additive manufacturing-enabled design theory and methodology: a critical review. Int. J. Adv. Manuf. Technol. 80, 327–342 (2015)

    Article  Google Scholar 

  20. Davies, R., Shyng, Y.T., Wang, Y., Ghita, O.: Extrusion deposition of carbon nanotubes (CNT)/poly ether ether ketone (Peek). In: ICCM International Conference on Composite Materials (2015)

    Google Scholar 

  21. Jia, Y., He, H., Peng, X., Meng, S., Chen, J., Geng, Y.: Preparation of a new filament based on polyamide-6 for three-dimensional printing. Polym. Eng. Sci. 57(12), 1322–1328 (2017)

    Article  Google Scholar 

  22. Nunes, J.P., Van Hattum, F.W.J., Bernardo, C.A., Silva, J.F., Marques, A.T.: Advances in thermoplastic matrix towpregs processing. J. Thermoplast. Compos. Mater. 17(6), 523–544 (2004)

    Article  Google Scholar 

  23. Gibson, A.G., Månson, J.-A.: Impregnation technology for thermoplastic matrix composites. Compos. Manuf. 3(4), 223–233 (1992)

    Article  Google Scholar 

  24. Nunes, J.P.: A study of the processing and properties of sheet molding compounds and unidirectional carbon fibre towpregs. Universidade do Minho, Braga, Portugal (1998)

    Google Scholar 

  25. Nunes, J.P., Silva, J.F., Novo, L., Marques, A.T.: (Wo2002006027) Equipment to Produce Continuously Powder Coated Thermoplastic Matrix Prepregs (Towpregs). Universidade do Minho, Azurém, Portugal (2001)

    Google Scholar 

  26. Villalpando, L., Eiliat, H., Urbanic, R.J.: An optimization approach for components built by fused deposition modeling with parametric internal structures. Procedia CIRP 17, 800–805 (2014)

    Article  Google Scholar 

  27. Bellehumeur, C., Li, L., Sun, Q., Gu, P.: Modeling of bond formation between polymer filaments in the fused deposition modeling process. J. Manuf. Process. 6(2), 170–178 (2004)

    Article  Google Scholar 

  28. Gurrala, P.K., Regalla, S.P.: Part strength evolution with bonding between filaments in fused deposition modelling. Virtual Phys. Prototyp. 9(3), 141–149 (2014)

    Article  Google Scholar 

  29. Sun, Q., Rizvi, G.M., Bellehumeur, C.T., Gu, P.: Effect of processing conditions on the bonding quality of FDM polymer filaments. Rapid Prototyp. J. 14(2), 72–80 (2008)

    Article  Google Scholar 

  30. Yardimci, M., Hattori, T.: Thermal analysis of fused deposition. In: International Solid Freeform Fabrication Symposium (1997)

    Google Scholar 

  31. Güçeri, S., Bertoldi, M.: Liquefier Dynamics in Fused Deposition (2004)

    Google Scholar 

  32. Bellini, A., Güçeri, S.: Mechanical characterization of parts fabricated using fused deposition modeling. Rapid Prototyp. J. 9(4), 252–264 (2003)

    Article  Google Scholar 

  33. Bellini, A., Shor, L., Guceri, S.I.: New developments in fused deposition modeling of ceramics. Rapid Prototyp. J. 11(4), 214–220 (2005)

    Article  Google Scholar 

  34. Yardimci, M.A., Güçeri, S.: Conceptual framework for the thermal process modelling of fused deposition. Rapid Prototyp. J. 2(2), 26–31 (1996)

    Article  Google Scholar 

  35. Costa, S.F., Duarte, F.M., Covas, J.A.: Thermal conditions affecting heat transfer in FDM/FFE: a contribution towards the numerical modelling of the process. Virtual Phys. Prototyp. 10(1), 35–46 (2015)

    Article  Google Scholar 

  36. Costa, S.F., Duarte, F.M., Covas, J.A.: Estimation of filament temperature and adhesion development in fused deposition techniques. J. Mater. Process. Technol. 245, 167–179 (2017)

    Article  Google Scholar 

  37. Antico, F.C., Zavattieri, P.D., Hector Jr., L.G., Mance, A., Rodgers, W.R., Okonski, D.A.: Adhesion of nickel–titanium shape memory alloy wires to thermoplastic materials: theory and experiments. Smart Mater. Struct. 21(3), 35022 (2012)

    Article  Google Scholar 

  38. Merlin, M., Scoponi, M., Soffritti, C., Fortini, A., Rizzoni, R., Garagnani, G.L.: On the improved adhesion of NiTi wires embedded in polyester and vinylester resins. Frat. ed Integrità Strutt. 9(31), 127–137 (2014)

    Article  Google Scholar 

  39. Yuan, X., Zhu, B., Cai, X., Liu, J., Qiao, K., Yu, J.: Optimization of interfacial properties of carbon fiber/epoxy composites via a modified polyacrylate emulsion sizing. Appl. Surf. Sci. 401, 414–423 (2016)

    Article  Google Scholar 

  40. Sadrnezhaad, S.K., Nemati, N.H., Bagheri, R.: Improved adhesion of NiTi wire to silicone matrix for smart composite medical applications. Mater. Des. 30(9), 3667–3672 (2009)

    Article  Google Scholar 

  41. Zheng, Y., Cui, L., Li, Y., Stalmans, R.: Partial transformation behavior of prestrained TiNi fibers in composites. Mater. Lett. 51(5), 425–428 (2001)

    Article  Google Scholar 

  42. Oliveira, J.P., Fernandes, F.M.B., Schell, N., Miranda, R.M.: Martensite stabilization during superelastic cycling of laser welded NiTi plates. Mater. Lett. 171, 273–276 (2016)

    Article  Google Scholar 

  43. Dawood, M., El-Tahan, M.W., Zheng, B.: Bond behavior of superelastic shape memory alloys to carbon fiber reinforced polymer composites. Compos. Part B Eng. 77, 238–247 (2015)

    Article  Google Scholar 

  44. Kantaros, A., Karalekas, D.: Fiber Bragg grating based investigation of residual strains in ABS parts fabricated by fused deposition modeling process. Mater. Des. 50, 44–50 (2013)

    Article  Google Scholar 

  45. Hull, E., Grove, W., Zhang, M., Song, X., Pei, Z.J.J., Cong, W.: Effects of process variables on extrusion of carbon fiber reinforced ABS filament for additive manufacturing. In: Proceeding of ASME 2015 International Manufacturing Science and Engineering Conference, vol. 1, pp. 1–9 (2015)

    Google Scholar 

  46. Kishore, V., et al.: Additive manufacturing of high performance semicrystalline thermoplastics and their composites. In: Proceedings of 27th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, pp. 906–915 (2016)

    Google Scholar 

  47. Le Duigou, A., Castro, M., Bevan, R., Martin, N.: 3D printing of wood fibre biocomposites: from mechanical to actuation functionality. Mater. Des. 96, 106–114 (2016)

    Article  Google Scholar 

  48. Mahajan, C., Cormier, D.: 3D printing of carbon fiber composites with preferentially aligned fibers. In: Proceedings of 2015 Industrial and Systems Engineers Research Conference, pp. 2953–2963 (2015)

    Google Scholar 

  49. Ning, F., Cong, W., Hu, Y., Wang, H.: Additive manufacturing of carbon fiber-reinforced plastic composites using fused deposition modeling: effects of process parameters on tensile properties. J. Compos. Mater. 51, 451–462 (2016)

    Article  Google Scholar 

  50. Shofner, M.L., Lozano, K., Rodríguez-Macías, F.J., Barrera, E.V.: Nanofiber-reinforced polymers prepared by fused deposition modeling. J. Appl. Polym. Sci. 89(11), 3081–3090 (2003)

    Article  Google Scholar 

  51. Tekinalp, H.L., et al.: Highly oriented carbon fiber-polymer composites via additive manufacturing. Compos. Sci. Technol. 105, 144–150 (2014)

    Article  Google Scholar 

  52. Zhong, W., Li, F., Zhang, Z., Song, L.: Li Z (2001) Short fiber reinforced composites for fused deposition modeling. Mater. Sci. Eng. A 301, 125–130 (2001)

    Article  Google Scholar 

  53. Bettini, P., Alitta, G., Sala, G., Di Landro, L.: Fused deposition technique for continuous fiber reinforced thermoplastic. J. Mater. Eng. Perform. 26(2), 843–848 (2017)

    Article  Google Scholar 

  54. Van Der Klift, F., Koga, Y., Todoroki, A., Ueda, M., Hirano, Y.: 3D Printing of continuous carbon fibre reinforced thermo-plastic (CFRTP) tensile test specimens. Open J. Compos. Mater. 6(January), 18–27 (2016)

    Article  Google Scholar 

  55. Matsuzaki, R.: 3D Printer Using Continuous Carbon Fiber Composite Materials. Tokyo University of Science, Tokyo (2013)

    Google Scholar 

  56. Swolfs, Y., Pinho, S.T.: 3D printed continuous fibre-reinforced composites: bio-inspired microstructures for improving the translaminar fracture toughness. Compos. Sci. Technol. 182, 107731 (2019)

    Article  Google Scholar 

  57. Tian, X., Liu, T., Yang, C., Wang, Q., Li, D.: Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites. Compos. Part A Appl. Sci. Manuf. 88, 198–205 (2016)

    Article  Google Scholar 

  58. Tse, L.Y.L., Kapila, S., Barton, K.: Contoured 3D printing of fiber reinforced polymers. In: Solid Freeform Fabrication Symposium, pp. 1205–1216 (2016)

    Google Scholar 

  59. Li, N., Li, Y., Liu, S.: Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing. J. Mater. Process. Technol. 238, 218–225 (2016)

    Article  Google Scholar 

  60. Melenka, G.W., Cheung, B.K.O., Schofield, J.S., Dawson, M.R., Carey, J.P.: Evaluation and prediction of the tensile properties of continuous fiber-reinforced 3D printed structures. Compos. Struct. 153, 866–875 (2016)

    Article  Google Scholar 

  61. Yao, X., Luan, C., Zhang, D., Lan, L., Fu, J.: Evaluation of carbon fiber-embedded 3D printed structures for strengthening and structural-health monitoring. Mater. Des. 114, 424–432 (2016)

    Article  Google Scholar 

  62. Ermanni, P., Eichenhofer, M., Maldonado, J.I., Klunker, F., Ermanni, M.: 3DCarb project. In: International Conference on Composite Materials, 20th

    Google Scholar 

  63. Fischer, A., Rommel, S., Bauernhansl, T.: New Fiber Matrix Process with 3D Fiber Printer—A Strategic In-process Integration of Endless Fibers Using Fused Deposition Modeling (FDM), pp. 167–175 (2013)

    Google Scholar 

  64. Mark, G.T., Gozdz, A.S.: Three Dimensional Printer with Composite Filament Fabrication. Google Patents, 13 Oct2015

    Google Scholar 

  65. Namiki, M., Ueda, M., Todoroki, A., Hirano, Y., Matsuzaki, R.: 3D printing of continuous fiber reinforced. In: Proceedings of Society Advancement of Material and Process Engineering, Seattle, pp. 2–7, 2–5 June 2014

    Google Scholar 

  66. Matsuzaki, R., et al.: Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Sci. Rep. 6, 23058 (2016)

    Article  Google Scholar 

  67. Gardner, J.M., et al.: 3-D printing of multifunctional carbon nanotube yarn reinforced components. Addit. Manuf. 12, 38–44 (2016)

    Google Scholar 

  68. Weng, Z., Wang, J., Senthil, T., Wu, L.: Mechanical and thermal properties of ABS/montmorillonite nanocomposites for fused deposition modeling 3D printing. Mater. Des. 102, 276–283 (2016)

    Article  Google Scholar 

  69. Abdullah, A.M., Tuan Rahim, T.N.A., Mohamad, D., Akil, H.M., Rajion, Z.A.: Mechanical and physical properties of highly ZrO2/β-TCP filled polyamide 12 prepared via fused deposition modelling (FDM) 3D printer for potential craniofacial reconstruction application. Mater. Lett. 189, 307–309 (2017)

    Article  Google Scholar 

  70. Chen, L., He, Y., Yang, Y., Niu, S., Ren, H.: The research status and development trend of additive manufacturing technology. Int. J. Adv. Manuf. Technol. 89(9–12), 3651–3660 (2017)

    Article  Google Scholar 

  71. Esposito Corcione, C., Gervaso, F., Scalera, F., Montagna, F., Sannino, A., Maffezzoli, A.: The feasibility of printing polylactic acid–nanohydroxyapatite composites using a low-cost fused deposition modeling 3D printer. J. Appl. Polym. Sci. 134(13), n/a–n/a (2017)

    Google Scholar 

  72. Hashemi Sanatgar, R., Campagne, C., Nierstrasz, V.: Investigation of the adhesion properties of direct 3D printing of polymers and nanocomposites on textiles: Effect of FDM printing process parameters. Appl. Surf. Sci. 403, 551–563 (2017)

    Article  Google Scholar 

  73. Hwang, S., Reyes, E.I., Moon, K., Rumpf, R.C., Kim, N.S.: Thermo-mechanical characterization of metal/polymer composite filaments and printing parameter study for fused deposition modeling in the 3D printing process. J. Electron. Mater. 44(3), 771–777 (2015)

    Article  Google Scholar 

  74. Melocchi, A., Parietti, F., Maroni, A., Foppoli, A., Gazzaniga, A., Zema, L.: Hot-melt extruded filaments based on pharmaceutical grade polymers for 3D printing by fused deposition modeling. Int. J. Pharm. 509(1–2), 255–263 (2016)

    Article  Google Scholar 

  75. Sandoval, J.H., Wicker, R.B.: Functionalizing stereolithography resins: effects of dispersed multi-walled carbon nanotubes on physical properties. Rapid Prototyp. J. 12(5), 292–303 (2006)

    Article  Google Scholar 

  76. Wang, X., Jiang, M., Zhou, Z., Gou, J., Hui, D.: 3D printing of polymer matrix composites: a review and prospective. Compos. Part B Eng. 110, 442–458 (2017)

    Article  Google Scholar 

  77. Christ, S., Schnabel, M., Vorndran, E., Groll, J., Gbureck, U.: Fiber reinforcement during 3D printing. Mater. Lett. 139, 165–168 (2015)

    Article  Google Scholar 

  78. Swartz, R., Crist, B., Gore, E., Jacobson, J.M.: Methods and Apparatus for Three-Dimensional Printed Composites. Google Patents, 29 Oct 2015

    Google Scholar 

  79. Chua, C.K., Leong, K.F., Lim, C.S.: Rapid Prototyping. World Scientific, Singapore (2003)

    Book  Google Scholar 

  80. Crump, S.S.: Apparatus and Method for Creating Three-Dimensional Objects. US5121329 (1992)

    Google Scholar 

  81. Reprapwiki: RepRapWiki, webpage. [Online]. http://reprap.org. Accessed 14 Jan 2017

  82. All3DP: 3D Printers Explained: Delta, Cartesian, Polar, Scara, webpage (2017). [Online]. https://all3dp.com/know-your-fdm-3d-printers-cartesian-delta-polar-and-scara/. Accessed on 12 Jan 2017

  83. Allen, R.J.A., Trask, R.S.: An experimental demonstration of effective curved layer fused filament fabrication utilising a parallel deposition robot. Addit. Manuf. 8, 78–87 (2015)

    Article  Google Scholar 

  84. Ultimaker: Ultimaker 3. [Online]. https://ultimaker.com/en/products/ultimaker-3

  85. Prusa: Prusa 3D. [Online]. http://www.prusa3d.com/

  86. Grutle, Ø.K.: 5-axis 3D Printer (2015)

    Google Scholar 

  87. Apro, K.: Secrets of 5-Axis Machining. Industrial Press Inc., New York (2008)

    Google Scholar 

  88. Stratasys: Infinite Build Robotic Composite 3D Demonstrator. [Online]. http://blog.stratasys.com/2016/08/24/infinite-build-robotic-composite-3d-demonstrator/

  89. Kishore, V., et al.: Additive Manufacturing of High Performance Semicrystalline Thermoplastics and Their Composites

    Google Scholar 

  90. Swolfs, Y., Pinho, S.T.: Designing and 3D printing continuous fibre-reinforced composites with a high fracture toughness. In: American Society for Composites Thirty-First Technical Conference (2016)

    Google Scholar 

  91. Prüß, H., Vietor, T.: Design for fiber-reinforced additive manufacturing. J. Mech. Des. 137(11), 111409 (2015)

    Article  Google Scholar 

  92. Yang, C., Tian, X., Liu, T., Cao, Y., Li, D.: Rapid Prototyping Journal 3D printing for continuous fiber reinforced thermoplastic composites: mechanism and performance. Rapid Prototyp. J. 23(1), 209–215 (2017)

    Article  Google Scholar 

  93. Chen, Q., Mangadlao, J.D., Wallat, J., De Leon, A., Pokorski, J.K., Advincula, R.C.: 3D printing biocompatible polyurethane/poly(lactic acid)/graphene oxide nanocomposites: anisotropic properties. ACS Appl. Mater. Interfaces. 9(4), 4015–4023 (2017)

    Article  Google Scholar 

  94. Akula, S., Karunakaran, K.P.: Hybrid adaptive layer manufacturing: an intelligent art of direct metal rapid tooling process. Robot. Comput. Integr. Manuf. 22(2), 113–123 (2006)

    Article  Google Scholar 

  95. Jeng, J.-Y., Lin, M.-C.: Mold fabrication and modification using hybrid processes of selective laser cladding and milling. J. Mater. Process. Technol. 110(1), 98–103 (2001)

    Article  Google Scholar 

  96. Karunakaran, K.P., Suryakumar, S., Pushpa, V., Akula, S.: Low cost integration of additive and subtractive processes for hybrid layered manufacturing. Robot. Comput. Integr. Manuf. 26(5), 490–499 (2010)

    Article  Google Scholar 

  97. Karunakaran, K.P., Suryakumar, S., Pushpa, V., Akula, S.: Retrofitment of a CNC machine for hybrid layered manufacturing. Int. J. Adv. Manuf. Technol. 45(7–8), 690–703 (2009)

    Article  Google Scholar 

  98. Lee, W., Wei, C., Chung, S.-C.: Development of a hybrid rapid prototyping system using low-cost fused deposition modeling and five-axis machining. J. Mater. Process. Technol. 214(11), 2366–2374 (2014)

    Article  Google Scholar 

  99. Choi, D.-S., et al.: Development of a direct metal freeform fabrication technique using CO2 laser welding and milling technology. J. Mater. Process. Technol. 113(1), 273–279 (2001)

    Article  Google Scholar 

  100. Himmer, T., Techel, A., Nowotny, S., Beyer, E.: Recent developments in metal laminated tooling by multiple laser processing. Rapid Prototyp. J. 9(1), 24–29 (2003)

    Article  Google Scholar 

  101. Jones, J.B., McNutt, P., Tosi, R., Perry, C., Wimpenny, D.I.: Remanufacture of Turbine Blades by Laser Cladding, Machining and In-Process Scanning in a Single Machine (2012)

    Google Scholar 

  102. Kerschbaumer, M., Ernst, G.: Hybrid manufacturing process for rapid high performance tooling combining high speed milling and laser cladding. In: Proceedings of the 23rd International Congress on Applications of Lasers and Electro-Optics (ICALEO), San Francisco, CA, vol. 97, pp. 1710–1720 (2004)

    Google Scholar 

  103. Nowotny, S., Muenster, R., Scharek, S., Beyer, E.: Integrated laser cell for combined laser cladding and milling. Assem. Autom. 30(1), 36–38 (2010)

    Article  Google Scholar 

  104. Ren, L., Padathu, A.P., Ruan, J., Sparks, T., Liou, F.W.: Three Dimensional Die Repair Using a Hybrid Manufacturing System. Austin, TX (2008)

    Google Scholar 

  105. Song, Y.-A., Park, S.: Experimental investigations into rapid prototyping of composites by novel hybrid deposition process. J. Mater. Process. Technol. 171(1), 35–40 (2006)

    Article  Google Scholar 

  106. Song, Y.-A., Park, S., Choi, D., Jee, H.: 3D welding and milling: part I–a direct approach for freeform fabrication of metallic prototypes. Int. J. Mach. Tools Manuf 45(9), 1057–1062 (2005)

    Article  Google Scholar 

  107. Xiong, X., Haiou, Z., Guilan, W.: A new method of direct metal prototyping: hybrid plasma deposition and milling. Rapid Prototyp. J. 14(1), 53–56 (2008)

    Article  Google Scholar 

  108. Brøtan, V., Fahlström, J.: Sørby K (2016) Industrialization of metal powder bed fusion through machine shop networking. Procedia CIRP 54, 181–185 (2016)

    Article  Google Scholar 

  109. Yasa, E., Kruth, J.-P., Deckers, J.: Manufacturing by combining selective laser melting and selective laser erosion/laser re-melting. CIRP Ann. Manuf. Technol. 60(1), 263–266 (2011)

    Article  Google Scholar 

  110. Fessler, J.R., Merz, R., Nickel, A.H., Prinz, F.B., Weiss, L.E.: Laser deposition of metals for shape deposition manufacturing. In: Proceedings of the Solid Freeform Fabrication Symposium, pp. 117–124 (1996)

    Google Scholar 

  111. Merz, R., Prinz, F.B., Ramaswami, K., Terk, M., Weiss, L.: Shape Deposition Manufacturing, Engineering Design Research Center. Carnegie Mellon University, Pittsburgh, PA (1994)

    Google Scholar 

  112. Weiss, L.E., Merz, R., Prinz, F.B.: Shape Deposition Manufacturing with Microcasting: Processing, Thermal and Mechanical Issues (1998)

    Google Scholar 

  113. Yarrapareddy, E., Kovacevic, R.: Synthesis and characterization of laser-based direct metal deposited nano-particles reinforced surface coatings for industrial slurry erosion applications. Surf. Coatings Technol. 202(10), 1951–1965 (2008)

    Article  Google Scholar 

  114. Boschetto, A., Bottini, L., Veniali, F.: Finishing of fused deposition modeling parts by CNC machining. Robot. Comput. Integr. Manuf. 41, 92–101 (2016)

    Article  Google Scholar 

  115. Hur, J., Lee, K., Zhu-hu, Kim, J.: Hybrid rapid prototyping system using machining and deposition. Comput. Des. 34(10), 741–754 (2002)

    Google Scholar 

  116. Taylor, J.B., Cormier, D.R., Joshi, S., Venkataraman, V.: Contoured edge slice generation in rapid prototyping via 5-axis machining. Robot. Comput. Integr. Manuf. 17(1), 13–18 (2001)

    Article  Google Scholar 

  117. Zhang, J., Liou, F.: Adaptive slicing for a multi-axis laser aided manufacturing process. Trans. Soc. Mech. Eng. J. Mech. Des. 126, 254–261 (2004)

    Google Scholar 

  118. Forster, A.M.: Materials Testing Standards for Additive Manufacturing of Polymer Materials: State of the Art and Standards Applicability. National Institute of Standards and Technology (2015)

    Google Scholar 

  119. Support Action for Standardisation in Additive Manufacturing: Additive Manufacturing: SASAM Standardisation Roadmap (2014)

    Google Scholar 

  120. Waller, J.M., Parker, B.H., Hodges, K.L., Burke, E.R., Walker, J.L.: Nondestructive Evaluation of Additive Manufacturing State-of-the-Discipline Report. Nasa/Tm-2014-218560, pp. 1–36 (2014)

    Google Scholar 

  121. Seifi, M., Salem, A., Beuth, J., Harrysson, O., Lewandowski, J.J.: Overview of materials qualification needs for metal additive manufacturing. JOM 68(3), 747–764 (2016)

    Article  Google Scholar 

  122. Karthik, N.V., Gu, H., Pal, D., Starr, T., Stucker, B.: High frequency ultrasonic non destructive evaluation of additively manufactured components. In: 24th International SFF Symposium—An Additive Manufacturing Conference SFF 2013, pp. 311–325 (2013)

    Google Scholar 

  123. Dinwiddie, R.B., Dehoff, R.R., Lloyd, P.D., Lowe, L.E., Ulrich, J.B.: Thermographic in-situ process monitoring of the electron-beam melting technology used in additive manufacturing. In: Thermosense: Thermal Infrared Applications XXXV. SPIE (2013)

    Google Scholar 

  124. Everton, S.K., Hirsch, M., Stravroulakis, P., Leach, R.K., Clare, A.T.: Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Mater. Des. 95, 431–445 (2016)

    Article  Google Scholar 

  125. NIST: Qualification for Additive Manufacturing Materials, Processes, and Parts (2017). [Online]. https://www.nist.gov/programs-projects/qualification-additive-manufacturing-materials-processes-and-parts. Accessed on 23 Jan 2017

  126. Dinwiddie, R.B., Love, L.J., Rowe, J.C.: Real-time process monitoring and temperature mapping of a 3D polymer printing process. In: Thermosense: Thermal Infrared Applications XXXV. SPIE (2013)

    Google Scholar 

  127. Thompson, M.K., et al.: Design for additive manufacturing: trends, opportunities, considerations, and constraints. CIRP Ann. Manuf. Technol. 65(2), 737–760 (2016)

    Article  Google Scholar 

  128. Priarone, P.C., Ingarao, G.: Towards criteria for sustainable process selection: on the modelling of pure subtractive versus additive/subtractive integrated manufacturing approaches. J. Clean. Prod. 144, 57–68 (2017)

    Article  Google Scholar 

  129. Gao, W., et al.: The status, challenges, and future of additive manufacturing in engineering. Comput. Des. 69, 65–89 (2015)

    Google Scholar 

  130. Ford, S., Despeisse, M.: Additive manufacturing and sustainability: an exploratory study of the advantages and challenges. J. Clean. Prod. 137, 1573–1587 (2016)

    Article  Google Scholar 

  131. Chen, D., Heyer, S., Ibbotson, S., Salonitis, K., Steingrímsson, J.G., Thiede, S.: Direct digital manufacturing: Definition, evolution, and sustainability implications. J. Clean. Prod. 107, 615–625 (2015)

    Article  Google Scholar 

  132. Schmidt, A., Götze, U., Sygulla, R.: Extending the scope of material flow cost accounting—methodical refinements and use case. J. Clean. Prod. 108, 1320–1332 (2015)

    Article  Google Scholar 

  133. Sherif, Y.S., Kolarik, W.J.: Life cycle costing: concept and practice. Omega 9(3), 287–296 (1981)

    Article  Google Scholar 

  134. Barringer,H.P., Webber, D.P.: Life cycle cost tutorial. In: Fifth International Conference on Process Plant Reliability. Houston, Texas (1996)

    Google Scholar 

  135. Finnveden, G., Moberg, Å.: Environmental systems analysis tools—an overview. J. Clean. Prod. 13(12), 1165–1173 (2005)

    Article  Google Scholar 

  136. Jeswiet, J., Hauschild, M.: EcoDesign and future environmental impacts. Mater. Des. 26(7), 629–634 (2005)

    Article  Google Scholar 

  137. Jeswani, H.K., Azapagic, A., Schepelmann, P., Ritthoff, M.: Options for broadening and deepening the LCA approaches. J. Clean. Prod. 18(2), 120–127 (2010)

    Article  Google Scholar 

  138. Andersson, K., Ohlsson, T., Olsson, P.: Screening life cycle assessment (LCA) of tomato ketchup: a case study. J. Clean. Prod. 6(3–4), 277–288 (1998)

    Article  Google Scholar 

  139. Rebitzer, G., et al.: Life cycle assessment part 1: framework, goal and scope definition, inventory analysis, and applications. Environ. Int. 30(5), 701–720 (2004)

    Article  Google Scholar 

  140. Benoît-Norris, C., et al.: Introducing the UNEP/SETAC methodological sheets for subcategories of social LCA. Int. J. Life Cycle Assess. 16(7), 682–690 (2011)

    Article  Google Scholar 

  141. Serrano-Cinca, C., Gutiérrez-Nieto, B., Reyes, N.M.: A social and environmental approach to microfinance credit scoring. J. Clean. Prod. 112, 3504–3513 (2016)

    Article  Google Scholar 

  142. Clark, J., et al.: Assessing the full effects of public investment in space. Space Policy 30(3), 121–134 (2014)

    Article  MathSciNet  Google Scholar 

  143. Watson, K.J., Evans, J., Karvonen, A., Whitley, T.: Capturing the social value of buildings: the promise of social return on investment (SROI). Build. Environ. 103, 289–301 (2016)

    Article  Google Scholar 

  144. Gebler, M., Schoot Uiterkamp, A.J.M., Visser, C.: A global sustainability perspective on 3D printing technologies. Energy Policy 74(C), 158–167 (2014)

    Article  Google Scholar 

  145. Wits, W.W., García, J.R.R., Becker, J.M.J.: How additive manufacturing enables more sustainable end-user maintenance, repair and overhaul (MRO) strategies. Procedia CIRP 40, 694–699 (2016)

    Article  Google Scholar 

  146. Tang, Y., Mak, K., Zhao, Y.F.: A framework to reduce product environmental impact through design optimization for additive manufacturing. J. Clean. Prod. 137, 1560–1572 (2016)

    Article  Google Scholar 

  147. United Nations Environment Programme (UNEP): Guidelines for Social Life Cycle Assessment of Products (2009)

    Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the collaboration of Inês Oliveira, Rui Neto, Pedro Mimoso, Diogo Vale, Sacha Mould, Rui Gomes, Rui Moreira, Sílvia Esteves, João Paulo Pereira, António Ribeiro, Elsa Henriques, Inês Ribeiro, Luís Reis, Marco Leite, Paulo Peças, Jaime Fonseca, Ismael Vaz, Estela Bicho, Júlio Martins, Fernando Moura Duarte, João Pedro Nunes, José António Covas, Francisco Braz Fernandes, Valdemar Duarte, Rosa Miranda, Telmo G. Santos.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaac Ferreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferreira, I., Machado, M., Henriques, E., Leite, M., Peças, P., Marques, A.T. (2020). State-of-the-Art Review and Roadmap. In: Torres Marques, A., Esteves, S., Pereira, J., Oliveira, L. (eds) Additive Manufacturing Hybrid Processes for Composites Systems. Advanced Structured Materials, vol 129. Springer, Cham. https://doi.org/10.1007/978-3-030-44522-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44522-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44521-8

  • Online ISBN: 978-3-030-44522-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics