Skip to main content

Pathophysiology of Reperfusion Injury

  • Chapter
  • First Online:
Mechanisms of Vascular Disease

Abstract

Ischaemia-Reperfusion Injury (IRI), which is often referred to as Reperfusion Injury is the tissue damage that occurs following the return of blood flow to ischaemic tissues. Whilst reperfusion is required for tissue/organ viability, the return of oxygen to the tissue induces a complex multi-factorial process involving oxidative stress and inflammatory changes.

IRI occurs in a wide range of organs and conditions, most significantly affecting the heart, lung, kidney, skeletal muscle and brain. When severe, IRI can also result in systemic damage to remote organs, potentially leading to multi-system organ failure.

This chapter will discuss the major pathophysiological processes involved in IRI, including generation of reactive oxygen species, lipid peroxidation of cell membranes, nitric oxide expression, alteration of cytokine expression, activation of neutrophils and the endothelium, and the no-reflow phenomenon.

Despite extensive therapeutic studies in animal models, often with encouraging results, there is a paucity of therapies which have been translated into clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Allen DG, Xiao XH. Activity of the Na+/H+ exchanger contributes to cardiac damage following ischaemia and reperfusion. Clin Exp Pharmacol Physiol. 2000;27:727–33.

    Article  CAS  Google Scholar 

  2. Paoni NF, Peale F, Wang F, Errett-Baroncini C, Steinmetz H, Toy K, et al. Time course of skeletal muscle repair and gene expression following acute hind limb ischemia in mice. Physiol Genomics. 2002;11:263–72. https://doi.org/10.1152/physiolgenomics.00110.2002.

    Article  CAS  PubMed  Google Scholar 

  3. Luo R, Li L, Du X, Shi M, Zhou C, Wang C, et al. Gene expression profile of vascular ischemia-reperfusion injury in rhesus monkeys. Gene. 2016;576:753–62. https://doi.org/10.1016/j.gene.2015.10.073.

    Article  CAS  PubMed  Google Scholar 

  4. Safronova O, Morita I. Transcriptome remodeling in hypoxic inflammation. J Dent Res. 2010;89:430–44. https://doi.org/10.1177/0022034510366813.

    Article  CAS  PubMed  Google Scholar 

  5. Hierholzer C, Harbrecht BG, Billiar TR, Tweardy DJ. Hypoxia-inducible factor-1 activation and cyclo-oxygenase-2 induction are early reperfusion-independent inflammatory events in hemorrhagic shock. Arch Orthop Trauma Surg. 2001;121:219–22.

    Article  CAS  Google Scholar 

  6. Yokoyama K, Kimura M, Nakamura K, Itoman M. Time course of post-ischemic superoxide generation in venous effluent from reperfused rabbit hindlimbs. J Reconstr Microsurg. 1999;15:215–21.

    Article  CAS  Google Scholar 

  7. Gomes RZ, Romanek GM, Przybycien M, Amaral DC, Akahane HG. Evaluation of the effect of allopurinol as a protective factor in post ischemia and reperfusion inflammation in Wistar rats. Acta Cir Bras. 2016;31:126–32. https://doi.org/10.1590/s0102-865020160020000007.

    Article  PubMed  Google Scholar 

  8. Pacher P, Nivorozhkin A, Szabo C. Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol Rev. 2006;58:87–114. https://doi.org/10.1124/pr.58.1.6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tumer NB, Erol G, Tekeli Kunt A, Doganci S. Effect of Iloprost, a prostacyclin analogue, on myocardial ischemia-reperfusion injury. Heart Surg Forum. 2019;22:E027–31. https://doi.org/10.1532/hsf.2076.

    Article  PubMed  Google Scholar 

  10. Neumann UP, Kaisers U, Langrehr JM, Glanemann M, Muller AR, Lang M, et al. Administration of prostacyclin after liver transplantation: a placebo controlled randomized trial. Clin Transplant. 2000;14:70–4.

    Article  CAS  Google Scholar 

  11. Rowlands TE, Gough MJ, Homer-Vanniasinkam S. Do prostaglandins have a salutary role in skeletal muscle ischaemia-reperfusion injury? Eur J Vasc Endovasc Surg. 1999;18:439–44.

    Article  CAS  Google Scholar 

  12. de Donato G, Gussoni G, de Donato G, Andreozzi GM, Bonizzoni E, Mazzone A, et al. The ILAILL study: iloprost as adjuvant to surgery for acute ischemia of lower limbs: a randomized, placebo-controlled, double-blind study by the Italian society for vascular and endovascular surgery. Ann Surg. 2006;244:185–93. https://doi.org/10.1097/01.sla.0000217555.49001.ca.

    Article  PubMed  PubMed Central  Google Scholar 

  13. de Donato G, Gussoni G, de Donato G, Cao P, Setacci C, Pratesi C, et al. Acute limb ischemia in elderly patients: can iloprost be useful as an adjuvant to surgery? Results from the ILAILL study. Eur J Vasc Endovasc Surg. 2007;34:194–8. https://doi.org/10.1016/j.ejvs.2007.02.002.

    Article  PubMed  Google Scholar 

  14. Li J, Wang B, Wang Y, Wu F, Li P, Li Y, et al. Therapeutic effect of liposomal prostaglandin E1 in acute lower limb ischemia as an adjuvant to hybrid procedures. Exp Ther Med. 2013;5:1760–4. https://doi.org/10.3892/etm.2013.1061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Slupski M, Szadujkis-Szadurska K, Szadujkis-Szadurski R, Szadujkis-Szadurski L, Wlodarczyk Z, Andruszkiewicz J, et al. Nitric oxide and thromboxane A2 modulate pulmonary pressure after ischemia and intestinal reperfusion. Transplant Proc. 2006;38:334–7. https://doi.org/10.1016/j.transproceed.2005.12.085.

    Article  CAS  PubMed  Google Scholar 

  16. Mazolewski PJ, Roth AC, Suchy H, Stephenson LL, Zamboni WA. Role of the thromboxane A2 receptor in the vasoactive response to ischemia-reperfusion injury. Plast Reconstr Surg. 1999;104:1393–6.

    Article  CAS  Google Scholar 

  17. Bitencourt CS, Bessi VL, Huynh DN, Menard L, Lefebvre JS, Levesque T, et al. Cooperative role of endogenous leucotrienes and platelet-activating factor in ischaemia-reperfusion-mediated tissue injury. J Cell Mol Med. 2013;17:1554–65. https://doi.org/10.1111/jcmm.12118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mangino MJ, Murphy MK, Anderson CB. Effects of the arachidonate 5-lipoxygenase synthesis inhibitor A-64077 in intestinal ischemia-reperfusion injury. J Pharmacol Exp Ther. 1994;269:75–81.

    CAS  PubMed  Google Scholar 

  19. Karatas H, Eun Jung J, Lo EH, van Leyen K. Inhibiting 12/15-lipoxygenase to treat acute stroke in permanent and tPA induced thrombolysis models. Brain Res. 1678;2018:123–8. https://doi.org/10.1016/j.brainres.2017.10.024.

    Article  CAS  Google Scholar 

  20. Khanna A, Cowled PA, Fitridge RA. Nitric oxide and skeletal muscle reperfusion injury: current controversies (research review). J Surg Res. 2005;128:98–107. https://doi.org/10.1016/j.jss.2005.04.020.

    Article  CAS  PubMed  Google Scholar 

  21. Cowled PA, Khanna A, Laws PE, Field JB, Varelias A, Fitridge RA. Statins inhibit neutrophil infiltration in skeletal muscle reperfusion injury. J Surg Res. 2007;141:267–76. https://doi.org/10.1016/j.jss.2006.11.021.

    Article  CAS  PubMed  Google Scholar 

  22. Kiris I, Narin C, Gulmen S, Yilmaz N, Sutcu R, Kapucuoglu N. Endothelin receptor antagonism by tezosentan attenuates lung injury induced by aortic ischemia-reperfusion. Ann Vasc Surg. 2009;23:382–91. https://doi.org/10.1016/j.avsg.2008.10.003.

    Article  PubMed  Google Scholar 

  23. Gong S, Seng Z, Wang W, Lv J, Dong Q, Yan B, et al. Bosentan protects the spinal cord from ischemia reperfusion injury in rats through vascular endothelial growth factor receptors. Spinal Cord. 2015;53:19–23. https://doi.org/10.1038/sc.2014.147.

    Article  CAS  PubMed  Google Scholar 

  24. Lutz J, Thurmel K, Heemann U. Anti-inflammatory treatment strategies for ischemia/reperfusion injury in transplantation. J Inflamm (Lond). 2010;7:27. https://doi.org/10.1186/1476-9255-7-27.

    Article  CAS  Google Scholar 

  25. Tassiopoulos AK, Carlin RE, Gao Y, Pedoto A, Finck CM, Landas SK, et al. Role of nitric oxide and tumor necrosis factor on lung injury caused by ischemia/reperfusion of the lower extremities. J Vasc Surg. 1997;26:647–56.

    Article  CAS  Google Scholar 

  26. Esposito E, Cuzzocrea S. TNF-alpha as a therapeutic target in inflammatory diseases, ischemia-reperfusion injury and trauma. Curr Med Chem. 2009;16:3152–67. https://doi.org/10.2174/092986709788803024.

    Article  CAS  PubMed  Google Scholar 

  27. Duran WN, Milazzo VJ, Sabido F, Hobson RW 2nd. Platelet-activating factor modulates leukocyte adhesion to endothelium in ischemia-reperfusion. Microvasc Res. 1996;51:108–15.

    Article  CAS  Google Scholar 

  28. Sun Z, Wang X, Lasson A, Bojesson A, Annborn M, Andersson R. Effects of inhibition of PAF, ICAM-1 and PECAM-1 on gut barrier failure caused by intestinal ischemia and reperfusion. Scand J Gastroenterol. 2001;36:55–65.

    Article  CAS  Google Scholar 

  29. Borjesson A, Wang X, Sun Z, Inghammar M, Truedsson L, Andersson R. Early treatment with lexipafant, a platelet-activating factor-receptor antagonist, is not sufficient to prevent pulmonary endothelial damage after intestinal ischaemia and reperfusion in rats. Dig Liver Dis. 2002;34:190–6.

    Article  CAS  Google Scholar 

  30. Norwood MG, Bown MJ, Sutton AJ, Nicholson ML, Sayers RD. Interleukin 6 production during abdominal aortic aneurysm repair arises from the gastrointestinal tract and not the legs. Br J Surg. 2004;91:1153–6.

    Article  CAS  Google Scholar 

  31. de Vries DK, Lindeman JH, Tsikas D, de Heer E, Roos A, de Fijter JW, et al. Early renal ischemia-reperfusion injury in humans is dominated by IL-6 release from the allograft. Am J Transplant. 2009;9:1574–84. https://doi.org/10.1111/j.1600-6143.2009.02675.x.

    Article  CAS  PubMed  Google Scholar 

  32. De Perrot M, Sekine Y, Fischer S, Waddell TK, McRae K, Liu M, et al. Interleukin-8 release during early reperfusion predicts graft function in human lung transplantation. Am J Respir Crit Care Med. 2002;165:211–5.

    Article  Google Scholar 

  33. Sekido N, Mukaida N, Harada A, Nakanishi I, Watanabe Y, Matsushima K. Prevention of lung reperfusion injury in rabbits by a monoclonal antibody against interleukin-8. Nature. 1993;365:654–7.

    Article  CAS  Google Scholar 

  34. Cowled PA, Leonardos L, Millard SH, Fitridge RA. Apoptotic cell death makes a minor contribution to reperfusion injury in skeletal muscle in the rat. Eur J Vasc Endovasc Surg. 2001;21:28–34.

    Article  CAS  Google Scholar 

  35. Roach DM, Fitridge RA, Laws PE, Millard SH, Varelias A, Cowled PA. Up-regulation of MMP-2 and MMP-9 leads to degradation of type IV collagen during skeletal muscle reperfusion injury; protection by the MMP inhibitor, doxycycline. Eur J Vasc Endovasc Surg. 2002;23:260–9.

    Article  CAS  Google Scholar 

  36. Martinez-Mier G, Toledo-Pereyra LH, McDuffie JE, Warner RL, Ward PA. Neutrophil depletion and chemokine response after liver ischemia and reperfusion. J Invest Surg. 2001;14:99–107.

    Article  CAS  Google Scholar 

  37. McEver RP. Selectins: initiators of leucocyte adhesion and signalling at the vascular wall. Cardiovasc Res. 2015;107:331–9. https://doi.org/10.1093/cvr/cvv154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Levine AJ, Parkes K, Rooney SJ, Bonser RS. The effect of adhesion molecule blockade on pulmonary reperfusion injury. Ann Thorac Surg. 2002;73:1101–6.

    Article  Google Scholar 

  39. Huang J, Choudhri TF, Winfree CJ, McTaggart RA, Kiss S, Mocco J, et al. Postischemic cerebrovascular E-selectin expression mediates tissue injury in murine stroke. Stroke. 2000;31:3047–53.

    Article  CAS  Google Scholar 

  40. Calvey CR, Toledo-Pereyra LH. Selectin inhibitors and their proposed role in ischemia and reperfusion. J Invest Surg. 2007;20:71–85. https://doi.org/10.1080/08941930701250212.

    Article  PubMed  Google Scholar 

  41. Stahli BE, Gebhard C, Duchatelle V, Cournoyer D, Petroni T, Tanguay JF, et al. Effects of the P-selectin antagonist Inclacumab on myocardial damage after percutaneous coronary intervention according to timing of infusion: insights from the SELECT-ACS trial. J Am Heart Assoc. 2016;5. https://doi.org/10.1161/jaha.116.004255.

  42. Yilmaz G, Granger DN. Cell adhesion molecules and ischemic stroke. Neurol Res. 2008;30:783–93. https://doi.org/10.1179/174313208X341085.

    Article  PubMed  PubMed Central  Google Scholar 

  43. McKenzie ME, Gurbel PA. The potential of monoclonal antibodies to reduce reperfusion injury in myocardial infarction. BioDrugs. 2001;15:395–404.

    Article  CAS  Google Scholar 

  44. Yonekawa K, Harlan JM. Targeting leukocyte integrins in human diseases. J Leukoc Biol. 2005;77:129–40. https://doi.org/10.1189/jlb.0804460.

    Article  CAS  PubMed  Google Scholar 

  45. Dragun D, Tullius SG, Park JK, Maasch C, Lukitsch I, Lippoldt A, et al. ICAM-1 antisense oligodesoxynucleotides prevent reperfusion injury and enhance immediate graft function in renal transplantation. Kidney Int. 1998;54:590–602.

    Article  CAS  Google Scholar 

  46. Enlimomab Acute Stroke Trial Investigators. Use of anti-ICAM-1 therapy in ischemic stroke: results of the Enlimomab acute stroke trial. Neurology. 2001;57:1428–34.

    Article  Google Scholar 

  47. Rubin BB, Smith A, Liauw S, Isenman D, Romaschin AD, Walker PM. Complement activation and white cell sequestration in postischemic skeletal muscle. Am J Physiol. 1990;259:H525–31.

    CAS  PubMed  Google Scholar 

  48. Kyriakides C, Austen W, Wang Y, Favuzza J, Kobzik L, Moore FD, et al. Skeletal muscle reperfusion injury is mediated by neutrophils and the complement membrane attack complex. Am J Physiol. 1999;277:C1263–8.

    Article  CAS  Google Scholar 

  49. Lindsay TF, Hill J, Ortiz F, Rudolph A, Valeri CR, Hechtman HB, et al. Blockade of complement activation prevents local and pulmonary albumin leak after lower torso ischemia-reperfusion. Ann Surg. 1992;216:677–83.

    Article  CAS  Google Scholar 

  50. Harkin DW, Marron CD, Rother RP, Romaschin A, Rubin BB, Lindsay TF. C5 complement inhibition attenuates shock and acute lung injury in an experimental model of ruptured abdominal aortic aneurysm. Br J Surg. 2005;92:1227–34.

    Article  CAS  Google Scholar 

  51. Zhao H, Perez JS, Lu K, George AJ, Ma D. Role of Toll-like receptor-4 in renal graft ischemia-reperfusion injury. Am J Physiol Renal Physiol. 2014;306:F801–11. https://doi.org/10.1152/ajprenal.00469.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. O’Neill S, Harrison EM, Ross JA, Wigmore SJ, Hughes J. Heat-shock proteins and acute ischaemic kidney injury. Nephron Exp Nephrol. 2014;126:167–74. https://doi.org/10.1159/000363323.

    Article  CAS  PubMed  Google Scholar 

  53. Wang Y, Abarbanell AM, Herrmann JL, Weil BR, Poynter J, Manukyan MC, et al. Toll-like receptor signaling pathways and the evidence linking toll-like receptor signaling to cardiac ischemia/reperfusion injury. Shock. 2010;34:548–57. https://doi.org/10.1097/SHK.0b013e3181e686f5.

    Article  CAS  PubMed  Google Scholar 

  54. Lee SM, Hutchinson M, Saint DA. The role of Toll-like receptor 4 (TLR4) in cardiac ischaemic-reperfusion injury, cardioprotection and preconditioning. Clin Exp Pharmacol Physiol. 2016;43:864–71. https://doi.org/10.1111/1440-1681.12602.

    Article  CAS  PubMed  Google Scholar 

  55. Fujimura M, Gasche Y, Morita-Fujimura Y, Massengale J, Kawase M, Chan PH. Early appearance of activated matrix metalloproteinase-9 and blood-brain barrier disruption in mice after focal cerebral ischemia and reperfusion. Brain Res. 1999;842:92–100.

    Article  CAS  Google Scholar 

  56. Ziswiler R, Daniel C, Franz E, Marti HP. Renal matrix metalloproteinase activity is unaffected by experimental ischemia-reperfusion injury and matrix metalloproteinase inhibition does not alter outcome of renal function. Exp Nephrol. 2001;9:118–24.

    Article  CAS  Google Scholar 

  57. Cortes AL, Gonsalez SR, Rioja LS, Oliveira SSC, Santos ALS, Prieto MC, et al. Protective outcomes of low-dose doxycycline on renal function of Wistar rats subjected to acute ischemia/reperfusion injury. Biochim Biophys Acta. 1864;2018:102–14. https://doi.org/10.1016/j.bbadis.2017.10.005.

    Article  CAS  Google Scholar 

  58. Barr TL, Latour LL, Lee KY, Schaewe TJ, Luby M, Chang GS, et al. Blood-brain barrier disruption in humans is independently associated with increased matrix metalloproteinase-9. Stroke. 2010;41:e123–8. https://doi.org/10.1161/STROKEAHA.109.570515.

    Article  CAS  PubMed  Google Scholar 

  59. Knight KR, Messina A, Hurley JV, Zhang B, Morrison WA, Stewart AG. Muscle cells become necrotic rather than apoptotic during reperfusion of ischaemic skeletal muscle. Int J Exp Pathol. 1999;80:169–75.

    Article  CAS  Google Scholar 

  60. Granger DN, Kvietys PR. Reperfusion therapy—What’s with the obstructed, leaky and broken capillaries? Pathophysiology. 2017;24:213–28. https://doi.org/10.1016/j.pathophys.2017.09.003.

    Article  PubMed  Google Scholar 

  61. Yu H, Kalogeris T, Korthuis RJ. Reactive species-induced microvascular dysfunction in ischemia/reperfusion. Free Radic Biol Med. 2019;135:182–97. https://doi.org/10.1016/j.freeradbiomed.2019.02.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Szabo A, Varga R, Keresztes M, Vizler C, Nemeth I, Razga Z, et al. Ischemic limb preconditioning downregulates systemic inflammatory activation. J Orthop Res. 2009;27:897–902. https://doi.org/10.1002/jor.20829.

    Article  CAS  PubMed  Google Scholar 

  63. Eberlin KR, McCormack MC, Nguyen JT, Tatlidede HS, Randolph MA, Austen WG Jr. Ischemic preconditioning of skeletal muscle mitigates remote injury and mortality. J Surg Res. 2008;148:24–30. https://doi.org/10.1016/j.jss.2008.01.040.

    Article  PubMed  Google Scholar 

  64. Kharbanda RK, Nielsen TT, Redington AN. Translation of remote ischaemic preconditioning into clinical practice. Lancet. 2009;374:1557–65. https://doi.org/10.1016/S0140-6736(09)61421-5.

    Article  PubMed  Google Scholar 

  65. Stokfisz K, Ledakowicz-Polak A, Zagorski M, Zielinska M. Ischaemic preconditioning—current knowledge and potential future applications after 30 years of experience. Adv Med Sci. 2017;62:307–16. https://doi.org/10.1016/j.advms.2016.11.006.

    Article  PubMed  Google Scholar 

  66. Ali ZA, Callaghan CJ, Lim E, Ali AA, Nouraei SA, Akthar AM, et al. Remote ischemic preconditioning reduces myocardial and renal injury after elective abdominal aortic aneurysm repair: a randomized controlled trial. Circulation. 2007;116:I98–105. https://doi.org/10.1161/circulationaha.106.679167.

    Article  PubMed  Google Scholar 

  67. Botker HE, Kharbanda R, Schmidt MR, Bottcher M, Kaltoft AK, Terkelsen CJ, et al. Remote ischaemic conditioning before hospital admission, as a complement to angioplasty, and effect on myocardial salvage in patients with acute myocardial infarction: a randomised trial. Lancet. 2010;375:727–34. https://doi.org/10.1016/S0140-6736(09)62001-8.

    Article  PubMed  Google Scholar 

  68. Walsh SR, Boyle JR, Tang TY, Sadat U, Cooper DG, Lapsley M, et al. Remote ischemic preconditioning for renal and cardiac protection during endovascular aneurysm repair: a randomized controlled trial. J Endovasc Ther. 2009;16:680–9. https://doi.org/10.1583/09-2817.1.

    Article  PubMed  Google Scholar 

  69. Healy DA, Boyle E, McCartan D, Bourke M, Medani M, Ferguson J, et al. A multicenter pilot randomized controlled trial of remote ischemic preconditioning in major vascular surgery. Vasc Endovascular Surg. 2015;49:220–7. https://doi.org/10.1177/1538574415614404.

    Article  CAS  PubMed  Google Scholar 

  70. Kepler T, Kuusik K, Lepner U, Starkopf J, Zilmer M, Eha J, et al. The effect of remote ischaemic preconditioning on arterial stiffness in patients undergoing vascular surgery: a randomised clinical trial. Eur J Vasc Endovasc Surg. 2019;57:868–75. https://doi.org/10.1016/j.ejvs.2018.12.002.

    Article  PubMed  Google Scholar 

  71. De Freitas S, Hicks CW, Mouton R, Garcia S, Healy D, Connolly C, et al. Effects of ischemic preconditioning on abdominal aortic aneurysm repair: a systematic review and meta-analysis. J Surg Res. 2019;235:340–9. https://doi.org/10.1016/j.jss.2018.09.049.

    Article  PubMed  Google Scholar 

  72. Zhao ZQ. Postconditioning in reperfusion injury: a status report. Cardiovasc Drugs Ther. 2010;24:265–79. https://doi.org/10.1007/s10557-010-6240-1.

    Article  PubMed  Google Scholar 

  73. Kaur S, Jaggi AS, Singh N. Molecular aspects of ischaemic postconditioning. Fundam Clin Pharmacol. 2009;23:521–36. https://doi.org/10.1111/j.1472-8206.2009.00733.x.

    Article  CAS  PubMed  Google Scholar 

  74. Wang Z, Wen J, Zhou C, Wang Z, Wei M. Gene expression profiling analysis to investigate the role of remote ischemic postconditioning in ischemia-reperfusion injury in rats. BMC Genomics. 2019;20:361. https://doi.org/10.1186/s12864-019-5743-9.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Gyurkovics E, Aranyi P, Stangl R, Onody P, Ferreira G, Lotz G, et al. Postconditioning of the lower limb--protection against the reperfusion syndrome. J Surg Res. 2011;169:139–47. https://doi.org/10.1016/j.jss.2009.10.014.

    Article  PubMed  Google Scholar 

  76. Sinay L, Kurthy M, Horvath S, Arato E, Shafiei M, Lantos J, et al. Ischaemic postconditioning reduces peroxide formation, cytokine expression and leukocyte activation in reperfusion injury after abdominal aortic surgery in rat model. Clin Hemorheol Microcirc. 2008;40:133–42.

    Article  CAS  Google Scholar 

  77. Mockford KA, Girn HR, Homer-Vanniasinkam S. Postconditioning: current controversies and clinical implications. Eur J Vasc Endovasc Surg. 2009;37:437–42. https://doi.org/10.1016/j.ejvs.2008.12.017.

    Article  CAS  PubMed  Google Scholar 

  78. Schmidt CA, Rancic Z, Lachat ML, Mayer DO, Veith FJ, Wilhelm MJ. Hypothermic, initially oxygen-free, controlled limb reperfusion for acute limb ischemia. Ann Vasc Surg. 2015;29:560–72. https://doi.org/10.1016/j.avsg.2014.09.033.

    Article  PubMed  Google Scholar 

  79. Pagel PS, Crystal GJ. The discovery of myocardial preconditioning using volatile anesthetics: a history and contemporary clinical perspective. J Cardiothorac Vasc Anesth. 2018;32:1112–34. https://doi.org/10.1053/j.jvca.2017.12.029.

    Article  PubMed  Google Scholar 

  80. Kalenka A, Maurer MH, Feldmann RE, Kuschinsky W, Waschke KF. Volatile anesthetics evoke prolonged changes in the proteome of the left ventricule myocardium: defining a molecular basis of cardioprotection? Acta Anaesthesiol Scand. 2006;50:414–27. https://doi.org/10.1111/j.1399-6576.2006.00984.x.

    Article  CAS  PubMed  Google Scholar 

  81. Kalenka A, Gross B, Maurer MH, Thierse HJ, Feldmann RE Jr. Isoflurane anesthesia elicits protein pattern changes in rat hippocampus. J Neurosurg Anesthesiol. 2010;22:144–54. https://doi.org/10.1097/ANA.0b013e3181cb7cb8.

    Article  PubMed  Google Scholar 

  82. Xiao YY, Chang YT, Ran K, Liu JP. Delayed preconditioning by sevoflurane elicits changes in the mitochondrial proteome in ischemia-reperfused rat hearts. Anesth Analg. 2011;113:224–32. https://doi.org/10.1213/ANE.0b013e3182239b71.

    Article  CAS  PubMed  Google Scholar 

  83. Wang JK, Wu HF, Zhou H, Yang B, Liu XZ. Postconditioning with sevoflurane protects against focal cerebral ischemia and reperfusion injury involving mitochondrial ATP-dependent potassium channel and mitochondrial permeability transition pore. Neurol Res. 2015;37:77–83. https://doi.org/10.1179/1743132814y.0000000410.

    Article  CAS  PubMed  Google Scholar 

  84. Symons JA, Myles PS. Myocardial protection with volatile anaesthetic agents during coronary artery bypass surgery: a meta-analysis. Br J Anaesth. 2006;97:127–36. https://doi.org/10.1093/bja/ael149.

    Article  CAS  PubMed  Google Scholar 

  85. Bignami E, Biondi-Zoccai G, Landoni G, Fochi O, Testa V, Sheiban I, et al. Volatile anesthetics reduce mortality in cardiac surgery. J Cardiothorac Vasc Anesth. 2009;23:594–9. https://doi.org/10.1053/j.jvca.2009.01.022.

    Article  PubMed  Google Scholar 

  86. Abu-Amara M, Gurusamy KS, Glantzounis G, Fuller B, Davidson BR. Pharmacological interventions for ischaemia reperfusion injury in liver resection surgery performed under vascular control. Cochrane Database Syst Rev. 2009;(4):CD008154. https://doi.org/10.1002/14651858.CD008154.

  87. Abu-Amara M, Gurusamy KS, Hori S, Glantzounis G, Fuller B, Davidson BR. Pharmacological interventions versus no pharmacological intervention for ischaemia reperfusion injury in liver resection surgery performed under vascular control. Cochrane Database Syst Rev. 2009;(4):CD007472. https://doi.org/10.1002/14651858.CD007472.pub2.

  88. Laws PE, Spark JI, Cowled PA, Fitridge RA. The role of statins in vascular disease. Eur J Vasc Endovasc Surg. 2004;27:6–16. https://doi.org/10.1016/j.ejvs.2003.09.014.

    Article  CAS  PubMed  Google Scholar 

  89. Cowled PA, Khanna A, Laws PE, Field JB, Fitridge RA. Simvastatin plus nitric oxide synthase inhibition modulates remote organ damage following skeletal muscle ischemia-reperfusion injury. J Invest Surg. 2008;21:119–26. https://doi.org/10.1080/08941930802046501.

    Article  CAS  PubMed  Google Scholar 

  90. Stalenhoef AF. The benefit of statins in non-cardiac vascular surgery patients. J Vasc Surg. 2009;49:260–5. https://doi.org/10.1016/j.jvs.2008.11.070.

    Article  PubMed  Google Scholar 

  91. Kertai MD, Boersma E, Westerhout CM, van Domburg R, Klein J, Bax JJ, et al. Association between long-term statin use and mortality after successful abdominal aortic aneurysm surgery. Am J Med. 2004;116:96–103. https://doi.org/10.1016/j.amjmed.2003.08.029.

    Article  CAS  PubMed  Google Scholar 

  92. Pasupathy S, Tavella R, Grover S, Raman B, Procter NEK, Du YT, et al. Early use of N-acetylcysteine with nitrate therapy in patients undergoing primary percutaneous coronary intervention for ST-segment-elevation myocardial infarction reduces myocardial infarct size (the NACIAM trial [N-acetylcysteine in acute myocardial infarction]). Circulation. 2017;136:894–903. https://doi.org/10.1161/circulationaha.117.027575.

    Article  CAS  PubMed  Google Scholar 

  93. Hausenloy DJ, Botker HE, Engstrom T, Erlinge D, Heusch G, Ibanez B, et al. Targeting reperfusion injury in patients with ST-segment elevation myocardial infarction: trials and tribulations. Eur Heart J. 2017;38:935–41. https://doi.org/10.1093/eurheartj/ehw145.

    Article  CAS  PubMed  Google Scholar 

  94. Cung TT, Morel O, Cayla G, Rioufol G, Garcia-Dorado D, Angoulvant D, et al. Cyclosporine before PCI in patients with acute myocardial infarction. N Engl J Med. 2015;373:1021–31. https://doi.org/10.1056/NEJMoa1505489.

    Article  CAS  PubMed  Google Scholar 

Further Reading

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Fitridge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cowled, P., Fitridge, R. (2020). Pathophysiology of Reperfusion Injury. In: Fitridge, R. (eds) Mechanisms of Vascular Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-43683-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43683-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43682-7

  • Online ISBN: 978-3-030-43683-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics