Skip to main content

Sepsis and Septic Shock

  • Chapter
  • First Online:
Mechanisms of Vascular Disease
  • 1086 Accesses

Abstract

Sepsis is a common, dangerous and complex syndrome. Inflammatory and anti-inflammatory cascades interact with pathogenic virulence factors to drive broad-ranging dysregulation of cardiovascular, coagulation, neuronal, bioenergetic, endocrine and other systems. Unchecked, sepsis can culminate in cardiovascular collapse, multi-organ failure and death. The most common sources of sepsis in critically unwell patients are the respiratory tract, abdomen or urinary tract. Organisms are typically isolated in 50–70% of patients, most frequently gram-negative bacteria. Unfortunately, our improved understanding of the pathogenesis of sepsis has yielded limited therapeutic advances. Early source control, appropriate antimicrobial administration, physiologically rational modulation of the circulation and evidence-based organ support remain the cornerstones of management. Septic shock has a hospital mortality of 40%, a statistic under constant pressure from the ageing population, increased use of immunomodulatory medications and antimicrobial resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bone RC, Sibbald WJ, Sprung CL. The ACCP-SCCM consensus conference on sepsis and organ failure. Chest. 1992;101:1481–3.

    Article  CAS  PubMed  Google Scholar 

  2. Churpek MM, Zadravecz FJ, Winslow C, Howell MD, Edelson DP. Incidence and prognostic value of the systemic inflammatory response syndrome and organ dysfunctions in ward patients. Am J Respir Crit Care Med. 2015;192:958–64. https://doi.org/10.1164/rccm.201502-0275OC.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kaukonen KM, Bailey M, Pilcher D, Cooper DJ, Bellomo R. Systemic inflammatory response syndrome criteria in defining severe sepsis. N Engl J Med. 2015;372:1629–38. https://doi.org/10.1056/NEJMoa1415236.

    Article  CAS  PubMed  Google Scholar 

  4. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315:801–10. https://doi.org/10.1001/jama.2016.0287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vincent JL, Moreno R, Takala J, Willatts S, De Mendonca A, Bruining H, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-related problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996;22:707–10.

    Article  CAS  PubMed  Google Scholar 

  6. Fleischmann C, Scherag A, Adhikari NK, Hartog CS, Tsaganos T, Schlattmann P, et al. Assessment of global incidence and mortality of hospital-treated Sepsis. Current estimates and limitations. Am J Respir Crit Care Med. 2016;193:259–72. https://doi.org/10.1164/rccm.201504-0781OC.

    Article  CAS  PubMed  Google Scholar 

  7. Kadri SS, Rhee C, Strich JR, Morales MK, Hohmann S, Menchaca J, et al. Estimating ten-year trends in septic shock incidence and mortality in United States academic medical centers using clinical data. Chest. 2017;151:278–85. https://doi.org/10.1016/j.chest.2016.07.010.

    Article  PubMed  Google Scholar 

  8. Iwashyna TJ, Ely EW, Smith DM, Langa KM. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA. 2010;304:1787–94. https://doi.org/10.1001/jama.2010.1553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gupta S, Sakhuja A, Kumar G, McGrath E, Nanchal RS, Kashani KB. Culture-negative severe sepsis: nationwide trends and outcomes. Chest. 2016;150:1251–9. https://doi.org/10.1016/j.chest.2016.08.1460.

    Article  PubMed  Google Scholar 

  10. Venkatesh B, Finfer S, Cohen J, Rajbhandari D, Arabi Y, Bellomo R, et al. Adjunctive glucocorticoid therapy in patients with septic shock. N Engl J Med. 2018;378:797–808. https://doi.org/10.1056/NEJMoa1705835.

    Article  CAS  PubMed  Google Scholar 

  11. Vincent JL, Rello J, Marshall J, Silva E, Anzueto A, Martin CD, et al. International study of the prevalence and outcomes of infection in intensive care units. JAMA. 2009;302:2323–9. https://doi.org/10.1001/jama.2009.1754.

    Article  CAS  PubMed  Google Scholar 

  12. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140:805–20. https://doi.org/10.1016/j.cell.2010.01.022.

    Article  CAS  PubMed  Google Scholar 

  13. Nickel KF, Renne T. Crosstalk of the plasma contact system with bacteria. Thromb Res. 2012;130(Suppl 1):S78–83. https://doi.org/10.1016/j.thromres.2012.08.284.

    Article  PubMed  Google Scholar 

  14. Hotchkiss RS, Monneret G, Payen D. Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis. 2013;13:260–8. https://doi.org/10.1016/S1473-3099(13)70001-X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Russell JA, Rush B, Boyd J. Pathophysiology of septic shock. Crit Care Clin. 2018;34:43–61. https://doi.org/10.1016/j.ccc.2017.08.005.

    Article  PubMed  Google Scholar 

  16. Ince C, Mayeux PR, Nguyen T, Gomez H, Kellum JA, Ospina-Tascon GA, et al. The endothelium in sepsis. Shock. 2016;45:259–70. https://doi.org/10.1097/SHK.0000000000000473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Reddi BA, Iannella SM, O’Connor SN, Deane AM, Willoughby SR, Wilson DP. Attenuated platelet aggregation in patients with septic shock is independent from the activity state of myosin light chain phosphorylation or a reduction in rho kinase-dependent inhibition of myosin light chain phosphatase. Intensive Care Med Exp. 2015;3:37. https://doi.org/10.1186/s40635-014-0037-7.

    Article  PubMed  Google Scholar 

  18. Camicia G, Pozner R, de Larranaga G. Neutrophil extracellular traps in sepsis. Shock. 2014;42:286–94. https://doi.org/10.1097/SHK.0000000000000221.

    Article  CAS  PubMed  Google Scholar 

  19. Ince C, Mik EG. Microcirculatory and mitochondrial hypoxia in sepsis, shock, and resuscitation. J Appl Physiol (1985). 2016;120:226–35. https://doi.org/10.1152/japplphysiol.00298.2015.

    Article  CAS  Google Scholar 

  20. Pool R, Gomez H, Kellum JA. Mechanisms of organ dysfunction in sepsis. Crit Care Clin. 2018;34:63–80. https://doi.org/10.1016/j.ccc.2017.08.003.

    Article  PubMed  Google Scholar 

  21. Bakker J, Grover R, McLuckie A, Holzapfel L, Andersson J, Lodato R, et al. Administration of the nitric oxide synthase inhibitor NG-methyl-L-arginine hydrochloride (546C88) by intravenous infusion for up to 72 hours can promote the resolution of shock in patients with severe sepsis: results of a randomized, double-blind, placebo-controlled multicenter study (study no. 144-002). Crit Care Med. 2004;32:1–12. https://doi.org/10.1097/01.CCM.0000105118.66983.19.

    Article  CAS  PubMed  Google Scholar 

  22. Venkatesh B, Prins J, Torpy D, Chapman M, Joyce C, Cooper DJ, et al. Relative adrenal insufficiency in sepsis: match point or deuce? Crit Care Resusc. 2006;8:376–80.

    PubMed  Google Scholar 

  23. Landry DW, Levin HR, Gallant EM, Ashton RC Jr, Seo S, D’Alessandro D, et al. Vasopressin deficiency contributes to the vasodilation of septic shock. Circulation. 1997;95:1122–5.

    Article  CAS  PubMed  Google Scholar 

  24. Landry DW, Oliver JA. The ATP-sensitive K+ channel mediates hypotension in endotoxemia and hypoxic lactic acidosis in dog. J Clin Invest. 1992;89:2071–4. https://doi.org/10.1172/JCI115820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Reddi BA, Beltrame JF, Young RL, Wilson DP. Calcium desensitisation in late polymicrobial sepsis is associated with loss of vasopressor sensitivity in a murine model. Intensive Care Med Exp. 2015;3:36. https://doi.org/10.1186/s40635-014-0036-8.

    Article  PubMed  Google Scholar 

  26. Kakihana Y, Ito T, Nakahara M, Yamaguchi K, Yasuda T. Sepsis-induced myocardial dysfunction: pathophysiology and management. J Intensive Care. 2016;4:22. https://doi.org/10.1186/s40560-016-0148-1.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Parker MM, Shelhamer JH, Bacharach SL, Green MV, Natanson C, Frederick TM, et al. Profound but reversible myocardial depression in patients with septic shock. Ann Intern Med. 1984;100:483–90.

    Article  CAS  PubMed  Google Scholar 

  28. Zarbock A, Gomez H, Kellum JA. Sepsis-induced acute kidney injury revisited: pathophysiology, prevention and future therapies. Curr Opin Crit Care. 2014;20:588–95. https://doi.org/10.1097/MCC.0000000000000153.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rudiger A, Singer M. Mechanisms of sepsis-induced cardiac dysfunction. Crit Care Med. 2007;35:1599–608. https://doi.org/10.1097/01.CCM.0000266683.64081.02.

    Article  PubMed  Google Scholar 

  30. Sonneville R, de Montmollin E, Poujade J, Garrouste-Orgeas M, Souweine B, Darmon M, et al. Potentially modifiable factors contributing to sepsis-associated encephalopathy. Intensive Care Med. 2017;43:1075–84. https://doi.org/10.1007/s00134-017-4807-z.

    Article  PubMed  Google Scholar 

  31. Wu CC, Lan HM, Han ST, Chaou CH, Yeh CF, Liu SH, et al. Comparison of diagnostic accuracy in sepsis between presepsin, procalcitonin, and C-reactive protein: a systematic review and meta-analysis. Ann Intensive Care. 2017;7:91. https://doi.org/10.1186/s13613-017-0316-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wirz Y, Meier MA, Bouadma L, Luyt CE, Wolff M, Chastre J, et al. Effect of procalcitonin-guided antibiotic treatment on clinical outcomes in intensive care unit patients with infection and sepsis patients: a patient-level meta-analysis of randomized trials. Crit Care. 2018;22:191. https://doi.org/10.1186/s13054-018-2125-7.

    Article  PubMed  PubMed Central  Google Scholar 

  33. de Jong E, van Oers JA, Beishuizen A, Vos P, Vermeijden WJ, Haas LE, et al. Efficacy and safety of procalcitonin guidance in reducing the duration of antibiotic treatment in critically ill patients: a randomised, controlled, open-label trial. Lancet Infect Dis. 2016;16:819–27. https://doi.org/10.1016/S1473-3099(16)00053-0.

    Article  CAS  PubMed  Google Scholar 

  34. Garnacho-Montero J, Gutierrez-Pizarraya A, Escoresca-Ortega A, Corcia-Palomo Y, Fernandez-Delgado E, Herrera-Melero I, et al. De-escalation of empirical therapy is associated with lower mortality in patients with severe sepsis and septic shock. Intensive Care Med. 2014;40:32–40. https://doi.org/10.1007/s00134-013-3077-7.

    Article  CAS  PubMed  Google Scholar 

  35. Baron EJ, Miller JM, Weinstein MP, Richter SS, Gilligan PH, Thomson RB Jr, et al. A guide to utilization of the microbiology laboratory for diagnosis of infectious diseases: 2013 recommendations by the Infectious Diseases Society of America (IDSA) and the American Society for Microbiology (ASM)(a). Clin Infect Dis. 2013;57:e22–e121. https://doi.org/10.1093/cid/cit278.

    Article  PubMed  Google Scholar 

  36. Burillo A, Bouza E. Use of rapid diagnostic techniques in ICU patients with infections. BMC Infect Dis. 2014;14:593. https://doi.org/10.1186/s12879-014-0593-1.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–77. https://doi.org/10.1056/NEJMoa010307.

    Article  CAS  PubMed  Google Scholar 

  38. Angus DC, Barnato AE, Bell D, Bellomo R, Chong CR, Coats TJ, et al. A systematic review and meta-analysis of early goal-directed therapy for septic shock: the ARISE, ProCESS and ProMISe Investigators. Intensive Care Med. 2015;41:1549–60. https://doi.org/10.1007/s00134-015-3822-1.

    Article  CAS  PubMed  Google Scholar 

  39. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving Sepsis Campaign: international guidelines for management of sepsis and septic shock: 2016. Crit Care Med. 2017;45:486–552. https://doi.org/10.1097/CCM.0000000000002255.

    Article  PubMed  Google Scholar 

  40. Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 1998;338:347–54. https://doi.org/10.1056/NEJM199802053380602.

    Article  CAS  PubMed  Google Scholar 

  41. Finfer S, Bellomo R, Boyce N, French J, Myburgh J, Norton R, et al. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004;350:2247–56. https://doi.org/10.1056/NEJMoa040232.

    Article  CAS  PubMed  Google Scholar 

  42. Perner A, Haase N, Guttormsen AB, Tenhunen J, Klemenzson G, Aneman A, et al. Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. N Engl J Med. 2012;367:124–34. https://doi.org/10.1056/NEJMoa1204242.

    Article  CAS  PubMed  Google Scholar 

  43. Semler MW, Self WH, Wanderer JP, Ehrenfeld JM, Wang L, Byrne DW, et al. Balanced crystalloids versus saline in critically ill adults. N Engl J Med. 2018;378:829–39. https://doi.org/10.1056/NEJMoa1711584.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yunos NM, Bellomo R, Hegarty C, Story D, Ho L, Bailey M. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA. 2012;308:1566–72. https://doi.org/10.1001/jama.2012.13356.

    Article  CAS  PubMed  Google Scholar 

  45. Reddi BA, Carpenter RH. Venous excess: a new approach to cardiovascular control and its teaching. J Appl Physiol (1985). 2005;98:356–64. https://doi.org/10.1152/japplphysiol.00535.2004.

    Article  CAS  Google Scholar 

  46. Reddi B, Finnis M, Udy AA, Maiden M, Delaney A, Bellomo R, et al. The relationship between the change in central venous pressure and intravenous fluid volume in patients presenting to the emergency department with septic shock. Intensive Care Med. 2018;44:1591–2. https://doi.org/10.1007/s00134-018-5314-6.

    Article  PubMed  Google Scholar 

  47. Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40:1795–815. https://doi.org/10.1007/s00134-014-3525-z.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Marik PE, Monnet X, Teboul JL. Hemodynamic parameters to guide fluid therapy. Ann Intensive Care. 2011;1:1. https://doi.org/10.1186/2110-5820-1-1.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Monnet X, Marik PE, Teboul JL. Prediction of fluid responsiveness: an update. Ann Intensive Care. 2016;6:111. https://doi.org/10.1186/s13613-016-0216-7.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Boyd JH, Forbes J, Nakada TA, Walley KR, Russell JA. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39:259–65. https://doi.org/10.1097/CCM.0b013e3181feeb15.

    Article  PubMed  Google Scholar 

  51. LeDoux D, Astiz ME, Carpati CM, Rackow EC. Effects of perfusion pressure on tissue perfusion in septic shock. Crit Care Med. 2000;28:2729–32.

    Article  CAS  PubMed  Google Scholar 

  52. Bourgoin A, Leone M, Delmas A, Garnier F, Albanese J, Martin C. Increasing mean arterial pressure in patients with septic shock: effects on oxygen variables and renal function. Crit Care Med. 2005;33:780–6.

    Article  CAS  PubMed  Google Scholar 

  53. Thooft A, Favory R, Salgado DR, Taccone FS, Donadello K, De Backer D, et al. Effects of changes in arterial pressure on organ perfusion during septic shock. Crit Care. 2011;15:R222. https://doi.org/10.1186/cc10462.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Asfar P, Teboul JL, Radermacher P. High versus low blood-pressure target in septic shock. N Engl J Med. 2014;371:283–4. https://doi.org/10.1056/NEJMc1406276.

    Article  PubMed  Google Scholar 

  55. Gu WJ, Zhang Z, Bakker J. Early lactate clearance-guided therapy in patients with sepsis: a meta-analysis with trial sequential analysis of randomized controlled trials. Intensive Care Med. 2015;41:1862–3. https://doi.org/10.1007/s00134-015-3955-2.

    Article  PubMed  Google Scholar 

  56. Hamzaoui O, Georger JF, Monnet X, Ksouri H, Maizel J, Richard C, et al. Early administration of norepinephrine increases cardiac preload and cardiac output in septic patients with life-threatening hypotension. Crit Care. 2010;14:R142. https://doi.org/10.1186/cc9207.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Russell JA, Walley KR, Singer J, Gordon AC, Hebert PC, Cooper DJ, et al. Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med. 2008;358:877–87. https://doi.org/10.1056/NEJMoa067373.

    Article  CAS  PubMed  Google Scholar 

  58. Gordon AC, Mason AJ, Thirunavukkarasu N, Perkins GD, Cecconi M, Cepkova M, et al. Effect of early vasopressin vs norepinephrine on kidney failure in patients with septic shock: the VANISH randomized clinical trial. JAMA. 2016;316:509–18. https://doi.org/10.1001/jama.2016.10485.

    Article  CAS  PubMed  Google Scholar 

  59. Khanna A, English SW, Wang XS, Ham K, Tumlin J, Szerlip H, et al. Angiotensin II for the treatment of vasodilatory shock. N Engl J Med. 2017;377:419–30. https://doi.org/10.1056/NEJMoa1704154.

    Article  CAS  PubMed  Google Scholar 

  60. Reddi B, Shanmugan N, Fletcher SN. Heart failure—pathophysiology and inpatient management. Br J Anaesth Educ. 2017;17:151–60.

    Google Scholar 

  61. Gordon AC, Perkins GD, Singer M, McAuley DF, Orme RM, Santhakumaran S, et al. Levosimendan for the prevention of acute organ dysfunction in Sepsis. N Engl J Med. 2016;375:1638–48. https://doi.org/10.1056/NEJMoa1609409.

    Article  CAS  PubMed  Google Scholar 

  62. Morelli A, Ertmer C, Westphal M, Rehberg S, Kampmeier T, Ligges S, et al. Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock: a randomized clinical trial. JAMA. 2013;310:1683–91. https://doi.org/10.1001/jama.2013.278477.

    Article  CAS  PubMed  Google Scholar 

  63. Kumar A, Roberts D, Wood KE, Light B, Parrillo JE, Sharma S, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med. 2006;34:1589–96. https://doi.org/10.1097/01.CCM.0000217961.75225.E9.

    Article  PubMed  Google Scholar 

  64. Klein Klouwenberg PM, Cremer OL, van Vught LA, Ong DS, Frencken JF, Schultz MJ, et al. Likelihood of infection in patients with presumed sepsis at the time of intensive care unit admission: a cohort study. Crit Care. 2015;19:319. https://doi.org/10.1186/s13054-015-1035-1.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Hranjec T, Rosenberger LH, Swenson B, Metzger R, Flohr TR, Politano AD, et al. Aggressive versus conservative initiation of antimicrobial treatment in critically ill surgical patients with suspected intensive-care-unit-acquired infection: a quasi-experimental, before and after observational cohort study. Lancet Infect Dis. 2012;12:774–80. https://doi.org/10.1016/S1473-3099(12)70151-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Klompas M, Calandra T, Singer M. Antibiotics for sepsis—finding the equilibrium. JAMA. 2018;320:1433–4. https://doi.org/10.1001/jama.2018.12179.

    Article  PubMed  Google Scholar 

  67. Kumar A, Ellis P, Arabi Y, Roberts D, Light B, Parrillo JE, et al. Initiation of inappropriate antimicrobial therapy results in a fivefold reduction of survival in human septic shock. Chest. 2009;136:1237–48. https://doi.org/10.1378/chest.09-0087.

    Article  PubMed  Google Scholar 

  68. Azuhata T, Kinoshita K, Kawano D, Komatsu T, Sakurai A, Chiba Y, et al. Time from admission to initiation of surgery for source control is a critical determinant of survival in patients with gastrointestinal perforation with associated septic shock. Crit Care. 2014;18:R87. https://doi.org/10.1186/cc13854.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Moss RL, Musemeche CA, Kosloske AM. Necrotizing fasciitis in children: prompt recognition and aggressive therapy improve survival. J Pediatr Surg. 1996;31:1142–6.

    Article  CAS  PubMed  Google Scholar 

  70. Heming N, Sivanandamoorthy S, Meng P, Bounab R, Annane D. Immune effects of corticosteroids in sepsis. Front Immunol. 2018;9:1736. https://doi.org/10.3389/fimmu.2018.01736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ullian ME. The role of corticosteriods in the regulation of vascular tone. Cardiovasc Res. 1999;41:55–64.

    Article  CAS  PubMed  Google Scholar 

  72. Annane D, Renault A, Brun-Buisson C, Megarbane B, Quenot JP, Siami S, et al. Hydrocortisone plus fludrocortisone for adults with septic shock. N Engl J Med. 2018;378:809–18. https://doi.org/10.1056/NEJMoa1705716.

    Article  CAS  PubMed  Google Scholar 

  73. RENAL Replacement Therapy Study Investigators, Bellomo R, Cass A, Cole L, Finfer S, Gallagher M, et al. Intensity of continuous renal-replacement therapy in critically ill patients. N Engl J Med. 2009;361:1627–38. https://doi.org/10.1056/NEJMoa0902413.

    Article  Google Scholar 

  74. NICE-SUGAR Study Investigators, Finfer S, Chittock DR, Su SY, Blair D, Foster D, et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360:1283–97. https://doi.org/10.1056/NEJMoa0810625.

    Article  Google Scholar 

  75. Ranieri VM, Thompson BT, Barie PS, Dhainaut JF, Douglas IS, Finfer S, et al. Drotrecogin alfa (activated) in adults with septic shock. N Engl J Med. 2012;366:2055–64. https://doi.org/10.1056/NEJMoa1202290.

    Article  CAS  PubMed  Google Scholar 

  76. Deshpande A, Pasupuleti V, Rothberg MB. Statin therapy and mortality from sepsis: a meta-analysis of randomized trials. Am J Med. 2015;128:410–7.e1. https://doi.org/10.1016/j.amjmed.2014.10.057.

    Article  CAS  PubMed  Google Scholar 

  77. Dellinger RP, Bagshaw SM, Antonelli M, Foster DM, Klein DJ, Marshall JC, et al. Effect of targeted polymyxin B hemoperfusion on 28-day mortality in patients with septic shock and elevated endotoxin level: the EUPHRATES randomized clinical trial. JAMA. 2018;320:1455–63. https://doi.org/10.1001/jama.2018.14618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Further Reading

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Reddi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reddi, B. (2020). Sepsis and Septic Shock. In: Fitridge, R. (eds) Mechanisms of Vascular Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-43683-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43683-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43682-7

  • Online ISBN: 978-3-030-43683-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics