Skip to main content

The Function of the Oral Microbiome in Health and Disease

  • Chapter
  • First Online:
Emerging Therapies in Periodontics

Abstract

It is now well established that the oral microbiome plays a critical role in the health status of not only the oral cavity but other body sites away from the mouth. A transition from a commensal to a pathogenic oral microbiome causes an imbalance of oral homeostasis, a phenomenon called dysbiosis, which is a crucial concept to understand most oral diseases. In the present chapter, we briefly summarize the current knowledge on the function that oral microbes play in health and disease. We have divided the chapter into three major sections. In the first section, we cover the oral microbiome in health, where we describe the ecological forces that shape the microbial community as well as the composition and function of the commensal oral microbiome. In the second section, we focus on the transition from a commensal to a dysbiotic microbiome in the major oral diseases: caries and periodontal diseases. Finally, in the third section, we describe the role of members of the oral microbiome in systemic diseases, including cardiovascular disease, cancer, and adverse pregnancy outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lederberg J, McCray A. Ome sweet ‘omics: a genealogical treasury of words. Sci. 2001;15:8.

    Google Scholar 

  2. Burge MN. Fungi in biological control systems. Manchester: Manchester University Press; 1988.

    Google Scholar 

  3. NIH HMP Working Group, Peterson J, Garges S, Giovanni M, McInnes P, Wang L, Schloss JA, Bonazzi V, McEwen JE, Wetterstrand KA, et al. The NIH human microbiome project. Genome Res. 2009;19:2317–23.

    Article  Google Scholar 

  4. Wade WG. The oral microbiome in health and disease. Pharmacol Res. 2013;69:137–43.

    Article  PubMed  Google Scholar 

  5. Abeles SR, Robles-Sikisaka R, Ly M, Lum AG, Salzman J, Boehm TK, Pride DT. Human oral viruses are personal, persistent and gender-consistent. ISME J. 2014;8:1753–67.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ly M, Abeles SR, Boehm TK, Robles-Sikisaka R, Naidu M, Santiago-Rodriguez T, Pride DT. Altered oral viral ecology in association with periodontal disease. MBio. 2014;5:e01133–14.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lepp PW, Brinig MM, Ouverney CC, Palm K, Armitage GC, Relman DA. Methanogenic Archaea and human periodontal disease. Proc Natl Acad Sci U S A. 2004;101:6176–81.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jenkinson HF. Beyond the oral microbiome. Environ Microbiol. 2011;13:3077–87.

    Article  PubMed  Google Scholar 

  9. Offenbacher S, Elter JR, Lin D, Beck JD. Evidence for periodontitis as a tertiary vascular infection. J Int Acad Periodontol. 2005;7:39–48.

    PubMed  Google Scholar 

  10. Seymour GJ, Ford PJ, Cullinan MP, Leishman S, Yamazaki K. Relationship between periodontal infections and systemic disease. Clin Microbiol Infect. 2007;13(Suppl 4):3–10.

    Article  PubMed  Google Scholar 

  11. van Leewenhoeck A. Observations, communicated to the Publisher by Mr. Antony van Leewenhoeck, in a Dutch letter of the 9th of Octob. 1676. Here English’d: concerning little animals by him observed in rain-well-sea. and snow water; as also in water wherein pepper had lain infused. Phil Trans. 1677;12:821–31.

    Article  Google Scholar 

  12. He X, Shi W. Oral microbiology: past, present and future. Int J Oral Sci. 2009;1:47–58.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Clarke JK. On the bacterial factor in the Ætiology of dental caries. Br J Exp Pathol. 1924;5:141–7.

    PubMed Central  Google Scholar 

  14. Kassebaum NJ, Bernabé E, Dahiya M, Bhandari B, Murray CJL, Marcenes W. Global burden of severe periodontitis in 1990–2010: a systematic review and meta-regression. J Dent Res. 2014;93(11):1045–53.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Black GV. Dr Blacks conclusions reviewed again. Dent Cosmos. 1898;40:440.

    Google Scholar 

  16. Williams JL. On structural changes in human enamel; with special reference to clinical observations on hard and soft enamel. Dent Cosmos. 1898;40:505.

    Google Scholar 

  17. Mager DL, Ximenez-Fyvie LA, Haffajee AD, Socransky SS. Distribution of selected bacterial species on intraoral surfaces. J Clin Periodontol. 2003;30:644–54.

    Article  PubMed  Google Scholar 

  18. Sakamoto M, Umeda M, Benno Y. Molecular analysis of human oral microbiota. J Periodontal Res. 2005;40:277–85.

    Article  PubMed  Google Scholar 

  19. Simón-Soro Á, Tomás I, Cabrera-Rubio R, Catalan M d, Nyvad B, Mira A. Microbial geography of the oral cavity. J Dent Res. 2013a;92:616–21.

    Article  PubMed  Google Scholar 

  20. Duran-Pinedo AE, Frias-Lopez J. Beyond microbial community composition: functional activities of the oral microbiome in health and disease. Microbes Infect. 2015;17:505–16.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sultan AS, Kong EF, Rizk AM, Jabra-Rizk MA. The oral microbiome: A lesson in coexistence. PLoS Pathog. 2018;14:e1006719.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: dynamic communities and host interactions. Nat Rev Microbiol. 2018;16:745.

    Article  PubMed  PubMed Central  Google Scholar 

  23. He X, McLean JS, Guo L, Lux R, Shi W. The social structure of microbial community involved in colonization resistance. ISME J. 2014;8:564–74.

    Article  PubMed  Google Scholar 

  24. Patil S, Rao RS, Majumdar B, Anil S. Clinical appearance of oral Candida infection and therapeutic strategies. Front Microbiol. 2015;6:1391.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Epstein JB, Chow AW. Oral complications associated with immunosuppression and cancer therapies. Infect Dis Clin N Am. 1999;13:901–23.

    Article  Google Scholar 

  26. Sedghizadeh PP, Mahabady S, Allen CM. Opportunistic oral infections. Dent Clin N Am. 2017;61:389–400.

    Article  PubMed  Google Scholar 

  27. Dahlén G. Bacterial infections of the oral mucosa. Periodontol. 2009;2000(49):13–38.

    Article  Google Scholar 

  28. Hezel M, Weitzberg E. The oral microbiome and nitric oxide homoeostasis. Oral Dis. 2015;21:7–16.

    Article  PubMed  Google Scholar 

  29. Kapil V, Haydar SMA, Pearl V, Lundberg JO, Weitzberg E, Ahluwalia A. Physiological role for nitrate-reducing oral bacteria in blood pressure control. Free Radic Biol Med. 2013;55:93–100.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Koch CD, Gladwin MT, Freeman BA, Lundberg JO, Weitzberg E, Morris A. Enterosalivary nitrate metabolism and the microbiome: intersection of microbial metabolism, nitric oxide and diet in cardiac and pulmonary vascular health. Free Radic Biol Med. 2017;105:48–67.

    Article  PubMed  Google Scholar 

  31. Govoni M, Jansson EÅ, Weitzberg E, Lundberg JO. The increase in plasma nitrite after a dietary nitrate load is markedly attenuated by an antibacterial mouthwash. Nitric Oxide. 2008;19:333–7.

    Article  PubMed  Google Scholar 

  32. Doel JJ, Benjamin N, Hector MP, Rogers M, Allaker RP. Evaluation of bacterial nitrate reduction in the human oral cavity. Eur J Oral Sci. 2005;113:14–9.

    Article  PubMed  Google Scholar 

  33. Hyde ER, Andrade F, Vaksman Z, Parthasarathy K, Jiang H, Parthasarathy DK, Torregrossa AC, Tribble G, Kaplan HB, Petrosino JF, et al. Metagenomic analysis of nitrate-reducing bacteria in the oral cavity: implications for nitric oxide homeostasis. PLoS One. 2014;9:e88645.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Marsh PD, Zaura E. Dental biofilm: ecological interactions in health and disease. J Clin Periodontol. 2017;44(Suppl 18):S12–22.

    Article  PubMed  Google Scholar 

  35. Mark Welch JL, Rossetti BJ, Rieken CW, Dewhirst FE, Borisy GG. Biogeography of a human oral microbiome at the micron scale. Proc Natl Acad Sci U S A. 2016;113:E791–800.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zijnge V, van Leeuwen MBM, Degener JE, Abbas F, Thurnheer T, Gmür R, Harmsen HJM. Oral biofilm architecture on natural teeth. PLoS One. 2010;5:e9321.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kolenbrander PE, Palmer RJ Jr, Periasamy S, Jakubovics NS. Oral multispecies biofilm development and the key role of cell-cell distance. Nat Rev Microbiol. 2010;8:471–80.

    Article  PubMed  Google Scholar 

  38. Jakubovics NS. Saliva as the sole nutritional source in the development of multispecies communities in dental plaque. Microbiol Spectr. 2015;3(3). https://doi.org/10.1128/microbiolspec.MBP-0013-2014.

  39. Marsh PD, Do T, Beighton D, Devine DA. Influence of saliva on the oral microbiota. Periodontol 2000. 2016;70(1):80–92. https://doi.org/10.1111/prd.12098.

  40. Marcotte H, Lavoie MC. Oral microbial ecology and the role of salivary immunoglobulin A. Microbiol Mol Biol Rev. 1998;62:71–109.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Jansen HJ, van der Hoeven JS. Protein degradation by Prevotella intermedia and Actinomyces meyeri supports the growth of non-protein-cleaving oral bacteria in serum. J Clin Periodontol. 1997;24:346–53.

    Article  PubMed  Google Scholar 

  42. Beighton D, Whiley RA. Sialidase activity of the “Streptococcus milleri group” and other viridans group streptococci. J Clin Microbiol. 1990;28:1431–3.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bradshaw DJ, Homer KA, Marsh PD, Beighton D. Metabolic cooperation in oral microbial communities during growth on mucin. Microbiology. 1994;140:3407–12.

    Article  PubMed  Google Scholar 

  44. Byers HL, Tarelli E, Homer KA, Beighton D. Isolation and characterisation of sialidase from a strain of Streptococcus oralis. J Med Microbiol. 2000;49:235–44.

    Article  PubMed  Google Scholar 

  45. Wickström C, Herzberg MC, Beighton D, Svensäter G. Proteolytic degradation of human salivary MUC5B by dental biofilms. Microbiology. 2009;155:2866–72.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Gürsoy UK, Gürsoy M, Könönen E, Sintim HO. Cyclic Dinucleotides in oral bacteria and in oral biofilms. Front Cell Infect Microbiol. 2017;7:273.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Miller MB, Bassler BL. Quorum sensing in bacteria. Annu Rev Microbiol. 2001;55:165–99.

    Article  PubMed  Google Scholar 

  48. Asfahl KL, Schuster M. Social interactions in bacterial cell–cell signaling. FEMS Microbiol Rev. 2017;41:92–107.

    Article  PubMed  Google Scholar 

  49. Shao H, Demuth DR. Quorum sensing regulation of biofilm growth and gene expression by oral bacteria and periodontal pathogens. Periodontol. 2010;2000(52):53–67.

    Article  Google Scholar 

  50. Sintim HO, Gürsoy UK. Biofilms as “connectors” for oral and systems medicine: a new opportunity for biomarkers, molecular targets, and bacterial eradication. OMICS. 2016;20:3–11.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Claverys J-P, Martin B, Håvarstein LS. Competence-induced fratricide in streptococci. Mol Microbiol. 2007;64:1423–33.

    Article  PubMed  Google Scholar 

  52. Kjos M, Miller E, Slager J, Lake FB, Gericke O, Roberts IS, Rozen DE, Veening J-W. Expression of Streptococcus pneumoniae Bacteriocins is induced by antibiotics via regulatory interplay with the competence system. PLoS Pathog. 2016;12:e1005422.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Lemme A, Gröbe L, Reck M, Tomasch J, Wagner-Döbler I. Subpopulation-specific transcriptome analysis of competence-stimulating-peptide-induced Streptococcus mutans. J Bacteriol. 2011;193:1863–77.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Piñas GE, Cortes PR, Orio AGA, Echenique J. Acidic stress induces autolysis by a CSP-independent ComE pathway in Streptococcus pneumoniae. Microbiology (Reading, Engl.). 2008;154:1300–8.

    Article  Google Scholar 

  55. Suntharalingam P, Cvitkovitch DG. Quorum sensing in streptococcal biofilm formation. Trends Microbiol. 2005;13:3–6.

    Article  PubMed  Google Scholar 

  56. Jang Y-J, Sim J, Jun H-K, Choi B-K. Differential effect of autoinducer 2 of Fusobacterium nucleatum on oral streptococci. Arch Oral Biol. 2013;58:1594–602.

    Article  PubMed  Google Scholar 

  57. Scheres N, Lamont RJ, Crielaard W, Krom BP. LuxS signaling in Porphyromonas gingivalis-host interactions. Anaerobe. 2015;35:3–9.

    Article  PubMed  Google Scholar 

  58. Jenal U, Reinders A, Lori C. Cyclic di-GMP: second messenger extraordinaire. Nat Rev Microbiol. 2017;15:271–84.

    Article  PubMed  Google Scholar 

  59. Opoku-Temeng C, Zhou J, Zheng Y, Su J, Sintim HO. Cyclic dinucleotide (c-di-GMP, c-di-AMP, and cGAMP) signalings have come of age to be inhibited by small molecules. Chem Commun (Camb). 2016;52:9327–42.

    Article  Google Scholar 

  60. Kirkup BC. Bacteriocins as oral and gastrointestinal antibiotics: theoretical considerations, applied research, and practical applications. Curr Med Chem. 2006;13:3335–50.

    Article  PubMed  Google Scholar 

  61. Wescombe PA, Heng NCK, Burton JP, Chilcott CN, Tagg JR. Streptococcal bacteriocins and the case for Streptococcus salivarius as model oral probiotics. Future Microbiol. 2009;4:819–35.

    Article  PubMed  Google Scholar 

  62. Jakubovics NS, Yassin SA, Rickard AH. Community interactions of oral streptococci. Adv Appl Microbiol. 2014;87:43–110.

    Article  PubMed  Google Scholar 

  63. Zhu L, Kreth J. The role of hydrogen peroxide in environmental adaptation of oral microbial communities. Oxidative Med Cell Longev. 2012;2012:717843.

    Article  Google Scholar 

  64. Jakubovics NS, Burgess JG. Extracellular DNA in oral microbial biofilms. Microbes Infect. 2015;17:531–7.

    Article  PubMed  Google Scholar 

  65. Rostami N, Shields RC, Yassin SA, Hawkins AR, Bowen L, Luo TL, Rickard AH, Holliday R, Preshaw PM, Jakubovics NS. A critical role for extracellular DNA in dental plaque formation. J Dent Res. 2017;96:208–16.

    Article  PubMed  Google Scholar 

  66. Schlafer S, Meyer RL, Dige I, Regina VR. Extracellular DNA contributes to dental biofilm stability. Caries Res. 2017;51:436–42.

    Article  PubMed  Google Scholar 

  67. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner ACR, Yu W-H, Lakshmanan A, Wade WG. The human oral microbiome. J Bacteriol. 2010;192:5002–17.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol. 2005;43:5721–32.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Paster BJ, Boches SK, Galvin JL, Ericson RE, Lau CN, Levanos VA, Sahasrabudhe A, Dewhirst FE. Bacterial diversity in human subgingival plaque. J Bacteriol. 2001;183:3770–83.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Paster BJ, Olsen I, Aas JA, Dewhirst FE. The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontology. 2006;2000(42):80–7.

    Article  Google Scholar 

  71. Haffajee AD, Socransky SS. Microbial etiological agents of destructive periodontal diseases. Periodontology. 1994;2000(5):78–111.

    Article  Google Scholar 

  72. Haffajee AD, Socransky SS, Patel MR, Song X. Microbial complexes in supragingival plaque. Oral Microbiol Immunol. 2008;23:196–205.

    Article  PubMed  Google Scholar 

  73. Socransky SS, Smith C, Martin L, Paster BJ, Dewhirst FE, Levin AE. “Checkerboard” DNA-DNA hybridization. BioTechniques. 1994;17:788–92.

    PubMed  Google Scholar 

  74. Zhou Y, Gao H, Mihindukulasuriya KA, La Rosa PS, Wylie KM, Vishnivetskaya T, Podar M, Warner B, Tarr PI, Nelson DE, et al. Biogeography of the ecosystems of the healthy human body. Genome Biol. 2013;14:R1.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Griffen AL, Beall CJ, Campbell JH, Firestone ND, Kumar PS, Yang ZK, Podar M, Leys EJ. Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. ISME J. 2012;6:1176–85.

    Article  PubMed  Google Scholar 

  76. Li K, Bihan M, Methé BA. Analyses of the stability and core taxonomic memberships of the human microbiome. PLoS One. 2013;8:e63139.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Segata N, Haake SK, Mannon P, Lemon KP, Waldron L, Gevers D, Huttenhower C, Izard J. Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biol. 2012a;13:R42.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O, Huttenhower C. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods. 2012b;9:811–4.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, et al. The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 2009;37:D141–5.

    Article  PubMed  Google Scholar 

  80. Abubucker S, Segata N, Goll J, Schubert AM, Izard J, Cantarel BL, Rodriguez-Mueller B, Zucker J, Thiagarajan M, Henrissat B, et al. Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput Biol. 2012;8:e1002358.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res. 2010;38:D355–60.

    Article  PubMed  Google Scholar 

  82. Benítez-Páez A, Belda-Ferre P, Simón-Soro A, Mira A. Microbiota diversity and gene expression dynamics in human oral biofilms. BMC Genomics. 2014;15:311.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kraal L, Abubucker S, Kota K, Fischbach MA, Mitreva M. The prevalence of species and strains in the human microbiome: a resource for experimental efforts. PLoS One. 2014;9:e97279.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Kuhn DA. The genera Simonsiella and Alysiella. In: The prokaryotes. Berlin: Springer; 1981. p. 390–9.

    Chapter  Google Scholar 

  85. Tetz G, Tetz V, Vecherkovskaya M. Complete genome sequence of Paenibacillus sp. strain VT 400, isolated from the saliva of a child with acute lymphoblastic leukemia. Genome Announc. 2015;3(4):e00894–15. https://doi.org/10.1128/genomeA.00894-15.

  86. Tetz G, Tetz V, Vecherkovskaya M. Genomic characterization and assessment of the virulence and antibiotic resistance of the novel species Paenibacillus sp. strain VT-400, a potentially pathogenic bacterium in the oral cavity of patients with hematological malignancies. Gut Pathog. 2016;8:6.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Tønjum T. Alysiella. In: Bergey’s manual of systematics of Archaea and Bacteria. Hoboken: John Wiley & Sons, Ltd; 2015.

    Google Scholar 

  88. Zheng W, Zhang Z, Liu C, Qiao Y, Zhou D, Qu J, An H, Xiong M, Zhu Z, Zhao X. Metagenomic sequencing reveals altered metabolic pathways in the oral microbiota of sailors during a long sea voyage. Sci Rep. 2015;5:9131.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Hoare A, Marsh PD, Diaz PI. Ecological therapeutic opportunities for oral diseases.Microbiol Spectr. 2017;5(4). https://doi.org/10.1128/microbiolspec.BAD-0006-2016.

  90. Chen J, Domingue JC, Sears CL. Microbiota dysbiosis in select human cancers: evidence of association and causality. Semin Immunol. 2017;32:25–34.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Marsh PD. Sugar, fluoride, pH and microbial homeostasis in dental plaque. Proc Finn Dent Soc. 1991;87:515–25.

    PubMed  Google Scholar 

  92. Marsh PD. Microbial ecology of dental plaque and its significance in health and disease. Adv Dent Res. 1994;8:263–71.

    Article  PubMed  Google Scholar 

  93. Gross EL, Leys EJ, Gasparovich SR, Firestone ND, Schwartzbaum JA, Janies DA, Asnani K, Griffen AL. Bacterial 16S sequence analysis of severe caries in young permanent teeth. J Clin Microbiol. 2010;48:4121–8.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Johansson I, Witkowska E, Kaveh B, Lif Holgerson P, Tanner ACR. The microbiome in populations with a low and high prevalence of caries. J Dent Res. 2016;95:80–6.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Tanner ACR, Kent RL, Holgerson PL, Hughes CV, Loo CY, Kanasi E, Chalmers NI, Johansson I. Microbiota of severe early childhood caries before and after therapy. J Dent Res. 2011a;90:1298–305.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Simón-Soro A, Mira A. Solving the etiology of dental caries. Trends Microbiol. 2014;23:76–82.

    Article  PubMed  Google Scholar 

  97. Simón-Soro A, Guillen-Navarro M, Mira A. Metatranscriptomics reveals overall active bacterial composition in caries lesions. J Oral Microbiol. 2014;6:25443.

    Article  PubMed  Google Scholar 

  98. McLean JS. Advancements toward a systems level understanding of the human oral microbiome. Front Cell Infect Microbiol. 2014;4:98.

    PubMed  PubMed Central  Google Scholar 

  99. Kressirer CA, Chen T, Lake Harriman K, Frias-Lopez J, Dewhirst FE, Tavares MA, Tanner AC. Functional profiles of coronal and dentin caries in children. J Oral Microbiol. 2018;10

    Google Scholar 

  100. Palmer CA, Kent R, Loo CY, Hughes CV, Stutius E, Pradhan N, Dahlan M, Kanasi E, Arevalo Vasquez SS, Tanner ACR. Diet and caries-associated bacteria in severe early childhood caries. J Dent Res. 2010;89:1224–9.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Tanner ACR, Mathney JMJ, Kent RL, Chalmers NI, Hughes CV, Loo CY, Pradhan N, Kanasi E, Hwang J, Dahlan MA, et al. Cultivable anaerobic microbiota of severe early childhood caries. J Clin Microbiol. 2011b;49:1464–74.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Simón-Soro A, Belda-Ferre P, Cabrera-Rubio R, Alcaraz LD, Mira A. A tissue-dependent hypothesis of dental caries. Caries Res. 2013b;47:591–600.

    Article  PubMed  Google Scholar 

  103. Peterson SN, Meissner T, Su AI, Snesrud E, Ong AC, Schork NJ, Bretz WA. Functional expression of dental plaque microbiota. Front Cell Infect Microbiol. 2014;4:108.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Peterson SN, Snesrud E, Liu J, Ong AC, Kilian M, Schork NJ, Bretz W. The dental plaque microbiome in health and disease. PLoS One. 2013;8:e58487.

    Article  PubMed  PubMed Central  Google Scholar 

  105. May A, Brandt BW, El-Kebir M, Klau GW, Zaura E, Crielaard W, Heringa J, Abeln S. metaModules identifies key functional subnetworks in microbiome-related disease. Bioinformatics. 2016;32:1678–85.

    Article  PubMed  Google Scholar 

  106. Kiliç AO, Tao L, Zhang Y, Lei Y, Khammanivong A, Herzberg MC. Involvement of Streptococcus gordonii beta-glucoside metabolism systems in adhesion, biofilm formation, and in vivo gene expression. J Bacteriol. 2004;186:4246–53.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Loo CY, Mitrakul K, Voss IB, Hughes CV, Ganeshkumar N. Involvement of an inducible fructose phosphotransferase operon in Streptococcus gordonii biofilm formation. J Bacteriol. 2003;185:6241–54.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Janda WM, Kuramitsu HK. Production of extracellular and cell-associated glucosyltransferase activity by Streptococcus mutans during growth on various carbon sources. Infect Immun. 1978;19:116–22.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Rölla G, Oppermann RV, Waaler SM, Assev S. Effect of aqueous solutions of sorbitol-xylitol on plaque metabolism and on growth of Streptococcus mutans. Scand J Dent Res. 1981;89:247–50.

    PubMed  Google Scholar 

  110. Burne RA, Marquis RE. Alkali production by oral bacteria and protection against dental caries. FEMS Microbiol Lett. 2000;193:1–6.

    Article  PubMed  Google Scholar 

  111. Huang X, Exterkate RAM, ten Cate JM. Factors associated with alkali production from arginine in dental biofilms. J Dent Res. 2012;91:1130–4.

    Article  PubMed  Google Scholar 

  112. Edlund A, Yang Y, Yooseph S, Hall AP, Nguyen DD, Dorrestein PC, Nelson KE, He X, Lux R, Shi W, et al. Meta-omics uncover temporal regulation of pathways across oral microbiome genera during in vitro sugar metabolism. ISME J. 2015;9:2605–19.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Coventry J, Griffiths G, Scully C, Tonetti M. ABC of oral health: periodontal disease. BMJ. 2000;321:36–9.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Ciancio SG. Current status of indices of gingivitis. J Clin Periodontol. 1986;13:375–378, 381–382.

    Google Scholar 

  115. Loesche WJ, Syed SA. Bacteriology of human experimental gingivitis: effect of plaque and gingivitis score. Infect Immun. 1978;21:830–9.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Page RC. Gingivitis. J Clin Periodontol. 1986;13:345–59.

    Article  PubMed  Google Scholar 

  117. Graves DT, Li J, Cochran DL. Inflammation and uncoupling as mechanisms of periodontal bone loss. J Dent Res. 2011;90:143–53.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Hajishengallis G. Immunomicrobial pathogenesis of periodontitis: keystones, pathobionts, and host response. Trends Immunol. 2014;35:3–11.

    Article  PubMed  Google Scholar 

  119. van Steenbergen TJ, van Winkelhoff AJ, de Graaff J. Pathogenic synergy: mixed infections in the oral cavity. Antonie Van Leeuwenhoek. 1984;50:789–98.

    Article  PubMed  Google Scholar 

  120. Hajishengallis G, Lamont RJ. Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Mol Oral Microbiol. 2012;27:409–19.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Hajishengallis G, Darveau RP, Curtis MA. The keystone-pathogen hypothesis. Nat Rev Microbiol. 2012;10:717–25.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Lamont RJ, Hajishengallis G. Polymicrobial synergy and dysbiosis in inflammatory disease. Trends Mol Med. 2015;21:172–83.

    Article  PubMed  Google Scholar 

  123. Haffajee AD, Socransky SS. Attachment level changes in destructive periodontal diseases. J Clin Periodontol. 1986;13:461–75.

    Article  PubMed  Google Scholar 

  124. Haffajee AD, Socransky SS, Smith C, Dibart S. Microbial risk indicators for periodontal attachment loss. J Periodontal Res. 1991;26:293–6.

    Article  PubMed  Google Scholar 

  125. Socransky SS, Haffajee AD, Goodson JM, Lindhe J. New concepts of destructive periodontal disease. J Clin Periodontol. 1984;11:21–32.

    Article  PubMed  Google Scholar 

  126. Goodson JM, Tanner AC, Haffajee AD, Sornberger GC, Socransky SS. Patterns of progression and regression of advanced destructive periodontal disease. J Clin Periodontol. 1982;9:472–81.

    Article  PubMed  Google Scholar 

  127. Clerehugh V, Worthington HV, Lennon MA, Chandler R. Site progression of loss of attachment over 5 years in 14- to 19-year-old adolescents. J Clin Periodontol. 1995;22:15–21.

    Article  PubMed  Google Scholar 

  128. Jeffcoat MK, Reddy MS. Progression of probing attachment loss in adult periodontitis. J Periodontol. 1991;62:185–9.

    Article  PubMed  Google Scholar 

  129. Dzink JL, Socransky SS, Haffajee AD. The predominant cultivable microbiota of active and inactive lesions of destructive periodontal diseases. J Clin Periodontol. 1988;15:316–23.

    Article  PubMed  Google Scholar 

  130. Tanner A, Maiden MF, Macuch PJ, Murray LL, Kent RL. Microbiota of health, gingivitis, and initial periodontitis. J Clin Periodontol. 1998;25:85–98.

    Article  PubMed  Google Scholar 

  131. Byrne SJ, Dashper SG, Darby IB, Adams GG, Hoffmann B, Reynolds EC. Progression of chronic periodontitis can be predicted by the levels of Porphyromonas gingivalis and Treponema denticola in subgingival plaque. Oral Microbiol Immunol. 2009;24:469–77.

    Article  PubMed  Google Scholar 

  132. Tanner ACR, Kent R, Kanasi E, Lu SC, Paster BJ, Sonis ST, Murray LA, Van Dyke TE. Clinical characteristics and microbiota of progressing slight chronic periodontitis in adults. J Clin Periodontol. 2007;34:917–30.

    Article  PubMed  Google Scholar 

  133. Teles RP, Patel M, Socransky SS, Haffajee AD. Disease progression in periodontally healthy and maintenance subjects. J Periodontol. 2008;79:784–94.

    Article  PubMed  Google Scholar 

  134. Booijink CCGM, Boekhorst J, Zoetendal EG, Smidt H, Kleerebezem M, de Vos WM. Metatranscriptome analysis of the human fecal microbiota reveals subject-specific expression profiles, with genes encoding proteins involved in carbohydrate metabolism being dominantly expressed. Appl Environ Microbiol. 2010;76:5533–40.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Duran-Pinedo AE, Chen T, Teles R, Starr JR, Wang X, Krishnan K, Frias-Lopez J. Community-wide transcriptome of the oral microbiome in subjects with and without periodontitis. ISME J. 2014;8:1659–72.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Jorth P, Turner KH, Gumus P, Nizam N, Buduneli N, Whiteley M. Metatranscriptomics of the human oral microbiome during health and disease. MBio. 2014;5:e01012–4.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Nowicki EM, Shroff R, Singleton JA, Renaud DE, Wallace D, Drury J, Zirnheld J, Colleti B, Ellington AD, Lamont RJ, et al. Microbiota and metatranscriptome changes accompanying the onset of gingivitis. MBio. 2018;9:e00575–18.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Yost S, Duran-Pinedo AE, Teles R, Krishnan K, Frias-Lopez J. Functional signatures of oral dysbiosis during periodontitis progression revealed by microbial metatranscriptome analysis. Genome Med. 2015;7:27.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Diaz PI, Hoare A, Hong B-Y. Subgingival microbiome shifts and community dynamics in periodontal diseases. J Calif Dent Assoc. 2016;44:421–35.

    PubMed  Google Scholar 

  140. Kistler JO, Booth V, Bradshaw DJ, Wade WG. Bacterial community development in experimental gingivitis. PLoS One. 2013;8:e71227.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Huang S, Yang F, Zeng X, Chen J, Li R, Wen T, Li C, Wei W, Liu J, Chen L, et al. Preliminary characterization of the oral microbiota of Chinese adults with and without gingivitis. BMC Oral Health. 2011;11:33.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL, J. Microbial complexes in subgingival plaque. J Clin Periodontol. 1998;25:134–44.

    Article  PubMed  Google Scholar 

  143. Jiao Y, Darzi Y, Tawaratsumida K, Marchesan JT, Hasegawa M, Moon H, Chen GY, Núñez G, Giannobile WV, Raes J, et al. Induction of bone loss by pathobiont-mediated Nod1 signaling in the oral cavity. Cell Host Microbe. 2013;13:595–601.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Ramseier CA, Kinney JS, Herr AE, Braun T, Sugai JV, Shelburne CA, Rayburn LA, Tran HM, Singh AK, Giannobile WV. Identification of pathogen and host-response markers correlated with periodontal disease. J Periodontol. 2009;80:436–46.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Liu B, Faller LL, Klitgord N, Mazumdar V, Ghodsi M, Sommer DD, Gibbons TR, Treangen TJ, Chang Y-C, Li S, et al. Deep sequencing of the oral microbiome reveals signatures of periodontal disease. PLoS One. 2012;7:e37919.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Lawhon SD, Maurer R, Suyemoto M, Altier C. Intestinal short-chain fatty acids alter Salmonella typhimurium invasion gene expression and virulence through BarA/SirA. Mol Microbiol. 2002;46:1451–64.

    Article  PubMed  Google Scholar 

  147. McKinney JD, Höner zu Bentrup K, Muñoz-Elías EJ, Miczak A, Chen B, Chan WT, Swenson D, Sacchettini JC, Jacobs WR, Russell DG. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature. 2000;406:735–8.

    Article  PubMed  Google Scholar 

  148. Yost S, Duran-Pinedo AE, Krishnan K, Frias-Lopez J. Potassium is a key signal in host-microbiome dysbiosis in periodontitis. PLoS Pathog. 2017;13:e1006457.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Bui FQ, Almeida-da-Silva CLC, Huynh B, Trinh A, Liu J, Woodward J, Asadi H, Ojcius DM. Association between periodontal pathogens and systemic disease. Biom J. 2019;42:27–35.

    Google Scholar 

  150. Kim J, Amar S. Periodontal disease and systemic conditions: a bidirectional relationship. Odontology. 2006;94:10–21.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Whitmore SE, Lamont RJ. Oral bacteria and cancer. PLoS Pathog. 2014;10:e1003933.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Yeo BK, Lim LP, Paquette DW, Williams RC. Periodontal disease—the emergence of a risk for systemic conditions: pre-term low birth weight. Ann Acad Med Singap. 2005;34:111–6.

    PubMed  Google Scholar 

  153. Figuero E, Sánchez-Beltrán M, Cuesta-Frechoso S, Tejerina JM, del Castro JA, Gutiérrez JM, Herrera D, Sanz M. Detection of periodontal bacteria in atheromatous plaque by nested polymerase chain reaction. J Periodontol. 2011;82:1469–77.

    Article  PubMed  Google Scholar 

  154. Haraszthy VI, Zambon JJ, Trevisan M, Zeid M, Genco RJ. Identification of periodontal pathogens in atheromatous plaques. J Periodontol. 2000;71:1554–60.

    Article  PubMed  Google Scholar 

  155. Nakano K, Inaba H, Nomura R, Nemoto H, Takeda M, Yoshioka H, Matsue H, Takahashi T, Taniguchi K, Amano A, et al. Detection of cariogenic Streptococcus mutans in extirpated heart valve and atheromatous plaque specimens. J Clin Microbiol. 2006;44:3313–7.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, de Ferranti SD, Floyd J, Fornage M, Gillespie C, et al. Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation. 2017;135:e146–603.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Lockhart PB, Bolger AF, Papapanou PN, Osinbowale O, Trevisan M, Levison ME, Taubert KA, Newburger JW, Gornik HL, Gewitz MH, et al. Periodontal disease and atherosclerotic vascular disease: does the evidence support an independent association?: a scientific statement from the American Heart Association. Circulation. 2012;125:2520–44.

    Article  PubMed  Google Scholar 

  158. Fukasawa A, Kurita-Ochiai T, Hashizume T, Kobayashi R, Akimoto Y, Yamamoto M. Porphyromonas gingivalis accelerates atherosclerosis in C57BL/6 mice fed a high-fat diet. Immunopharmacol Immunotoxicol. 2012;34:470–6.

    Article  PubMed  Google Scholar 

  159. Hansson GK, Libby P. The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol. 2006;6:508–19.

    Article  PubMed  Google Scholar 

  160. Paquette DW, Brodala N, Nichols TC. Cardiovascular disease, inflammation, and periodontal infection. Periodontol. 2007;2000(44):113–26.

    Article  Google Scholar 

  161. Trevisan M, Dorn J. The relationship between periodontal disease (pd) and cardiovascular disease (cvd). Mediterr J Hematol Infect Dis. 2010;2:e2010030.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Bahekar AA, Singh S, Saha S, Molnar J, Arora R. The prevalence and incidence of coronary heart disease is significantly increased in periodontitis: a meta-analysis. Am Heart J. 2007;154:830–7.

    Article  PubMed  Google Scholar 

  163. Pussinen PJ, Jousilahti P, Alfthan G, Palosuo T, Asikainen S, Salomaa V. Antibodies to periodontal pathogens are associated with coronary heart disease. Arterioscler Thromb Vasc Biol. 2003;23:1250–4.

    Article  PubMed  Google Scholar 

  164. Kozarov EV, Dorn BR, Shelburne CE, Dunn WA, Progulske-Fox A. Human atherosclerotic plaque contains viable invasive Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis. Arterioscler Thromb Vasc Biol. 2005;25:e17–8.

    Article  PubMed  Google Scholar 

  165. Chukkapalli SS, Rivera MF, Velsko IM, Lee J-Y, Chen H, Zheng D, Bhattacharyya I, Gangula PR, Lucas AR, Kesavalu L. Invasion of oral and aortic tissues by oral spirochete Treponema denticola in ApoE(−/−) mice causally links periodontal disease and atherosclerosis. Infect Immun. 2014;82:1959–67.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Velsko IM, Chukkapalli SS, Rivera MF, Lee J-Y, Chen H, Zheng D, Bhattacharyya I, Gangula PR, Lucas AR, Kesavalu L. Active invasion of oral and aortic tissues by Porphyromonas gingivalis in mice causally links periodontitis and atherosclerosis. PLoS One. 2014;9:e97811.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Slocum C, Coats SR, Hua N, Kramer C, Papadopoulos G, Weinberg EO, Gudino CV, Hamilton JA, Darveau RP, Genco CA. Distinct lipid a moieties contribute to pathogen-induced site-specific vascular inflammation. PLoS Pathog. 2014;10:e1004215.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Herzberg MC, Meyer MW. Effects of oral flora on platelets: possible consequences in cardiovascular disease. J Periodontol. 1996;67:1138–42.

    Article  PubMed  Google Scholar 

  169. Sharma A, Novak EK, Sojar HT, Swank RT, Kuramitsu HK, Genco RJ. Porphyromonas gingivalis platelet aggregation activity: outer membrane vesicles are potent activators of murine platelets. Oral Microbiol Immunol. 2000;15:393–6.

    Article  PubMed  Google Scholar 

  170. Kim SS, Ruiz VE, Carroll JD, Moss SF. Helicobacter pylori in the pathogenesis of gastric cancer and gastric lymphoma. Cancer Lett. 2011;305:228–38.

    Article  PubMed  Google Scholar 

  171. Gao S, Li S, Ma Z, Liang S, Shan T, Zhang M, Zhu X, Zhang P, Liu G, Zhou F, et al. Presence of Porphyromonas gingivalis in esophagus and its association with the clinicopathological characteristics and survival in patients with esophageal cancer. Infect Agent Cancer. 2016;11:3.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Michaud DS, Fu Z, Shi J, Chung M. Periodontal disease, tooth loss, and cancer risk. Epidemiol Rev. 2017;39:49–58.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Hardbower DM, de Sablet T, Chaturvedi R, Wilson KT. Chronic inflammation and oxidative stress: the smoking gun for helicobacter pylori-induced gastric cancer? Gut Microbes. 2013;4:475–81.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Dutta U, Garg PK, Kumar R, Tandon RK. Typhoid carriers among patients with gallstones are at increased risk for carcinoma of the gallbladder. Am J Gastroenterol. 2000;95:784–7.

    Article  PubMed  Google Scholar 

  175. Ellmerich S, Schöller M, Duranton B, Gossé F, Galluser M, Klein JP, Raul F. Promotion of intestinal carcinogenesis by Streptococcus bovis. Carcinogenesis. 2000;21:753–6.

    Article  PubMed  Google Scholar 

  176. Bashir A, Miskeen AY, Bhat A, Fazili KM, Ganai BA. Fusobacterium nucleatum: an emerging bug in colorectal tumorigenesis. Eur J Cancer Prev. 2015;24(5):373–85.

    Article  PubMed  Google Scholar 

  177. Inaba H, Sugita H, Kuboniwa M, Iwai S, Hamada M, Noda T, Morisaki I, Lamont RJ, Amano A. Porphyromonas gingivalis promotes invasion of oral squamous cell carcinoma through induction of proMMP9 and its activation. Cell Microbiol. 2014;16:131–45.

    Article  PubMed  Google Scholar 

  178. Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe. 2013;14:195–206.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Schwabe RF, Jobin C. The microbiome and cancer. Nat Rev Cancer. 2013;13:800–12.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Healy CM, Moran GP. The microbiome and oral cancer: more questions than answers. Oral Oncol. 2019;89:30–3.

    Article  PubMed  Google Scholar 

  181. Scully C, Bagan J. Oral squamous cell carcinoma: overview of current understanding of aetiopathogenesis and clinical implications. Oral Dis. 2009;15:388–99.

    Article  PubMed  Google Scholar 

  182. Islam S, Muthumala M, Matsuoka H, Uehara O, Kuramitsu Y, Chiba I, Abiko Y. How each component of betel quid is involved in oral carcinogenesis: mutual interactions and synergistic effects with other carcinogens—a review article. Curr Oncol Rep. 2019;21:53.

    Article  PubMed  Google Scholar 

  183. Yao Q-W, Zhou D-S, Peng H-J, Ji P, Liu D-S. Association of periodontal disease with oral cancer: a meta-analysis. Tumour Biol. 2014;35:7073–7.

    Article  PubMed  Google Scholar 

  184. Wen B-W, Tsai C-S, Lin C-L, Chang Y-J, Lee C-F, Hsu C-H, Kao C-H. Cancer risk among gingivitis and periodontitis patients: a nationwide cohort study. QJM. 2014;107:283–90.

    Article  PubMed  Google Scholar 

  185. Peters BA, Wu J, Pei Z, Yang L, Purdue MP, Freedman ND, Jacobs EJ, Gapstur SM, Hayes RB, Ahn J. Oral microbiome composition reflects prospective risk for esophageal cancers. Cancer Res. 2017;77:6777–87.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Yang C-Y, Yeh Y-M, Yu H-Y, Chin C-Y, Hsu C-W, Liu H, Huang P-J, Hu S-N, Liao C-T, Chang K-P, et al. Oral microbiota community dynamics associated with oral squamous cell carcinoma staging. Front Microbiol. 2018;9:862.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Atanasova K r, Yilmaz Ö. Looking in the Porphyromonas gingivalis cabinet of curiosities: the microbium, the host and cancer association. Mol Oral Microbiol. 2014;29:55–66.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Ahn J, Chen CY, Hayes RB. Oral microbiome and oral and gastrointestinal cancer risk. Cancer Causes Control. 2012;23:399–404.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Sztukowska MN, Ojo A, Ahmed S, Carenbauer AL, Wang Q, Shumway B, Jenkinson HF, Wang H, Darling DS, Lamont RJ. Porphyromonas gingivalis initiates a mesenchymal-like transition through ZEB1 in gingival epithelial cells. Cell Microbiol. 2016;18(6):844–58.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Ha NH, Woo BH, Kim DJ, Ha ES, Choi JI, Kim SJ, Park BS, Lee JH, Park HR. Prolonged and repetitive exposure to Porphyromonas gingivalis increases aggressiveness of oral cancer cells by promoting acquisition of cancer stem cell properties. Tumour Biol. 2015;36:9947–60.

    Article  PubMed  Google Scholar 

  191. Yilmaz O, Jungas T, Verbeke P, Ojcius DM. Activation of the phosphatidylinositol 3-kinase/Akt pathway contributes to survival of primary epithelial cells infected with the periodontal pathogen Porphyromonas gingivalis. Infect Immun. 2004;72:3743–51.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Yao L, Jermanus C, Barbetta B, Choi C, Verbeke P, Ojcius DM, Yilmaz O. Porphyromonas gingivalis infection sequesters pro-apoptotic bad through Akt in primary gingival epithelial cells. Mol Oral Microbiol. 2010;25:89–101.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Mao S, Park Y, Hasegawa Y, Tribble GD, James CE, Handfield M, Stavropoulos MF, Yilmaz O, Lamont RJ. Intrinsic apoptotic pathways of gingival epithelial cells modulated by Porphyromonas gingivalis. Cell Microbiol. 2007;9:1997–2007.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Soto C, Bugueño I, Hoare A, Gonzalez S, Venegas D, Salinas D, Melgar-Rodríguez S, Vernal R, Gamonal J, Quest AFG, et al. The Porphyromonas gingivalis O antigen is required for inhibition of apoptosis in gingival epithelial cells following bacterial infection. J Periodontal Res. 2016;51:518–28.

    Article  PubMed  Google Scholar 

  195. Geng F, Liu J, Guo Y, Li C, Wang H, Wang H, Zhao H, Pan Y. Persistent exposure to Porphyromonas gingivalis promotes proliferative and invasion capabilities, and tumorigenic properties of human immortalized oral epithelial cells. Front Cell Infect Microbiol. 2017;7:57.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Lee J, Roberts JS, Atanasova KR, Chowdhury N, Han K, Yilmaz Ö. Human primary epithelial cells acquire an epithelial-mesenchymal-transition phenotype during long-term infection by the oral opportunistic pathogen, Porphyromonas gingivalis. Front Cell Infect Microbiol. 2017;7:493.

    Article  PubMed  PubMed Central  Google Scholar 

  197. Binder Gallimidi A, Fischman S, Revach B, Bulvik R, Maliutina A, Rubinstein AM, Nussbaum G, Elkin M. Periodontal pathogens Porphyromonas gingivalis and Fusobacterium nucleatum promote tumor progression in an oral-specific chemical carcinogenesis model. Oncotarget. 2015;6:22613–23.

    Article  PubMed  Google Scholar 

  198. Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M, Clancy TE, Chung DC, Lochhead P, Hold GL, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe. 2013;14:207–15.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Kipanyula MJ, Seke Etet PF, Vecchio L, Farahna M, Nukenine EN, Nwabo Kamdje AH. Signaling pathways bridging microbial-triggered inflammation and cancer. Cell Signal. 2013;25:403–16.

    Article  PubMed  Google Scholar 

  200. Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013;31:814–21.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Perera M, Al-Hebshi NN, Perera I, Ipe D, Ulett GC, Speicher DJ, Chen T, Johnson NW. Inflammatory bacteriome and oral squamous cell carcinoma. J Dent Res. 2018;97:725–32.

    Article  PubMed  Google Scholar 

  202. Al-Hebshi NN, Nasher AT, Maryoud MY, Homeida HE, Chen T, Idris AM, Johnson NW. Inflammatory bacteriome featuring Fusobacterium nucleatum and Pseudomonas aeruginosa identified in association with oral squamous cell carcinoma. Sci Rep. 2017;7:1834.

    Article  PubMed  PubMed Central  Google Scholar 

  203. Yost S, Stashenko P, Choi Y, Kukuruzinska M, Genco CA, Salama A, Weinberg EO, Kramer CD, Frias-Lopez J. Increased virulence of the oral microbiome in oral squamous cell carcinoma revealed by metatranscriptome analyses. Int J Oral Sci. 2018;10:32.

    Article  PubMed  PubMed Central  Google Scholar 

  204. Wu T, Cen L, Kaplan C, Zhou X, Lux R, Shi W, He X. Cellular components mediating coadherence of Candida albicans and Fusobacterium nucleatum. J Dent Res. 2015;94:1432–8.

    Article  PubMed  PubMed Central  Google Scholar 

  205. Fitzpatrick SG, Katz J. The association between periodontal disease and cancer: a review of the literature. J Dent. 2010;38:83–95.

    Article  PubMed  Google Scholar 

  206. Li X, Kolltveit KM, Tronstad L, Olsen I. Systemic diseases caused by oral infection. Clin Microbiol Rev. 2000;13:547–58.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Cobe HM. Transitory bacteremia. Oral Surg Oral Med Oral Pathol. 1954;7:609–15.

    Article  PubMed  Google Scholar 

  208. Tomás I, Diz P, Tobías A, Scully C, Donos N. Periodontal health status and bacteraemia from daily oral activities: systematic review/meta-analysis. J Clin Periodontol. 2012;39:213–28.

    Article  PubMed  Google Scholar 

  209. Lafaurie GI, Mayorga-Fayad I, Torres MF, Castillo DM, Aya MR, Barón A, Hurtado PA. Periodontopathic microorganisms in peripheric blood after scaling and root planing. J Clin Periodontol. 2007;34:873–9.

    Article  PubMed  Google Scholar 

  210. Goldstein EJ. Anaerobic bacteremia. Clin Infect Dis. 1996;23(Suppl 1):S97–101.

    Article  PubMed  Google Scholar 

  211. Abusleme L, Dupuy AK, Dutzan N, Silva N, Burleson JA, Strausbaugh LD, Gamonal J, Diaz PI. The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. ISME J. 2013;7:1016–25.

    Article  PubMed  PubMed Central  Google Scholar 

  212. Hujoel PP, White BA, García RI, Listgarten MA. The dentogingival epithelial surface area revisited. J Periodontal Res. 2001;36:48–55.

    Article  PubMed  Google Scholar 

  213. Brook I. The role of anaerobic bacteria in bacteremia. Anaerobe. 2010;16:183–9.

    Article  PubMed  Google Scholar 

  214. Fan X, Alekseyenko AV, Wu J, Peters BA, Jacobs EJ, Gapstur SM, Purdue MP, Abnet CC, Stolzenberg-Solomon R, Miller G, et al. Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut. 2018;67:120–7.

    Article  PubMed  Google Scholar 

  215. Listyarifah D, Nieminen MT, Mäkinen LK, Haglund C, Grenier D, Häyry V, Nordström D, Hernandez M, Yucel-Lindberg T, Tervahartiala T, et al. Treponema denticola chymotrypsin-like proteinase is present in early-stage mobile tongue squamous cell carcinoma and related to the clinicopathological features. J Oral Pathol Med. 2018;47:764–72.

    Article  PubMed  Google Scholar 

  216. Narikiyo M, Tanabe C, Yamada Y, Igaki H, Tachimori Y, Kato H, Muto M, Montesano R, Sakamoto H, Nakajima Y, et al. Frequent and preferential infection of Treponema denticola, Streptococcus mitis, and Streptococcus anginosus in esophageal cancers. Cancer Sci. 2004;95:569–74.

    Article  PubMed  Google Scholar 

  217. Warren RL, Freeman DJ, Pleasance S, Watson P, Moore RA, Cochrane K, Allen-Vercoe E, Holt RA. Co-occurrence of anaerobic bacteria in colorectal carcinomas. Microbiome. 2013;1:16.

    Article  PubMed  PubMed Central  Google Scholar 

  218. Fukugaiti MH, Ignacio A, Fernandes MR, Ribeiro Júnior U, Nakano V, Avila-Campos MJ. High occurrence of Fusobacterium nucleatum and Clostridium difficile in the intestinal microbiota of colorectal carcinoma patients. Braz J Microbiol. 2015;46:1135–40.

    Article  PubMed  PubMed Central  Google Scholar 

  219. Afra K, Laupland K, Leal J, Lloyd T, Gregson D. Incidence, risk factors, and outcomes of Fusobacterium species bacteremia. BMC Infect Dis. 2013;13:264.

    Article  PubMed  PubMed Central  Google Scholar 

  220. Flanagan L, Schmid J, Ebert M, Soucek P, Kunicka T, Liska V, Bruha J, Neary P, Dezeeuw N, Tommasino M, et al. Fusobacterium nucleatum associates with stages of colorectal neoplasia development, colorectal cancer and disease outcome. Eur J Clin Microbiol Infect Dis. 2014;33:1381–90.

    Article  PubMed  Google Scholar 

  221. Gholizadeh P, Eslami H, Kafil HS. Carcinogenesis mechanisms of Fusobacterium nucleatum. Biomed Pharmacother. 2017;89:918–25.

    Article  PubMed  Google Scholar 

  222. Shang F-M, Liu H-L. Fusobacterium nucleatum and colorectal cancer: a review. World J Gastrointest Oncol. 2018;10:71–81.

    Article  PubMed  PubMed Central  Google Scholar 

  223. Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F, Earl AM, Ojesina AI, Jung J, Bass AJ, Tabernero J, et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 2012;22:292–8.

    Article  PubMed  PubMed Central  Google Scholar 

  224. Mima K, Nishihara R, Qian ZR, Cao Y, Sukawa Y, Nowak JA, Yang J, Dou R, Masugi Y, Song M, et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut. 2015;65(12):1973–80.

    Article  PubMed  Google Scholar 

  225. Castellarin M, Warren RL, Freeman JD, Dreolini L, Krzywinski M, Strauss J, Barnes R, Watson P, Allen-Vercoe E, Moore RA, et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 2012;22:299–306.

    Article  PubMed  PubMed Central  Google Scholar 

  226. Chen W, Liu F, Ling Z, Tong X, Xiang C. Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer. PLoS One. 2012;7:e39743.

    Article  PubMed  PubMed Central  Google Scholar 

  227. Drewes JL, White JR, Dejea CM, Fathi P, Iyadorai T, Vadivelu J, Roslani AC, Wick EC, Mongodin EF, Loke MF, et al. High-resolution bacterial 16S rRNA gene profile meta-analysis and biofilm status reveal common colorectal cancer consortia. NPJ Biofilms Microbiomes. 2017;3:34.

    Article  PubMed  PubMed Central  Google Scholar 

  228. Marchesi JR, Dutilh BE, Hall N, Peters WHM, Roelofs R, Boleij A, Tjalsma H. Towards the human colorectal cancer microbiome. PLoS One. 2011;6:e20447.

    Article  PubMed  PubMed Central  Google Scholar 

  229. Okahashi N, Koga T, Nishihara T, Fujiwara T, Hamada S. Immunobiological properties of lipopolysaccharides isolated from Fusobacterium nucleatum and F. necrophorum. J Gen Microbiol. 1988;134:1707–15.

    PubMed  Google Scholar 

  230. McCoy AN, Araújo-Pérez F, Azcárate-Peril A, Yeh JJ, Sandler RS, Keku TO. Fusobacterium is associated with colorectal adenomas. PLoS One. 2013;8:e53653.

    Article  PubMed  PubMed Central  Google Scholar 

  231. Gur C, Ibrahim Y, Isaacson B, Yamin R, Abed J, Gamliel M, Enk J, Bar-On Y, Stanietsky-Kaynan N, Coppenhagen-Glazer S, et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity. 2015;42:344–55.

    Article  PubMed  PubMed Central  Google Scholar 

  232. DiDonato JA, Mercurio F, Karin M. NF-κB and the link between inflammation and cancer. Immunol Rev. 2012;246:379–400.

    Article  PubMed  Google Scholar 

  233. Ma C-T, Luo H-S, Gao F, Tang Q-C, Chen W. Fusobacterium nucleatum promotes the progression of colorectal cancer by interacting with E-cadherin. Oncol Lett. 2018;16:2606–12.

    PubMed  PubMed Central  Google Scholar 

  234. Nieminen MT, Listyarifah D, Hagström J, Haglund C, Grenier D, Nordström D, Uitto V-J, Hernandez M, Yucel-Lindberg T, Tervahartiala T, et al. Treponema denticola chymotrypsin-like proteinase may contribute to orodigestive carcinogenesis through immunomodulation. Br J Cancer. 2018;118:428–34.

    Article  PubMed  Google Scholar 

  235. Aparna M, Rao L, Kunhikatta V, Radhakrishnan R. The role of MMP-2 and MMP-9 as prognostic markers in the early stages of tongue squamous cell carcinoma. J Oral Pathol Med. 2015;44:345–52.

    Article  PubMed  Google Scholar 

  236. Jakubowska K, Pryczynicz A, Januszewska J, Sidorkiewicz I, Kemona A, Niewiński A, Lewczuk Ł, Kędra B, Guzińska-Ustymowicz K. Expressions of matrix metalloproteinases 2, 7, and 9 in carcinogenesis of pancreatic ductal adenocarcinoma. Dis Markers. 2016;2016:9895721.

    Article  PubMed  PubMed Central  Google Scholar 

  237. Zeng R, Duan L, Kong Y, Liang Y, Wu X, Wei X, Yang K. Clinicopathological and prognostic role of MMP-9 in esophageal squamous cell carcinoma: a meta-analysis. Chin J Cancer Res. 2013;25:637–45.

    PubMed  PubMed Central  Google Scholar 

  238. Han YW, Wang X. Mobile microbiome: oral bacteria in extra-oral infections and inflammation. J Dent Res. 2013;92:485–91.

    Article  PubMed  PubMed Central  Google Scholar 

  239. Dennison DK. Heart attacks, strokes, diabetes and periodontal diseases: the relationship between periodontal health and systemic diseases. J Gt Houst Dent Soc. 1998;69:22–3.

    PubMed  Google Scholar 

  240. Offenbacher S, Jared HL, O’Reilly PG, Wells SR, Salvi GE, Lawrence HP, Socransky SS, Beck JD. Potential pathogenic mechanisms of periodontitis associated pregnancy complications. Ann Periodontol. 1998a;3:233–50.

    Article  PubMed  Google Scholar 

  241. Offenbacher S, Beck JD, Lieff S, Slade G. Role of periodontitis in systemic health: spontaneous preterm birth. J Dent Educ. 1998b;62:852–8.

    Article  PubMed  Google Scholar 

  242. McGaw T. Periodontal disease and preterm delivery of low-birth-weight infants. J Can Dent Assoc. 2002;68:165–9.

    PubMed  Google Scholar 

  243. Shapiro S, McCormick MC, Starfield BH, Krischer JP, Bross D. Relevance of correlates of infant deaths for significant morbidity at 1 year of age. Am J Obstet Gynecol. 1980;136:363–73.

    Article  PubMed  Google Scholar 

  244. Slots J. Focal infection of periodontal origin. Periodontol. 2019;2000(79):233–5.

    Article  Google Scholar 

  245. Wojtulewicz J, Alam A, Brasher P, Whyte H, Long D, Newman C, Perlman M. Changing survival and impairment rates at 18–24 months in outborn very low-birth-weight infants: 1984–1987 versus 1980–1983. Acta Paediatr. 1993;82:666–71.

    Article  PubMed  Google Scholar 

  246. Andonova I, Iliev V, Živković N, Sušič E, Bego I, Kotevska V. Can oral anaerobic bacteria cause adverse pregnancy outcomes? Pril (Makedon Akad Nauk Umet Odd Med Nauki). 2015;36:137–43.

    Google Scholar 

  247. Institute of Medicine (US) Committee on Understanding Premature Birth and Assuring Healthy Outcomes. Preterm birth: causes, consequences, and prevention. Washington, DC: National Academies Press; 2007.

    Google Scholar 

  248. Qureshi A, Ijaz S, Syed A, Qureshi A, Khan AA. Periodontal infection: a potential risk factor for pre-term delivery of low birth weight (PLBW) babies. J Pak Med Assoc. 2005;55:448–52.

    PubMed  Google Scholar 

  249. Hillier SL, Martius J, Krohn M, Kiviat N, Holmes KK, Eschenbach DA. A case-control study of chorioamnionic infection and histologic chorioamnionitis in prematurity. N Engl J Med. 1988;319:972–8.

    Article  PubMed  Google Scholar 

  250. Mueller-Heubach E, Rubinstein DN, Schwarz SS. Histologic chorioamnionitis and preterm delivery in different patient populations. Obstet Gynecol. 1990;75:622–6.

    PubMed  Google Scholar 

  251. Romero R, Baumann P, Gomez R, Salafia C, Rittenhouse L, Barberio D, Behnke E, Cotton DB, Mitchell MD. The relationship between spontaneous rupture of membranes, labor, and microbial invasion of the amniotic cavity and amniotic fluid concentrations of prostaglandins and thromboxane B2 in term pregnancy. Am J Obstet Gynecol. 1993;168:1654–64. discussion 1664–1668.

    Article  PubMed  Google Scholar 

  252. Offenbacher S, Katz V, Fertik G, Collins J, Boyd D, Maynor G, McKaig R, Beck J. Periodontal infection as a possible risk factor for preterm low birth weight. J Periodontol. 1996;67(Suppl 10S):1103–13.

    Article  PubMed  Google Scholar 

  253. Gibbs RS, Romero R, Hillier SL, Eschenbach DA, Sweet RL. A review of premature birth and subclinical infection. Am J Obstet Gynecol. 1992;166:1515–28.

    Article  PubMed  Google Scholar 

  254. Romero R, Wu YK, Mazor M, Hobbins JC, Mitchell MD. Amniotic fluid prostaglandin E2 in preterm labor. Prostaglandins Leukot Essent Fatty Acids. 1988;34:141–5.

    Article  PubMed  Google Scholar 

  255. Romero R, Mazor M, Wu YK, Avila C, Oyarzun E, Mitchell MD. Bacterial endotoxin and tumor necrosis factor stimulate prostaglandin production by human decidua. Prostaglandins Leukot Essent Fatty Acids. 1989;37:183–6.

    Article  PubMed  Google Scholar 

  256. Scannapieco FA. Position paper of the American Academy of Periodontology: periodontal disease as a potential risk factor for systemic diseases. J Periodontol. 1998;69:841–50.

    PubMed  Google Scholar 

  257. Collins JG, Smith MA, Arnold RR, Offenbacher S. Effects of Escherichia coli and Porphyromonas gingivalis lipopolysaccharide on pregnancy outcome in the golden hamster. Infect Immun. 1994a;62:4652–5.

    Article  PubMed  PubMed Central  Google Scholar 

  258. Collins JG, Windley HW, Arnold RR, Offenbacher S. Effects of a Porphyromonas gingivalis infection on inflammatory mediator response and pregnancy outcome in hamsters. Infect Immun. 1994b;62:4356–61.

    Article  PubMed  PubMed Central  Google Scholar 

  259. Jeffcoat M, Parry S, Sammel M, Clothier B, Catlin A, Macones G. Periodontal infection and preterm birth: successful periodontal therapy reduces the risk of preterm birth. BJOG. 2011;118:250–6.

    Article  PubMed  Google Scholar 

  260. Urbán E, Radnai M, Novák T, Gorzó I, Pál A, Nagy E. Distribution of anaerobic bacteria among pregnant periodontitis patients who experience preterm delivery. Anaerobe. 2006;12:52–7.

    Article  PubMed  Google Scholar 

  261. Vamos CA, Thompson EL, Avendano M, Daley EM, Quinonez RB, Boggess K. Oral health promotion interventions during pregnancy: a systematic review. Community Dent Oral Epidemiol. 2015;43:385–96.

    Article  PubMed  Google Scholar 

  262. Ebersole JL, Stevens J, Steffen MJ, Dawson Iii D, Novak MJ. Systemic endotoxin levels in chronic indolent periodontal infections. J Periodontal Res. 2010;45:1–7.

    Article  PubMed  PubMed Central  Google Scholar 

  263. Kaur M, Geisinger ML, Geurs NC, Griffin R, Vassilopoulos PJ, Vermeulen L, Haigh S, Reddy MS. Effect of intensive oral hygiene regimen during pregnancy on periodontal health, cytokine levels, and pregnancy outcomes: a pilot study. J Periodontol. 2014;85:1684–92.

    Article  PubMed  PubMed Central  Google Scholar 

  264. Lin D, Moss K, Beck JD, Hefti A, Offenbacher S. Persistently high levels of periodontal pathogens associated with preterm pregnancy outcome. J Periodontol. 2007;78:833–41.

    Article  PubMed  Google Scholar 

  265. Vergnes J-N, Sixou M. Preterm low birth weight and maternal periodontal status: a meta-analysis. Am J Obstet Gynecol. 2007;196:135.e1–7.

    Article  Google Scholar 

  266. Bearfield C, Davenport ES, Sivapathasundaram V, Allaker RP. Possible association between amniotic fluid micro-organism infection and microflora in the mouth. BJOG. 2002;109:527–33.

    Article  PubMed  Google Scholar 

  267. Chaim W, Mazor M. Intraamniotic infection with fusobacteria. Arch Gynecol Obstet. 1992;251:1–7.

    Article  PubMed  Google Scholar 

  268. Easterling TR, Garite TJ. Fusobacterium: anaerobic occult amnionitis and premature labor. Obstet Gynecol. 1985;66:825–8.

    PubMed  Google Scholar 

  269. Han YW, Ikegami A, Bissada NF, Herbst M, Redline RW, Ashmead GG. Transmission of an uncultivated Bergeyella strain from the oral cavity to amniotic fluid in a case of preterm birth. J Clin Microbiol. 2006;44:1475–83.

    Article  PubMed  PubMed Central  Google Scholar 

  270. Hill GB. Preterm birth: associations with genital and possibly oral microflora. Ann Periodontol. 1998;3:222–32.

    Article  PubMed  Google Scholar 

  271. Gauthier S, Tétu A, Himaya E, Morand M, Chandad F, Rallu F, Bujold E. The origin of Fusobacterium nucleatum involved in intra-amniotic infection and preterm birth. J Matern Fetal Neonatal Med. 2011;24:1329–32.

    Article  PubMed  Google Scholar 

  272. Han YW. Fusobacterium nucleatum: a commensal-turned pathogen. Curr Opin Microbiol. 2015;23C:141–7.

    Article  Google Scholar 

  273. Han YW, Fardini Y, Chen C, Iacampo KG, Peraino VA, Shamonki JM, Redline RW. Term stillbirth caused by oral Fusobacterium nucleatum. Obstet Gynecol. 2010;115:442–5.

    Article  PubMed  PubMed Central  Google Scholar 

  274. Han YW. Can oral bacteria cause pregnancy complications? Womens Health (Lond). 2011a;7:401–4.

    Article  Google Scholar 

  275. Han YW. Oral health and adverse pregnancy outcomes—what’s next? J Dent Res. 2011b;90:289–93.

    Article  PubMed  PubMed Central  Google Scholar 

  276. Hill GB. Investigating the source of amniotic fluid isolates of fusobacteria. Clin Infect Dis. 1993;16(Suppl 4):S423–4.

    Article  PubMed  Google Scholar 

  277. Han YW, Redline RW, Li M, Yin L, Hill GB, McCormick TS. Fusobacterium nucleatum induces premature and term stillbirths in pregnant mice: implication of oral bacteria in preterm birth. Infect Immun. 2004;72:2272–9.

    Article  PubMed  PubMed Central  Google Scholar 

  278. Liu H, Redline RW, Han YW. Fusobacterium nucleatum induces fetal death in mice via stimulation of TLR4-mediated placental inflammatory response. J Immunol. 2007;179:2501–8.

    Article  PubMed  Google Scholar 

  279. Han YW, Ikegami A, Rajanna C, Kawsar HI, Zhou Y, Li M, Sojar HT, Genco RJ, Kuramitsu HK, Deng CX. Identification and characterization of a novel adhesin unique to oral fusobacteria. J Bacteriol. 2005;187:5330–40.

    Article  PubMed  PubMed Central  Google Scholar 

  280. Xu M, Yamada M, Li M, Liu H, Chen SG, Han YW. FadA from Fusobacterium nucleatum utilizes both secreted and nonsecreted forms for functional oligomerization for attachment and invasion of host cells. J Biol Chem. 2007;282:25000–9.

    Article  PubMed  Google Scholar 

  281. Ikegami A, Chung P, Han YW. Complementation of the fadA mutation in Fusobacterium nucleatum demonstrates that the surface-exposed adhesin promotes cellular invasion and placental colonization. Infect Immun. 2009;77:3075–9.

    Article  PubMed  PubMed Central  Google Scholar 

  282. Coppenhagen-Glazer S, Sol A, Abed J, Naor R, Zhang X, Han YW, Bachrach G. Fap2 of Fusobacterium nucleatum is a galactose-inhibitable adhesin involved in coaggregation, cell adhesion, and preterm birth. Infect Immun. 2015;83:1104–13.

    Article  PubMed  PubMed Central  Google Scholar 

  283. Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. The placenta harbors a unique microbiome. Sci Transl Med. 2014;6:237ra65.

    PubMed  PubMed Central  Google Scholar 

  284. Han YW, Shen T, Chung P, Buhimschi IA, Buhimschi CS. Uncultivated bacteria as etiologic agents of intra-amniotic inflammation leading to preterm birth. J Clin Microbiol. 2009;47:38–47.

    Article  PubMed  Google Scholar 

  285. Wang X, Buhimschi CS, Temoin S, Bhandari V, Han YW, Buhimschi IA. Comparative microbial analysis of paired amniotic fluid and cord blood from pregnancies complicated by preterm birth and early-onset neonatal sepsis. PLoS One. 2013;8:e56131.

    Article  PubMed  PubMed Central  Google Scholar 

  286. Romero R, Kusanovic JP, Espinoza J, Gotsch F, Nhan-Chang CL, Erez O, Kim CJ, Khalek N, Mittal P, Goncalves LF, et al. What is amniotic fluid “sludge”? Ultrasound Obstet Gynecol. 2007;30:793–8.

    Article  PubMed  PubMed Central  Google Scholar 

  287. Katz J, Chegini N, Shiverick KT, Lamont RJ. Localization of P. gingivalis in preterm delivery placenta. J Dent Res. 2009;88:575–8.

    Article  PubMed  PubMed Central  Google Scholar 

  288. Reyes L, Phillips P, Wolfe B, Golos TG, Walkenhorst M, Progulske-Fox A, Brown M. Porphyromonas gingivalis and adverse pregnancy outcome. J Oral Microbiol. 2018;10:1374153.

    PubMed  Google Scholar 

  289. León R, Silva N, Ovalle A, Chaparro A, Ahumada A, Gajardo M, Martinez M, Gamonal J. Detection of Porphyromonas gingivalis in the amniotic fluid in pregnant women with a diagnosis of threatened premature labor. J Periodontol. 2007;78:1249–55.

    Article  PubMed  Google Scholar 

  290. Kunnen A, van Pampus MG, Aarnoudse JG, van der Schans CP, Abbas F, Faas MM. The effect of Porphyromonas gingivalis lipopolysaccharide on pregnancy in the rat. Oral Dis. 2014;20:591–601.

    Article  PubMed  Google Scholar 

  291. Schenkein HA, Bradley JL, Purkall DB. Anticardiolipin in porphyromonas gingivalis antisera causes fetal loss in mice. J Dent Res. 2013;92:814–8.

    Article  PubMed  PubMed Central  Google Scholar 

  292. Abrahams VM, Mor G. Toll-like receptors and their role in the trophoblast. Placenta. 2005;26:540–7.

    Article  PubMed  Google Scholar 

  293. Chaparro A, Blanlot C, Ramírez V, Sanz A, Quintero A, Inostroza C, Bittner M, Navarro M, Illanes SE. Porphyromonas gingivalis, Treponema denticola and toll-like receptor 2 are associated with hypertensive disorders in placental tissue: a case-control study. J Periodontal Res. 2013;48:802–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Frias-Lopez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Frias-Lopez, J., Duran-Pinedo, A.E. (2020). The Function of the Oral Microbiome in Health and Disease. In: Sahingur, S. (eds) Emerging Therapies in Periodontics. Springer, Cham. https://doi.org/10.1007/978-3-030-42990-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42990-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42989-8

  • Online ISBN: 978-3-030-42990-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics