Skip to main content

Metapopulation and Multigroup Age-Structured Models

  • Chapter
  • First Online:
Age Structured Epidemic Modeling

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 52))

  • 719 Accesses

Abstract

Richard Levins [111] used the term “metapopulation” to describe a population of populations. Metapopulations naturally occur in fragmented habitats where each component of the habitat is occupied by one population and the populations are connected by migration. Levins proposed a very simple equation model to investigate the dynamics of the metapopulation in a temporally varying environment. Later, Hanski and Gilpin [67] gave more details from ecological view of point.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Arino, Diseases in Metapopulations (World Scientific, Singapore, 2009)

    Book  Google Scholar 

  2. J. Arino, Modeling and Dynamics of Infectious Diseases, vol. 11 (World Scientific, Singapore, 2009)

    Book  Google Scholar 

  3. M. Bartlett, Deterministic and Stochastic Models for Recurrent Epidemics, vol. IV (University of California Press, Berkeley, 1956)

    MATH  Google Scholar 

  4. S. Busenberg, M. Iannelli, H. Thieme, Global behavior of an age-structured epidemic model. SIAM J. Math. Anal. 22, 1065–1080 (1991)

    Article  MathSciNet  Google Scholar 

  5. O. Diekmann, J. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation (Wiley, Chichester, 2000)

    MATH  Google Scholar 

  6. O. Diekmann, J.A.P. Heesterbeek, J.A.J. Metz, On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28, 365–382 (1990)

    Article  MathSciNet  Google Scholar 

  7. F. Faddy, A note on the behavior of deterministic spatial epidemics. Math.Biosci. 80, 19–22 (1986)

    Article  MathSciNet  Google Scholar 

  8. Z. Feng, W. Huang, C. Castillo-Chavez, Global behavior of a multi-group sis epidemic model with age structure. J. Differ. Equ. 218, 292–324 (2005)

    Article  MathSciNet  Google Scholar 

  9. E. Fromont, D. Pontier, M. Langlais, Disease propagation in connected host populations with density-dependent dynamics: the case of feline leukemia virus. J. Theor. Biol. 223, 465–475 (2003)

    Article  MathSciNet  Google Scholar 

  10. M. Gilpin, I. Hanski, Metapopulation Dynamics: Empirical and Theoretical Investigations (Harcourt Brace Jovanovich, London, 1991)

    Google Scholar 

  11. H. Guo, M.Y. Li, Z. Shuai, Global stability of the endemic equilibrium of multigroup sir epidemic models. Can. Appl. Math. Q. 14, 259–284 (2006)

    MathSciNet  MATH  Google Scholar 

  12. H. Inaba, A semigroup approach to the strong ergodic theorem of the multistate stable population process. Math. Popul. Studies 1, 49–77 (1988)

    Article  MathSciNet  Google Scholar 

  13. H. Inaba, Threshold and stability results for an age-structured epidemic model. J. Math. Biol. 28, 411–434 (1990)

    Article  MathSciNet  Google Scholar 

  14. H. Inaba, On a new perspective of the basic reproduction number in heterogeneous environments. J. Math. Biol. 65, 309–348 (2012)

    Article  MathSciNet  Google Scholar 

  15. H. Inaba, Age-Structured Population Dynamics in Demography and Epidemiology (Springer, Singapore, 2017)

    Book  Google Scholar 

  16. A. Korobeinikov, Global properties of sir and seir epidemi models with multiple parallel infectious stages. Bull. Math. Biol. 71, 75–83 (2009)

    Article  MathSciNet  Google Scholar 

  17. T. Kuniya, Global stability analysis with a discretization approach for an age-structured multigroup sir epidemic model. Nonlinear Anal. RWA 12, 2640–2655 (2011)

    Article  MathSciNet  Google Scholar 

  18. T. Kuniya, J. Wang, H. Inaba, A multi-group sir epidemic model with age structure. Discrete Cont. Dyn. Syst. Ser. B 21, 3515–3550 (2016)

    Article  MathSciNet  Google Scholar 

  19. T. Kuniya, H. Inaba, J. Yang, Global behavior of SIS epidemic models with age structure and spatial heterogeneity. Jpn. J. Ind. Appl. Math. 35, 669–706 (2018)

    Article  MathSciNet  Google Scholar 

  20. A. Lajmanovich, J. Yorke, A deterministic model for gonorrhea in a nonhomogeneous population. Math. Biosci. 28, 221–236 (1976)

    Article  MathSciNet  Google Scholar 

  21. R. Levins, Extinction, in Some Mathematical Problems in Biology, ed. by M. Gerstenhaber (American Mathematical Society, Providence, 1970)

    Google Scholar 

  22. L. Ravachev, I.M.Longini, A mathematical model for the global spread of influenza. Math. Biosci. 75, 22 (1985)

    MathSciNet  MATH  Google Scholar 

  23. D.J. Rodriguez, L.Torres-Sorando, Models of infectious diseases in spatially heterogeneous environments. Bull. Math. Biol. 63, 547–571 (2001)

    Article  Google Scholar 

  24. R. Sun, Global stability of the endemic equilibrium of multigroup sir models with nonlinear incidence. Comput. Math. Appl. 60, 2286–2291 (2010)

    Article  MathSciNet  Google Scholar 

  25. H. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity. SIAM J. Appl. Math. 70, 188–211 (2009)

    Article  MathSciNet  Google Scholar 

  26. W. Wang, X. Zhao, An epidemic model in a patchy environment. Math. Biosci. 190, 97–112 (2004)

    Article  MathSciNet  Google Scholar 

  27. G. Webb, Theory of Nonlinear Age-Dependent Population Dynamics. Monographs and Textbooks in Pure and Applied Mathematics, vol. 89 (Marcel Dekker, New York, 1985)

    Google Scholar 

  28. K. Yosida, Functional Analysis, 2nd edn. (Springer, Berlin/Heidelberg/New York, 1968)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, XZ., Yang, J., Martcheva, M. (2020). Metapopulation and Multigroup Age-Structured Models. In: Age Structured Epidemic Modeling. Interdisciplinary Applied Mathematics, vol 52. Springer, Cham. https://doi.org/10.1007/978-3-030-42496-1_7

Download citation

Publish with us

Policies and ethics