Skip to main content

To Shout or to Whisper? Strategies for Encoding Public and Private Information in Sound Signals

  • Chapter
  • First Online:
Coding Strategies in Vertebrate Acoustic Communication

Part of the book series: Animal Signals and Communication ((ANISIGCOM,volume 7))

Abstract

To make sound communication public or private is a question of making the active space of the emitted sound signals large or small. A sender can only encode the sound signals within the parameter space defined by its own anatomy and physiology but, in addition, it may choose acoustic behaviors that will help to increase or decrease the active space. Both signal encoding and behavioral choices are limited by the acoustical properties of the noisy environment that changes the propagating sound signal. To make the sound signals public by increasing the size of the active space, the sender must try to overcome the limitations of the environment, whereas to make the sound signals private the sender could make use of these limitations to reduce the size of the active space. Signal encoding is also limited by the auditory physiology of the receiver whose auditory sensitivity and critical ratio relative to the ambient sound level determine the distance, over which a sound signal can be received. The best documented and most important parameter for changing the size of the active space is the source level of the emitted sound, which may be divided into high-amplitude broadcast sounds and low-amplitude soft sounds. In addition, sound signal frequency parameters may help to improve reception of public sound signals and to reduce reception of private signals, whereas other potential active space regulating parameters such as signal duration only follow predictions for some species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akçay Ç, Tom ME, Holmes D, Campbell E, Beecher MD (2011) Sing softly and carry a big stick: signals of aggressive intent in the song sparrow. Anim Behav 82:377–382

    Article  Google Scholar 

  • Akçay Ç, Anderson RC, Nowicki S, Beecher MD, Searcy WA (2015) Quiet threats: soft song as an aggressive signal in birds. Anim Behav 105:267–274

    Article  Google Scholar 

  • Akçay Ç, Clay A, Campbell E, Beecher MD (2016) The sparrow and the hawk: aggressive signalling under the risk of predation. Behav Ecol 27(2):601–607

    Article  Google Scholar 

  • Anderson RC, Nowicki S, Searcy WA (2007) Soft song in song sparrows: response of males and females to an enigmatic signal. Behav Ecol Sociobiol 61:1267–1274

    Article  Google Scholar 

  • Anderson RC, Searcy WA, Peters S, Nowicki S (2008) Soft song in song sparrows: acoustic structure and implications for signal function. Ethology 114:662–676

    Article  Google Scholar 

  • Armstrong EA, Whitehouse HLK (1977) Behavioural adaptations of the wren (Troglodytes troglodytes). Biol Rev 52:235–294

    Article  Google Scholar 

  • Attenborough K (2007) Sound propagation in the atmosphere. In: Rossing TD (ed) Handbook of acoustics. Springer, New York, pp 113–147

    Chapter  Google Scholar 

  • Aubin T, Jouventin P (1998) Cocktail-party effect in king penguin colonies. Proc R Soc B 265:1665–1673

    Article  PubMed Central  Google Scholar 

  • Ballentine B, Searcy WA, Nowicki S (2008) Reliable aggressive signalling in swamp sparrows. Anim Behav 75:693–703

    Article  Google Scholar 

  • Balsby TJS, Dabelsteen T (2005) Simulated courtship interactions elicit neighbour intrusions in the whitethroat, Sylvia communis. Anim Behav 69(1):161–168

    Article  Google Scholar 

  • Barber JB, Crooks KR, Fristrup KM (2010) The costs of chronic noise exposure for terrestrial organisms. Trends Ecol Evol 25(3):180–189

    Article  PubMed  Google Scholar 

  • Barker NKS, Dabelsteen T, Mennill DJ (2009) Degradation of male and female rufous-and-white wren songs in a tropical forest: effects of sex, perch height, and habitat. Behaviour 146:1093–1122

    Article  Google Scholar 

  • Bass HE, Sutherland LC, Zuckerwar AJ, Blackstock DT, Hester DM (1995) Atmospheric absorption of sound: further developments. J Acoust Soc Am 97(1):680–683

    Article  Google Scholar 

  • Blumenrath SH, Dabelsteen T (2004) Degradation of great tit Parus major song before and after foliation: implications for vocal communication in deciduous forests. Behaviour 8:935–958

    Article  Google Scholar 

  • Boersma HF (1997) Characterization of the natural ambient sound environment: measurements in open agricultural grassland. J Acoust Soc Am 101(4):2104–2110

    Article  Google Scholar 

  • Boncoraglio G, Saino N (2007) Habitat structure and the evolution of bird song: a meta-analysis of the evidence for the acoustic adaptation hypothesis. Funct Ecol 21:134–142

    Article  Google Scholar 

  • Bourne GR, Collins AC, Holder AM, McCarthy CL (2001) Vocal communication and reproductive behavior of the frog Colostethus beebei in Guyana. J Herpetol 35:272–281

    Article  Google Scholar 

  • Brackenbury JH (1979) Power capabilities of the avian sound-producing system. J Exp Biol 78:163–166

    Google Scholar 

  • Brenowitz EA (1982) The active space of red-winged blackbird song. J Comp Physiol A 147:511–522

    Article  Google Scholar 

  • Brumm H (2002) Sound radiation patterns in nightingale (Luscinia megarhynchos) songs. J Ornithol 143:468–471

    Article  Google Scholar 

  • Brumm H (2004) The impact of environmental noise on song amplitude in a territorial bird. J Anim Ecol 73:434–440

    Article  Google Scholar 

  • Brumm H (2009) Song amplitude and body size in birds. Behav Ecol Sociobiol 63:1157–1165

    Article  Google Scholar 

  • Brumm H, Ritschard M (2011) Song amplitude affects territorial aggression of male receivers in chaffinches. Behav Ecol 22:310–316

    Article  Google Scholar 

  • Brumm H, Slabbekoorn H (2005) Acoustic communication in noise. Adv Study Behav 35:151–209

    Article  Google Scholar 

  • Brumm H, Slater PJB (2006) Animals can vary signal amplitude with receiver distance: evidence from zebra finch song. Anim Behav 71:699–705

    Article  Google Scholar 

  • Brumm H, Todt D (2002) Noise-dependent song amplitude regulation in a territorial songbird. Anim Behav 63:891–897

    Article  Google Scholar 

  • Brumm H, Todt D (2004) Male-male vocal interactions and the adjustment of song amplitude in a territorial bird. Anim Behav 67:281–286

    Article  Google Scholar 

  • Brumm H, Zollinger SA (2011) The evolution of the Lombard effect: 100 years of psychoacoustic research. Behaviour 148:1173–1198

    Article  Google Scholar 

  • Brumm H, Zollinger SA (2013) Avian vocal production in noise. In: Brumm H (ed) Animal communication and noise. Springer, Berlin

    Chapter  Google Scholar 

  • Chappuis C (1971) Un exemple de l’influence du milieu sur les émissions vocales des oiseaux: L’évolution des chants en forêt équatoriale. Terre Vie 118:183–202

    Google Scholar 

  • Cynx J, Lewis R, Tavel B, Tse H (1998) Amplitude regulation of vocalizations in noise by a songbird, Taeniopygia guttata. Anim Behav 56:107–113

    Article  CAS  PubMed  Google Scholar 

  • Dabelsteen T (1981) The sound pressure level in the dawn song of the blackbird Turdus merula and a method for adjusting the level in experimental song to the level in natural song. Z Tierpsychol 56(2):137–149

    Article  Google Scholar 

  • Dabelsteen T (1985) Messages and meanings of bird song with special reference to the blackbird (Turdus merula) and some methodology problems. Biologiske Skrifter 25:173–208

    Google Scholar 

  • Dabelsteen T (2005) Public, private or anonymous? Facilitating and countering eavesdropping. In: McGregor P (ed) Animal communication networks. Cambridge University Press, Cambridge, NY, pp 38–62

    Chapter  Google Scholar 

  • Dabelsteen T, Larsen ON, Pedersen SB (1993) Habitat-induced degradation of sound signals: quantifying the effects of communication sounds and bird location on blur ratio, excess attenuation, and signal-to-noise ratio in blackbird song. J Acoust Soc Am 93:2206–2220

    Article  Google Scholar 

  • Dabelsteen T, McGregor PK, Lampe HM, Langmore NE, Holland J (1998) Quiet song in song birds: an overlooked phenomenon. Bioacoustics 9:89–105

    Article  Google Scholar 

  • Dent ML, Larsen ON, Dooling RJ (1997) Free-field binaural unmasking in budgerigars (Melopsittacus undulatus). Behav Neurosci 111(3):590–598

    Article  PubMed  Google Scholar 

  • Dooling RJ (1982) Auditory perception in birds. In: Kroodsma DE, Miller EH (eds) Acoustic communication in birds, vol 1. Academic, New York, pp 95–130

    Chapter  Google Scholar 

  • Dooling RJ (1992) Hearing in birds. In: Webster DB, Fay RR, Popper AN (eds) The evolutionary biology of hearing. Springer, New York, pp 545–559

    Chapter  Google Scholar 

  • Dooling RJ, Blumenrath SH (2013) Avian sound perception in noise. In: Brumm H (ed) Animal communication and noise, animal signals and communication, vol 2. Springer, Berlin, pp 229–250

    Chapter  Google Scholar 

  • Dooling RJ, Leek MR (2018) Communication masking by man-made noise. In: Slabbekoorn H, Dooling RJ, Fay RR, Popper AN (eds) Effects of anthropogenic noise on animals. Springer, New York, pp 23–46

    Chapter  Google Scholar 

  • Dooling RJ, Searcy MH (1985) Temporal integration of acoustic signals by the budgerigar (Melopsittacus undulatus). J Acoust Soc Am 77(5):1917–1920

    Article  CAS  PubMed  Google Scholar 

  • Dooling RJ, Lohr B, Dent ML (2000) Hearing in birds and reptiles. In: Dooling RJ, Fay RR, Popper AN (eds) Comparative hearing: birds and reptiles. Springer, New York, pp 308–359

    Chapter  Google Scholar 

  • Dooling RJ, Leek MR, West E (2009) Predicting the effects of masking noise on communication distance in birds. J Acoust Soc Am 125(4):2517

    Article  Google Scholar 

  • Eens M, Pinxten R, Verheyen RF (1989) Temporal and sequential organization of song bouts in the starling. Ardea 77:75–86

    Google Scholar 

  • Elemans CP, Rasmussen JH, Herbst CT, Düring DN, Zollinger SA, Brumm H, Srivastava K, Svane N, Ding M, Larsen ON, Sober SJ, Švec JG (2015) Universal mechanisms of sound production and control in birds and mammals. Nat Commun 6:8978

    Article  CAS  PubMed  Google Scholar 

  • Elie JE, Mariette MM, Soula HA, Griffith SC, Mathevon N, Vignal C (2010) Vocal communication at the nest between mates in wild zebra finches: a private vocal duet? Anim Behav 80:597–605

    Article  Google Scholar 

  • Ey E, Fischer J (2009) The “acoustic adaptation hypothesis” – a review of the evidence from birds, anurans and mammals. Bioacoustics 19:21–48

    Article  Google Scholar 

  • Farabaugh SM, Dent ML, Dooling RJ (1998) Hearing and vocalizations of wild-caught Australian budgerigars (Melopsittacus undulatus). J Comp Psychol 112:74–81

    Article  CAS  PubMed  Google Scholar 

  • Fegeant O (1999) Wind-induced vegetation noise. Part II: field measurements. Acta Acust Acust 85(2):241–249

    Google Scholar 

  • Fletcher H (1940) Auditory patterns. Rev Mod Phy 12:47–65

    Article  Google Scholar 

  • Fletcher NH (1988) Bird song – a quantitative acoustic model. J Theor Biol 135:455–481

    Article  Google Scholar 

  • Fletcher NH (2004) A simple frequency-scaling rule for animal communication. J Acoust Soc Am 115(5):2334–2338

    Article  PubMed  Google Scholar 

  • Francis CD, Barber JR (2013) A framework for understanding noise impacts on wildlife: an urgent conservation priority. Front Ecol Environ 11(6):305–313

    Article  Google Scholar 

  • Fuller RA, Warren PH, Gaston KJ (2007) Daytime noise predicts nocturnal singing in urban robins. Biol Lett 3:368–370

    Article  PubMed  PubMed Central  Google Scholar 

  • Gall MD, Ronald KL, Bestrom ES, Lucas JR (2012) Effects of habitat and urbanization on the active space of brown-headed cowbird song. J Acoust Soc Am 132(6):4053–4062

    Article  PubMed  Google Scholar 

  • Goller F, Larsen ON (1997) In situ biomechanics of the syrinx and sound generation in pigeons. J Exp Biol 200:2165–2176

    CAS  PubMed  Google Scholar 

  • Goodwin SE, Podos J (2013) Shift of song frequencies in response to masking tones. Anim Behav 85:435–440

    Article  Google Scholar 

  • Gorissen L, Eens M (2004) Interactive communication between male and female great tits (Parus major) during the dawn chorus. Auk 121(1):184–191

    Article  Google Scholar 

  • Gustison ML, Townsend SW (2015) A survey of the context and structure of high- and low-amplitude calls in mammals. Anim Behav 105:281–288

    Article  Google Scholar 

  • Halfwerk W, Bot S, Slabbekoorn H (2012) Male great tit song perch selection in response to noise-dependent female feedback. Funct Ecol 26:1339–1347

    Article  Google Scholar 

  • Halfwerk W, Lohr B, Slabbekoorn H (2018) Impact of man-made sound on birds and their songs. In: Slabbekoorn H, Dooling RJ, Popper AN, Fay RR (eds) Effects of anthropogenic noise on animals, vol 66. Springer, New York, pp 209–242

    Chapter  Google Scholar 

  • Henwood K, Fabrick A (1979) A quantitative analysis of the dawn chorus: temporal selection for communicatory optimization. Am Nat 114(2):260–274

    Article  Google Scholar 

  • Hof D, Hazlett N (2010) Low-amplitude song predicts attack in a North American wood warbler. Anim Behav 80:821–828

    Article  Google Scholar 

  • Holland J, Dabelsteen T, Pedersen SB, Larsen ON (1998) Degradation of wren Troglodytes troglodytes song: implications for information transfer and ranging. J Acoust Soc Am 103(4):2154–2166

    Article  Google Scholar 

  • Hornby AS, Gatenby EV, Wakefield H (1970) The advanced learner’s dictionary of current English. Oxford University Press, London

    Google Scholar 

  • Huber F (1955) Sitz und Bedeutung nervöser Zentren für Instinkthandlungen beim Männchen von Gryllus campestris L. Z Tierpsychol 12:12–48

    Article  Google Scholar 

  • Ishizuka T (2009) Whisper song in the grey thrush Turdus cardis immediately before and after feeding their young. J Yamashina Instit Ornithol 41:34–41

    Article  Google Scholar 

  • ISO (1993) Attenuation of sound during propagation outdoors. 1. Calculation of the absorption of sound by the atmosphere. ISO 9613-1. International Organization for Standardization, New York

    Google Scholar 

  • Jensen KK, Cooper BG, Larsen ON, Goller F (2007) Songbirds use pulse tone register in two voices to generate low-frequency sound. Proc R Soc B 274:2703–2710

    Article  PubMed  PubMed Central  Google Scholar 

  • Jensen KK, Larsen ON, Attenborough K (2008) Measurements and predictions of hooded crow (Corvus corone cornix) call propagation over open field habitats. J Acoust Soc Am 123(1):507–518

    Article  PubMed  Google Scholar 

  • Klump GM (1996) Bird communication in a noisy world. In: Kroodsma DE, Miller EH (eds) Ecology and evolution of acoustic communication in birds. Cornell University Press, London, pp 321–338

    Google Scholar 

  • Klump GM, Maier EH (1990) Temporal summation in the European starling (Sturnus vulgaris). J Comp Psychol 104(1):94–100

    Article  Google Scholar 

  • Klump GM, Kretzschmar E, Curio E (1986) The hearing of an avian predator and its avian prey. Behav Ecol Sociobiol 18:317–323

    Article  Google Scholar 

  • Kobayashi K, Okanoya K (2003) Context-dependent song amplitude control in Bengalese finches. Neuroreport 14(3):521–524

    Article  Google Scholar 

  • Krieg CA, Burnett AD (2017) Female house wrens may use a low-amplitude call as an aggressive signal. Ethology 123:316–327

    Article  Google Scholar 

  • Ladich F (2007) Females whisper briefly during sex: context- and sex-specific differences in sounds made by croaking gouramis. Anim Behav 73:379–387

    Article  Google Scholar 

  • Langemann U, Klump GM (2001) Signal detection in amplitude-modulated maskers. I. Behavioural auditory thresholds in a songbird. Eur J Neurosci 13:1025–1032

    Article  CAS  PubMed  Google Scholar 

  • Langemann U, Klump GM (2005) Perception and acoustic communication networks. In: McGregor PK (ed) Animal communication networks. Cambridge University Press, Cambridge, pp 451–480

    Chapter  Google Scholar 

  • Larsen ON, Dabelsteen T (1990) Directionality of blackbird vocalization: implications for vocal communication and its further study. Ornis Scand 21(1):37–45

    Article  Google Scholar 

  • Larsen ON, Radford C (2018) Acoustic conditions affecting sound communication in air and underwater. In: Slabbekoorn H, Dooling RJ, Fay RR, Popper AN (eds) Effects of anthropogenic noise on animals, vol 66. Springer, New York, pp 109–144

    Chapter  Google Scholar 

  • Larsen ON, Wahlberg M (2017) Sound and sound sources. In: Brown CH, Riede T (eds) Comparative bioacoustics: an overview. Bentham Science, Sharjah, pp 3–62

    Chapter  Google Scholar 

  • Lemon RE, Struger J, Lechowicz MJ, Norman RF (1981) Song features and singing heights of American warblers: maximization or optimization of distance? J Acoust Soc Am 69:1169–1176

    Article  Google Scholar 

  • Lengagne T, Slater PJB (2002) The effects of rain on acoustic communication: tawny owls have good reason for calling less in wet weather. Proc R Soc B 269:2121–2125

    Article  PubMed  PubMed Central  Google Scholar 

  • Lengagne T, Aubin T, Lauga J, Jouventin P (1999) How do king penguins (Aptenodytes patagonicus) apply the mathematical theory of information to communicate in windy conditions? Proc R Soc B 266:1623–1628

    Article  PubMed Central  Google Scholar 

  • Lohr B, Wright TF, Dooling RJ (2003) Detection and discrimination of natural calls in masking noise by birds: estimating the active space signal. Anim Behav 65:763–777

    Article  Google Scholar 

  • MacDougall-Shackleton SA (1997) Sexual selection and the evolution of song repertoires. Curr Ornithol 14:81–124

    Article  Google Scholar 

  • Mack AL, Jones J (2003) Low-frequency vocalizations by cassowaries (Casuarius spp.). Auk 120(4):1062–1068

    Article  Google Scholar 

  • Magrath RD, Haff TM, Fallow PM, Radford AN (2015) Eavesdropping on heterospecific alarm calls: from mechanisms to consequences. Biol Rev 90:560–586

    Article  PubMed  Google Scholar 

  • Manabe K, Sadr EI, Dooling RJ (1998) Control of vocal intensity in budgerigars (Melopsittacus undulatus): differential reinforcement of vocal intensity and the Lombard effect. J Acoust Soc Am 103(2):1190–1198

    Article  CAS  PubMed  Google Scholar 

  • Marler P (1955) Characteristics of some animal calls. Nature 176:6–8

    Article  Google Scholar 

  • Marten K, Marler P (1977) Sound transmission and its significance for animal vocalization: I. Temperate habitats. Behav Ecol Sociobiol 2:271–290

    Article  Google Scholar 

  • Mason NA, Burns KJ (2015) The effect of habitat and body size on the evolution of vocal displays in Thraupidae (tanagers), the largest family of songbirds. Biol J Linn Soc 114(3):538–551

    Article  Google Scholar 

  • Mathevon N, Aubin T, Dabelsteen T (1996) Song degradation during propagation: importance of song post for the wren Troglodytes troglodytes. Ethology 102:397–412

    Article  Google Scholar 

  • Mathevon N, Dabelsteen T, Blumenrath SH (2005) Are high perches in the blackcap Sylvia atricapilla song or listening posts? A sound transmission study. J Acoust Soc Am 117(1):442–449

    Article  PubMed  Google Scholar 

  • Mathevon N, Aubin T, Vielliard J, Da Silva ML, Sebe F, Boscolo D (2008) Singing in the RainForest: how a tropical bird’s song transmits information. PLoS One 3(2):e1580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGregor PK, Dabelsteen T (1996) Communication networks. In: Kroodsma DE, Miller EH (eds) Ecology and evolution of acoustic communication in birds. Cornell University Press, Ithaca, pp 409–425

    Google Scholar 

  • McGregor PK, Krebs JR (1982) Song types in a population of great tits (Parus major): their distribution, abundance and acquisition by individuals. Anim Behav 79:126–152

    Google Scholar 

  • McLaughlin KE, Kunc HP (2013) Experimentally increased noise levels change spatial and singing behaviour. Biol Lett 9:20120771

    PubMed  PubMed Central  Google Scholar 

  • Mead AF, Osinalde N, Ørtenblad N, Nielsen J, Brewer J, Vellema M, Adam I, Scharff C, Song Y, Frandsen U, Blagoev B, Kratchmarova I, Elemans CPH (2017) Fundamental constraints in synchronous muscle limit superfast motor control in vertebrates. elife 6:e29425. https://doi.org/10.7554/eLife.29425

    Article  PubMed  PubMed Central  Google Scholar 

  • Mencio C, Huberman B, Goller F (2017) Contributions of rapid neuromuscular transmission to the fine control of acoustic parameters of birdsong. J Neurophysiol 117:637–645

    Article  PubMed  Google Scholar 

  • Meyer J (2015) Acoustic adaptation to natural environments. In: Meyer J (ed) Whistled languages: a worldwide inquiry about human whistled speech. Springer, Berlin, pp 91–103

    Chapter  Google Scholar 

  • Miller LN (1978) Sound levels of rain and wind in the trees. Noise Control Eng J 11:101–115

    Article  Google Scholar 

  • Mooney TA, Smith A, Larsen ON, Hansen KA, Wahlberg M, Rasmussen MH (2019) Field-based hearing measurements of two seabird species. J Exp Biol 222:jeb190710. https://doi.org/10.1242/jeb.190710

    Article  PubMed  Google Scholar 

  • Morton ES (1975) Ecological sources of selection on avian sounds. Am Nat 109(965):17–34

    Article  Google Scholar 

  • Morton ES (1986) Predictions from the ranging hypothesis for the evolution of long distance signals in birds. Behaviour 99:65–86

    Google Scholar 

  • Morton ES (2000) An evolutionary view of the origins and functions of avian vocal communication. Jpn J Ornithol 49:69–78

    Article  Google Scholar 

  • Møhl B, Wahlberg M, Madsen PT, Miller LA, Surlykke A (2000) Sperm whale clicks: directionality and source level revisited. J Acoust Soc Am 107(1):638–648

    Article  PubMed  Google Scholar 

  • Naguib M, Riebel K (2014) Singing in space and time: the biology of birdsong. In: Witzany G (ed) Biocommunication of animals. Springer, Dordrecht

    Google Scholar 

  • Nemeth E (2004) Measuring the sound pressure level of the song of the screaming piha Lipaugus vociferans: one of the loudest birds in the world? Bioacoustics 14:225–228

    Article  Google Scholar 

  • Nemeth E, Brumm H (2010) Birds and anthropogenic noise: are urban songs adaptive? Am Nat 176(4):465–475

    Article  PubMed  Google Scholar 

  • Nemeth E, Winkler H, Dabelsteen T (2001) Differential degradation of antbird songs in a neotropical rainforest: adaptation to perch height? J Acoust Soc Am 110:3263–3274

    Article  CAS  PubMed  Google Scholar 

  • Nemeth E, Dabelsteen T, Pedersen SB, Winkler H (2006) Rainforests as concert halls for birds: are reverberations improving sound transmission of long song elements. J Acoust Soc Am 119(1):620–626

    Article  PubMed  Google Scholar 

  • Nemeth E, Kempenaers B, Matessi G, Brumm H (2012) Rock sparrow song reflects male age and reproductive success. PLoS One 7(8):e43259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nemeth E, Pieretti N, Zollinger SA, Geberzahn N, Partecke J, Miranda AC, Brumm H (2013) Bird song and anthropogenic noise: vocal constraints may explain why birds sing higher-frequency songs in cities. Proc R Soc B 280:20122798

    Article  PubMed  PubMed Central  Google Scholar 

  • Niederhauser JM, DuBois AL, Searcy WA, Nowicki S, Anderson RC (2018) A test of the eavesdropping avoidance hypothesis as an explanation for the structure of low-amplitude aggressive signals in the song sparrow. Behav Ecol Sociobiol 72:47

    Article  Google Scholar 

  • Osmanski MS, Dooling RJ (2009) The effects of altered feedback and control of vocal production in budgerigars (Melopsittacus undulatus). J Acoust Soc Am 126:911–919

    Article  PubMed  PubMed Central  Google Scholar 

  • Patricelli GA, Dantzker MS, Bradbury JW (2007) Differences in acoustic directionality among vocalizations of the male red-winged blackbird (Agelaius phoeniceus) are related to function in communication. Behav Ecol Sociobiol 61:1099–1110

    Article  Google Scholar 

  • Patricelli GA, Dantzker MS, Bradbury JW (2008) Acoustic directionality of red-winged blackbird (Agelaius phoeniceus) song relates to amplitude and singing behaviours. Anim Behav 76:1389–1401

    Article  Google Scholar 

  • Piza P, Sandoval L (2016) The differences in transmission properties of two bird calls show relation to their specific functions. J Acoust Soc Am 140(6):4271–4275

    Article  PubMed  Google Scholar 

  • Plomp R, Bouman MA (1959) Relation between hearing threshold and duration of tone pulses. J Acoust Soc Am 31:749–758

    Article  Google Scholar 

  • Podos J (1997) A performance constraint on the evolution of trilled vocalizations in a songbird family (Passeriformes: Emberizidae). Evolution 51:537–551

    Article  PubMed  Google Scholar 

  • Pohl NU, Slabbekoorn H, Klump GM, Langemann U (2009) Effects of signal features and environmental noise on signal detection in the great tit, Parus major. Anim Behav 78:1293–1300

    Article  Google Scholar 

  • Pohl NU, Slabbekoorn H, Neubauer H, Heil P, Klump GM, Ulrike Langemann U (2013) Why longer song elements are easier to detect: threshold level-duration functions in the Great Tit and comparison with human data. J Comp Physiol A 199(3):239–252

    Article  Google Scholar 

  • Price JJ (2013) Why is birdsong so repetitive? Signal detection and the evolution of avian singing modes. Behaviour 150:995–1013

    Article  Google Scholar 

  • Pytte CL, Rush KM, Ficken MS (2003) Regulation of vocal amplitude by the blue-throated hummingbird, Lampornis clemenciae. Anim Behav 66:703–710

    Article  Google Scholar 

  • Pytte CL, Ficken MS, Moiseff A (2004) Ultrasonic singing by the blue-throated hummingbird: a comparison between production and perception. J Comp Physiol A 190:665–673

    Article  Google Scholar 

  • Radford AN, Ridley AR (2008) Close calling regulates spacing between foraging competitors in the group-living pied babbler. Anim Behav 75:519–527

    Article  Google Scholar 

  • Reichard DG, Anderson RC (2015) Why signal softly? The structure, function and evolutionary significance of low-amplitude signals. Anim Behav 105:253–265

    Article  Google Scholar 

  • Reichard DG, Welklin JF (2015) On the existence and potential functions of low-amplitude vocalizations in North American birds. Auk 132:156–166

    Article  Google Scholar 

  • Reichard DG, Rice RR, Vanderbilt CC, Ketterson ED (2011) Deciphering information encoded in birdsong: male songbirds with fertile mates respond most strongly to complex, low-amplitude songs used in courtship. Am Nat 178(4):478–487

    Article  PubMed  Google Scholar 

  • Reichard DG, Rice RR, Schultz EM, Schrock SE (2013) Low-amplitude songs produced by male dark-eyed juncos (Junco hyemalis) differ when sung during intra- and inter-sexual interactions. Behaviour 150:1183–1202

    Article  Google Scholar 

  • Ręk P (2013) Soft calls and broadcast calls in the corncrake as adaptations to short and long range communication. Behav Process 99:121–129

    Article  Google Scholar 

  • Ręk P, Osiejuk TS (2011) Nonpasserine bird produces soft calls and pays retaliation cost. Behav Ecol 22:657–662

    Article  Google Scholar 

  • Richards DG, Wiley RH (1980) Reverberations and amplitude fluctuations in the propagation of sound in a forest: implications for animal communication. Am Nat 115(3):381–399

    Article  Google Scholar 

  • Ritschard M, Brumm H (2011) Effects of vocal learning, phonetics and inheritance on song amplitude in zebra finches. Anim Behav 82:1415–1422

    Article  Google Scholar 

  • Ryan MJ, Brenowitz EA (1985) The role of body size, phylogeny, and ambient noise in the evolution of bird song. Am Nat 126(1):87–100

    Article  Google Scholar 

  • Sandoval L, Dabelsteen T, Mennill DJ (2015) Transmission characteristics of solo songs and duets in a neotropical thicket habitat specialist bird. Bioacoustics 24(3):289–306

    Article  Google Scholar 

  • Searcy WA, Beecher MD (2009) Song as an aggressive signal in songbirds. Anim Behav 78:1281–1292

    Article  Google Scholar 

  • Searcy WA, Nowicki S (2006) Signal interception and use of soft song in aggressive interactions. Ethology 112:865–872

    Article  Google Scholar 

  • Searcy WA, Yasukawa K (2017) Eavesdropping and cue denial in avian acoustic signals. Anim Behav 124:273–282

    Article  Google Scholar 

  • Shannon G, McKenna MF, Angeloni LM, Crooks KR, Fristrup KM, Brown E, Warner KA, Nelson MD, White C, Briggs J, McFarland S, Wittemyer G (2016) A synthesis of two decades of research documenting the effects of noise on wildlife. Biol Rev 91:982–1005

    Article  PubMed  Google Scholar 

  • Slabbekoorn H, Ripmeester EAP (2008) Birdsong and anthropogenic noise: implications and applications for conservation. Mol Ecol 17:72–83

    Article  PubMed  Google Scholar 

  • Slabbekoorn H, Dooling RJ, Popper AR, Fay RR (eds) (2018) Effects of anthropogenic noise on animals. Springer, New York, p 309

    Google Scholar 

  • Snow DW (1958) A study of blackbirds. Allen and Unwin, London

    Google Scholar 

  • Srivastava KH, Elemans CPH, Sober SJ (2015) Multifunctional and context-dependent control of vocal acoustics by individual muscles. J Neurosci 35(42):14183–14194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Titus RC (1998) Short-range and long-range songs: use of two acoustically distinct song classes by dark-eyed juncos. Auk 115(2):386–393

    Article  Google Scholar 

  • Vargas-Castro LE (2015) Spatial pattern of syllable sharing in white-throated thrushes: implications for song learning and dispersal behaviours. Behaviour 152(6):775–795

    Article  Google Scholar 

  • Vargas-Castro LE, Sandoval L, Searcy WA (2017) Eavesdropping avoidance and sound propagation: the acoustic structure of soft song. Anim Behav 134:113–121

    Article  Google Scholar 

  • Wahlberg M, Larsen ON (2017) Propagation of sound. In: Brown CH, Riede T (eds) Comparative bioacoustics: an overview. Bentham Science, Sharjah, pp 63–121

    Google Scholar 

  • Ward S, Lampe HM, Slater PJB (2004) Singing is not energetically demanding for pied flycatchers, Ficedula hypoleuca. Behav Ecol 15(3):477–484

    Article  Google Scholar 

  • Weir JT, Wheatcroft DJ, Price TD (2012) The role of ecological constraint in driving the evolution of avian song frequency across a latitudinal gradient. Evolution 66:2773–2783

    Article  PubMed  Google Scholar 

  • Wiley RH (1991) Associations of song properties with habitats for territorial oscine birds of Eastern North-America. Am Nat 138:973–993

    Article  Google Scholar 

  • Wiley RH (2013) Signal detection, noise, and the evolution of communication. In: Brumm H (ed) Animal communication and noise, animal signals and communication, vol 2. Springer, Berlin, pp 7–30

    Chapter  Google Scholar 

  • Wiley RH, Richards DG (1978) Physical constraints on acoustic communication in the atmosphere: implications for the evolution of animal vocalizations. Behav Ecol Sociobiol 3:69–94

    Article  Google Scholar 

  • Wiley RH, Richards DG (1982) Adaptations for acoustic communication in birds: sound transmission and signal detection. In: Kroodsma DE, Miller EH (eds) Acoustic communication in birds. Academic, New York, pp 132–181

    Google Scholar 

  • Xia C, Liu J, Alström P, Wu Q, Zhang Y (2013) Is the soft song of the brownish-flanked bush warbler an aggressive signal? Ethology 119:653–661

    Article  Google Scholar 

  • Yang XJ, Ma XR, Slabbekoorn H (2014) Timing vocal behaviour: experimental evidence for song overlap avoidance in Eurasian wrens. Behav Process 103:84–90

    Article  Google Scholar 

  • Yorzinski JL, Patricelli GL (2010) Birds adjust acoustic directionality to beam their antipredator calls to predators and conspecifics. Proc R Soc B 277:923–932

    Article  PubMed  Google Scholar 

  • Zeng FG, Nie K, Stickney GS, Kong YY, Vongphoe M, Bhargave A, Wei C, Cao K (2005) Speech recognition with amplitude and frequency modulations. Proc Natl Acad Sci USA 102(7):2293–2298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zollinger SA, Brumm H (2015) Why birds sing loud songs and why they sometimes don’t. Anim Behav 105:289–295

    Article  Google Scholar 

  • Zollinger SA, Goller F, Brumm H (2011) Metabolic and respiratory costs of increasing song amplitude in zebra finches. PLoS One 6(9):e23198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zollinger SA, Podos J, Nemeth E, Goller F, Brumm H (2012) On the relationship between, and measurement of, amplitude and frequency in birdsong. Anim Behav 84(4):e1–e9

    Article  Google Scholar 

  • Zuk M, Kolluru GR (1998) Exploitation of sexual signals by predators and parasitoids. Q Rev Biol 73:415–438

    Article  Google Scholar 

Download references

Acknowledgments

I am grateful to the editors for inviting me to write this chapter and to Magnus Wahlberg for his comments to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ole Naesbye Larsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Larsen, O.N. (2020). To Shout or to Whisper? Strategies for Encoding Public and Private Information in Sound Signals. In: Aubin, T., Mathevon, N. (eds) Coding Strategies in Vertebrate Acoustic Communication. Animal Signals and Communication, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-030-39200-0_2

Download citation

Publish with us

Policies and ethics