Skip to main content

Bio-fertilizers: Eco-Friendly Approach for Plant and Soil Environment

  • Chapter
  • First Online:
Bioremediation and Biotechnology

Abstract

The bio-fertilizers have attained a huge attention in the crop lands due to improving harvest yields, decreasing the chemical fertilizers cost, and being less harmful to the environment. Bio-fertilizers could stimulate the growth of plant through either direct or indirect mechanisms. Three biochemical steps are involved in bio-fertilizer preparation that consist of breaking down of complex substances into simpler ones in anaerobic digestion process. Four main stages and three major bacterial groups can be considered in order to simplify this process. Bio-fertilizer can be applied into soil or in seed inoculants for multiple crop production and nutrient cycling. The conditioning property of bio-fertilizer increased the organic matter of the soil which improves soil structure and prevents soil erosion and desertification and increases soil water retention capacity. Therefore, application of bio-fertilizers may serve as low-cost and environment-friendly strategy for a sustainable crop production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adesemoye AO, Kloepper JW (2009) Plant–microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85:1–12

    Article  CAS  PubMed  Google Scholar 

  • Al Seadi T, Ruiz D, Prassl H, Kottner M, Finsterwaldes T, VolkeS JR (2008) Handbook of biogas. University of Southern Denmark, Esbjerg

    Google Scholar 

  • Alam S, Khalil S, Ayub N, Rashid M (2002) In vitro solubilization of inorganic phosphate by phosphate solubilizing microorganism (PSM) from maize rhizosphere. Int J Agric Biol 4:454–458

    CAS  Google Scholar 

  • Alloway BJ (2008) Zinc in soils and crop nutrition. International Zinc Association, Brussels

    Google Scholar 

  • Amutha AI (2011) The growth kinetics of Arachis Hypogaea L. Var. TMV-7 under the inoculation of biofertilizers with reference to physiological and biochemical studies. PHD thesis. Department of Botany and Research Centre Scott Christian College (Autonomous). Manonmaniam Sundaranar University, Nagercoil

    Google Scholar 

  • Ansari MW, Trivedi DK, Sahoo RK (2013) A critical review on fungi mediated plant responses with special emphasis to piriformospora indica on improved production and protection of crops. Plant Physiol Biochem 70:403–410

    Article  CAS  PubMed  Google Scholar 

  • Arun KS (2007) Bio-fertilizers for sustainable agriculture. Mechanism of P-solubilization, 6th edn. Agribios, Jodhpur, pp 196–197

    Google Scholar 

  • Aslanzadeh S (2014) Pretreatment of cellulosic waste and high rate biogas production. Doctoral thesis on resource recovery. University of Borås, Borås, pp 1–50

    Google Scholar 

  • Bakulin MK, Grudtsyna AS, Pletneva AY (2007) Biological fixation of nitrogen and growth of bacteria of the genus Azotobacter in liquid media in the presence of perfluorocarbons. Appl Microbiol Biotechnol 43:399–402

    CAS  Google Scholar 

  • Balogh B, JonesJB IF, Momol M (2010) Phage therapy for plant disease control. Curr Pharm Biotechnol 11:48–57

    Article  CAS  PubMed  Google Scholar 

  • Bashan Y, Carrillo A (1996) Bacterial inoculants for sustainable agriculture. In New horizons in agriculture: agroecology and sustainable development; J. Pérez-Moreno and R. Ferrera-Cerrato(eds.), pp. 125–155, Proceedings of the 2nd international symposium on agroecology, sustainable agriculture and education. San Luis Potosi, Mexico, 16-18.11.1994. Published by Colegio de Postgraduados en ciencias agricolas, Montecillo, Mexico

    Google Scholar 

  • Bashan Y, Levanony H (1990) Current status of Azospirillum inoculation technology: Azospirillum as a challenge for agriculture. Can J Microbiol 36:591–608

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G (1997) Azospirillum-plant relationships: environmental and physiological advances (1990–1996). Can J Microbiol 43:103–121

    Article  CAS  Google Scholar 

  • Bertrand H, Plassard C, Pinochet X, ToraineB NP (2000) Stimulation of the ionic transport system in Brassica napus by a plant growth-promoting rhizobacterium. Can J Microbiol 46:229–236

    Article  CAS  PubMed  Google Scholar 

  • Bevivino A, Sarrocco S, Dalmastri C, Tabacchioni S, Cantale C, Chiarini L (1998) Characterization of a free-living maize-rhizosphere population of Burkholderia cepacia: eject of seed treatment on disease suppression and growth promotion of maize. FEMS Microbiol Ecol 27:225–237

    Article  CAS  Google Scholar 

  • Bezdicek DF, Evans DW, Abeda B, Witters RE (1978) Evaluation of peat and granular inoculum for soybean yield and N2 fixation under irrigation. Agron 70:865–868

    Article  Google Scholar 

  • Bhat M, Yadav S, Ali T, Bangroo S (2010) Combined effects of rhizobium and vesicular arbuscular fungi on green gram (Vigna radiata L.) under temperate conditions. Indian J Ecol 37:157–161

    Google Scholar 

  • Bhat RA, Dervash MA, Mehmood MA, Bhat MS, Rashid A, Bhat JIA, Singh DV, Lone R (2017) Mycorrhizae: a sustainable industry for plant and soil environment. In: Varma A et al (eds) Mycorrhiza-nutrient uptake, biocontrol, Ecorestoration. Springer International, Berlin, pp 473–502

    Chapter  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiotechnol 28:1327–1350

    Article  CAS  Google Scholar 

  • Bhatti AA, Haq S, Bhat RA (2017) Actinomycetes benefaction role in soil and plant health. Microb Pathog 111:458–467

    Article  CAS  PubMed  Google Scholar 

  • Bhowmik SN, Das A (2018) Biofertilizers: a sustainable approach for pulse production. In: Legumes for soil health and sustainable management. Springer, Singapore, pp 445–485

    Chapter  Google Scholar 

  • Bloemberg GV, Wijfijes AHM, GEM L, Stuurman N, Lugtenberg BJJ (2000) Simultaneous imaging of Pseudomonas fluorescens WCS 3655 populations expressing three different autofluorescent proteins in rhizosphere: new perspective for studying microbial communities. Mol Plant Microb Int 13:1170–1176

    Article  CAS  Google Scholar 

  • Bordeleau LM, Prevost D (1981) Quality of commercial legume inoculants in Canada. In Proceeding of the 8th North American Rhizobium Conference, K.W. Clark and J.H.G. Stephens (eds.), pp. 562–565, University of Manitoba, Winnipeg, Canada

    Google Scholar 

  • Braber K (1995) Anaerobic digestion of municipal solid waste: a modern waste disposal option on the verge of breakthrough. Biomass Bioenergy 9:365–376

    Article  CAS  Google Scholar 

  • Brar SK, Sarma SJ, Chaabouni E (2012) Shelf-life of biofertilizers: an accord between formulations and genetics. J Biofertil Biopestic 3:109

    Article  Google Scholar 

  • Brockwell J (1977) Application of legume seed inoculants. In A Treatise on Dinitrogen Fixation, ed. R. W. F. Hardy & A. H. Gibson. John Wiley and Sons, New York, Section IV, pp. 277–310

    Google Scholar 

  • Brockwell J (1980) Experiments with crop and pasture legumes—principles and practice. In Methods for Evaluating Biological Nitrogen Fixation. Ed F J Bergersen, pp 417–488, Wiley, Chichester, U.K.

    Google Scholar 

  • Chandra R, Takeuchi H, Hasegawa T (2012) Methane production from lignocellulosic agricultural crop wastes: a review in context to second generation of biofuel production. Renew Sustain Energy Rev 16:1462–1476

    Article  CAS  Google Scholar 

  • Chang CH, Yang SS (2009) Thermotolerant phosphate solubilizing microbes for multifunctional bio-fertilizer preparation. Biorese Technol 100:1648–1658

    Article  CAS  Google Scholar 

  • Chowdhury A, Mukherjee P (2006) Biofertilizers. Newslett, ENVIS Centre Environ Biotechnol. 9:2–7

    Google Scholar 

  • Christy PM, Gopinath LR, Divya D (2014) A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. Renew Sust Energ Rev 34:167–173

    Article  CAS  Google Scholar 

  • Chun-Li W, Shiuan-Yuh C, Chiu-Chung Y(2014) Present situation and future perspective of bio-fertilizer for environmentally friendly agriculture. Annu Rep 1–5

    Google Scholar 

  • DalCorso G, Manara A, Furini A (2013) An overview of heavy metal challenge in plants: from roots to shoots. Metallomics 5:1117–1132

    Article  CAS  PubMed  Google Scholar 

  • Dorahy CG, Rochester IJ, Blair GJ (2005) Response of field-grown cotton (Gossypium hirsutum L.) to phosphorus fertilisation on alkaline soils in eastern Australia. Soil Res 42:913–920

    Article  Google Scholar 

  • Duponnois R, Kisa M, Plenchette C (2006) Phosphate solubilizing potential of the nemato fungus Arthrobotrys oligospora. J Plant Nutr Soil Sci 169:280–282

    Article  CAS  Google Scholar 

  • El-Komy HMA (2005) Co-immobilization of A. lipoferum and B. megaterium for plant nutrition. Food Technol Biotech 43:19–27

    Google Scholar 

  • Ezigbo U (2005) Studies on the production of biogas from droppings and cow dung. Unpublished B.Sc. Thesis. Department of Botany, University of Jos, pp 110–26

    Google Scholar 

  • Frampton RA, Pitman AR, Fineran PC (2012) Advances in bacteriophage-mediated control of plant pathogens. Int J Microbiol 326–452

    Google Scholar 

  • Gage DJ (2004) Infection and invasion of roots by symbiotic, nitrogen- fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev 68:280–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganz T (2013) Systemic iron homeostasis. Physiol Rev 93:1721–1741

    Article  CAS  PubMed  Google Scholar 

  • Gerardi MH (2003) The microbiology of anaerobic digesters. Wiley, Hoboken, pp 89–92

    Book  Google Scholar 

  • Gothwal RK, Nigam VK, Mohan MK, Sasmal D, Ghosh P (2007) Screening of nitrogen fixers from rhizospheric bacterial isolates associated with important desert plants. Appl Ecol Environ Res 6:101–109

    Article  Google Scholar 

  • Gupta AK (2004) The complete technology book on biofertilizer and organic farming. National Institute of Industrial Research Press, Delhi, pp 242–253

    Google Scholar 

  • Halim NA (2009) Effects of using enhanced bio-fertilizer containing N-fixer bacteria on patchouli growth. Thesis. Faculty of Chemical & Natural Resources Engineering, University Malaysia, Pahang. 145, 42, pp 913–920

    Google Scholar 

  • Hari M, Perumal K (2010) Booklet on bio-fertilizer (phosphabacteria). Shri Annm Murugapa Chettiar Research Centre, Chennai, pp 1–6

    Google Scholar 

  • Jalilian J, Modarres-Sanavy SAM, Saberali SF, Sadat-Asilan K (2012) Effects of the combination of beneficial microbes and nitrogen on sunflower seed yields and seed quality traits under different irrigation regimes. Field Crop Res 127:26–34

    Article  Google Scholar 

  • Ju I, Wj B, Md S, Ia O, Oj E (2018) A review: biofertilizer—a key player in enhancing soil fertility and crop productivity. J Microbiol Biotechnol Rep 2(2)

    Google Scholar 

  • Kannaiyan S (2002) Biofertilizers for sustainable crop production. Biotechnology of biofertilizers. Narosa, New Delhi, p 377

    Google Scholar 

  • Khan RU, Rashid A, Khan MS, Ozturk E (2010) Impact of humic acid and chemical fertilizer application on growth and grain yield of rainfed wheat (Triticum aestivum L.). Pak J Agric Res 1:23

    Google Scholar 

  • Khanday M, Bhat RA, Haq S, Dervash MA, Bhatti AA, Nissa M, Mir MR (2016) Arbuscular mycorrhizal fungi boon for plant nutrition and soil health. In: Hakeem KR, Akhtar J, Sabir M (eds) Soil science: agricultural and environmental prospectives. Springer International, Berlin, pp 317–332

    Chapter  Google Scholar 

  • Khosro M (2012) Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. Resour Environ 2:80–85

    Google Scholar 

  • Khosro M, Yousef S (2012) Bacterial bio-fertilizers for sustainable crop production: a review. APRN J Agric Biol Sci 7:237–308

    Google Scholar 

  • Kim MD, Song M, Jo M, Shin SG, Khim JH, Hwang S (2010) Growth condition and bacterial community for maximum hydrolysis of suspended organic materials in anaerobic digestion of food waste-recycling wastewater. Appl Microbiol Biotechnol 85:1611–1618

    Article  CAS  PubMed  Google Scholar 

  • Kribacho (2010) Fertilizer ratios, Krishak and Bharati Cooperative Ltd. J Sci 5:7–12

    Google Scholar 

  • Kundan R, Pant G, Jadon N, Agrawal PK (2015) Plant growth promoting rhizobacteria: mechanism and current prospective. J Fertil Pestic 6:1–9

    Article  Google Scholar 

  • Lettinga G (1995) Anaerobic digestion and wastewater treatment systems. Antonie Van Leeuwenhoek 67:3–28

    Article  CAS  PubMed  Google Scholar 

  • Mahdi SS, Hassan GI, Samoon SA, Rather HA, Dar SA, Zehra B (2010a) Bio-fertilizers in organic agriculture. J Phytology 2:42–54

    Google Scholar 

  • Mahdi SS, Dar SA, Ahmad S, Hassan GI (2010b) Zinc availability—a major issue in agriculture. Res J Agric Sci 3:78–79

    Google Scholar 

  • Mittal V, Singh O, Nayyar H, Kaur J, Tewari R (2008) Stimulatory effect of phosphate-solubilizing fungal strains (Aspergillus awamori and Penicillium citrinum) on the yield of chickpea (Cicer arietinum L. cv. GPF2). Soil Biol Biochemi 40:718–727

    Article  CAS  Google Scholar 

  • Nobbe F, Hiltner L (1986) Inoculation of the soil for cultivating leguminous plants. US Patent. 570813

    Google Scholar 

  • Olanrewaju OS, Glick BR, Babalola OO (2017) Mechanisms of action of plant growth promoting bacteria. World J Microbiol Biotechnol 33:197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ponsá S, Ferrer I, Vázquez F, Font X (2008) Optimization of the hydrolytic–acidogenic anaerobic digestion stage (55 C) of sewage sludge: influence of pH and solid content. Water Res 42:3972–3980

    Article  PubMed  CAS  Google Scholar 

  • Rafiq MA, Ali A, Malik MA, Hussain M (2010) Effect of fertilizer levels and plant densities on yield and protein contents of autumn planted maize. Pak J Agric Sci 47:201–208

    Google Scholar 

  • Raghu K, Macrae IC (2000) Occurrence of phosphate-dissolving microorganisms in the rhizosphere of rice plants and in submerged soils. J Appl Bacteriol 29:582–586

    Article  Google Scholar 

  • Riaz U, Murtaza G, Farooq M (2018) Influence of different sewage sludges and composts on growth, yield, and trace elements accumulation in rice and wheat. Land Degrad Dev 29: 1343–1352

    Article  Google Scholar 

  • Raj SA (2007) Bio-fertilizers for micronutrients. Biofert Newslet (July), pp 8–10

    Google Scholar 

  • Rana R, Ramesh KP (2013) Biofertilizers and their role in agriculture. Pop Kheti 1:56–61

    Google Scholar 

  • Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  PubMed  Google Scholar 

  • Sadhana B (2014) Arbuscular mycorrhizal fungi (AMF) as a biofertilizer—a review. Int J Curr Microbiol App Sci 3:384–400

    Google Scholar 

  • Saha R, Saha N, Donofrio RS, Bestervelt LL (2013) Microbial siderophores: a mini review. J Basic Microbiol 53:303–317

    Article  PubMed  Google Scholar 

  • Santos VB, Araujo SF, Leite LF (2012) Soil microbial biomass and organic matter fractions during transition from conventional to organic farming systems. Geoderma 170:227–231

    Article  CAS  Google Scholar 

  • Sawers RJH, Gutjahr C, Paszkowski U (2008) Cereal mycorrhiza: an ancient symbiosis in modern agriculture. Trends Plant Sci 13:93–97

    Article  CAS  PubMed  Google Scholar 

  • Schnurer A, Jarvis A (2009) Microbiological handbook for biogas plant. Swedish Waste Management, Swedish Gas Centre, Malmö, pp 1–74

    Google Scholar 

  • Sharma S, Kumar V, Tripathi RB (2017) Isolation of phosphate solubilizing microorganism (PSMs) from soil. J Microbiol Biotechnol Res 1:90–95

    Google Scholar 

  • Singh M, Kumar N, Kumar S, Lal M (2015) Effect of co-inoculation of B. japonicum, psb and a fungi on microbial biomass carbon, nutrient uptake and yield of soybean (Glycine max L. Merril), pp 14–18

    Google Scholar 

  • Smith R (1992) Legume inoculant formulation and application. Can J Microbiol 38:485–492

    Article  Google Scholar 

  • Sofi NA, Bhat RA, Rashid A, Mir NA, Mir SA, Lone R (2017) Rhizosphere mycorrhizae communities an input for organic agriculture. In: Varma A et al (eds) Mycorrhiza-nutrient uptake, biocontrol, ecorestoration. Springer International, Berlin, pp 387–413

    Chapter  Google Scholar 

  • Somani LL (n.d.) Biofertilizer: commercial production technology & quality control. www.agriinfo.in

  • Subba RNS (2001) An appraisal of biofertilizers in India. In: Kannaiyan S (ed) The biotechnology of biofertilizers. Narosa, New Delhi. (in press)

    Google Scholar 

  • Subbarao NS (1988) Phosphate solubilizing microorganism. In: biofertilizer in agriculture and forestry. Regional Biofert. Dev. Centre, Hissar, pp 133–142

    Google Scholar 

  • Swathi V (2010) The use and benefits of bio-fertilizer and biochar on agricultural soils” unpublished B.Sc. Doctoral dissertation, Thesis, Department of Chemical and Biological Engineering, Chalmers University of Technology, Goteborg, Sweden

    Google Scholar 

  • Vance CP (2001) Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol 127:390–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandevivere P, De Baere L, Verstraete W (2003) Types of anaerobic digesters for solid wastes. In: Biomethanization of the organic fraction of municipal solid wastes. IWA, London

    Google Scholar 

  • Vessey JK (2003) Plant growth promoting Rhizobacteria as bio-fertilizers. J Plant Soil 225:571–586

    Article  Google Scholar 

  • Yadav KK, Sarkar S (2019) Biofertilizers, impact on soil fertility and crop productivity under sustainable agriculture. Environ Ecol 37:89–93

    Google Scholar 

  • Youssef MMA, Eissa MFM (2014) Biofertilizers and their role in management of plant parasitic nematodes. A review. J Biotechnol Pharm Res 5:1–6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Riaz, U. et al. (2020). Bio-fertilizers: Eco-Friendly Approach for Plant and Soil Environment. In: Hakeem, K., Bhat, R., Qadri, H. (eds) Bioremediation and Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-35691-0_9

Download citation

Publish with us

Policies and ethics