Skip to main content

Inoculum Addition in the Presence of Plant Rhizosphere for Petroleum-Polluted Soil Remediation

  • Chapter
  • First Online:
Bioremediation and Biotechnology

Abstract

Breakdown of the crude oil contaminant by soil microbial community in the bioremediation can be enhanced in the presence of plant rhizosphere, but plant cannot grow and tolerate the high concentration of hydrocarbon. Composting of the crude oil-contaminated soil was found to be an effective technology to decrease the pollutant concentration to the acceptable level for plant growth. Phytoremediation with native plants followed with composting can be performed well, but the microbial abundance in the contaminated soil usually becomes much low as time passes. In order to enhance the degradation potential of heterotrophic microorganisms in bioremediation, different bioaugmentation techniques are used, while few researches also used plant rhizosphere along with it, but the results are ambiguous. The present chapter will explore this ambiguity by providing the complete description about the bioremediation and the facts that plant rhizosphere selects microbial community, which is more suitable for pollutant degradation than addition of microbial culture in soil. Rhizodegradation followed with composting is found to be a useful treatment method for extremely polluted soil, and bioaugmentation with immobilized and free bacterial culture was found more effective without plant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baek KH, Kim HS, Oh HM, Yoon BD, Kim J, Lee IS (2004) Effects of crude oil, oil components, and bioremediation on plant growth. J Environ Sci Health 39:2465–2472

    Article  CAS  Google Scholar 

  • Banks MK, Schwab P, Liu B, Kulakow PA, Smith JS, Kim R (2003) The effect of plants on the degradation and toxicity of petroleum contaminants in soil: a field assessment. Adv Biochem Eng Biotechnol 78:75–97

    CAS  PubMed  Google Scholar 

  • Bazot S, Lebeau T (2009) Effect of immobilization of a bacterial consortium on diuron dissipation and community dynamics. Bioresour Technol 100:4257–4261

    Article  CAS  PubMed  Google Scholar 

  • Bento FM, Camargo FAO, Okeke BC, Frankenberger WT (2005) Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresour Technol 96:1049–1055

    Article  CAS  PubMed  Google Scholar 

  • Bhatti AA, Haq S, Bhat RA (2017) Actinomycetes benefaction role in soil and plant health. Microb Pathog 111:458–467

    Article  CAS  PubMed  Google Scholar 

  • Burken JG (2004) Uptake and metabolism of organic compounds: green-liver model. In: McCutcheon SD, Schnoor JL (eds) Phytoremediation. Wiley, New York, pp 59–84

    Google Scholar 

  • Cai Z, Zhou Q, Peng S, Kenan L (2010) Promoted biodegradation and microbiological effects of petroleum hydrocarbons by Impatiens balsamina L. with strong endurance. J Hazard Mater 183:731–737

    Article  CAS  PubMed  Google Scholar 

  • Cunningham CJ, Ivshina IB, Lozinsky VI, Kuyukina MS, Philp JC (2004) Bioremediation of diesel-contaminated soil by microorganisms immobilised in polyvinyl alcohol. Int J Biodeterior Biodegrad 54:167–174

    Article  CAS  Google Scholar 

  • Dan S, Pei-jun L, Stagnitt F, Xian-he X (2006) Biodegradation of benzo[a]pyrene in soil by Mucor sp. SF06, and Bacillus sp. SB02 co-immobilized on vermiculite. J Environ Sci 18:204–1209

    Google Scholar 

  • Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011:941810. https://doi.org/10.4061/2011/941810

    Article  CAS  PubMed  Google Scholar 

  • Dongmei G, Ying X, Maqbool F, Zhenhua X (2011) Bio-treatment of Hydrocarbon Polluted Soil with Agriculture Residues, Energy Procedia 5:1558–1562

    Article  CAS  Google Scholar 

  • Donnelly PK, Hegde RS, Fletcher JS (1994) Growth of PCB-degrading bacteria on compounds from photosynthetic plants. Chemosphere 28:981–988

    Article  Google Scholar 

  • Fang C, Radosevich M, Fuhrmann JJ (2001) Atrazine and phenanthrene degradation in grass rhizosphere soil. Soil Biol Biochem 33:671–678

    Article  CAS  Google Scholar 

  • Farhana M, Ying X, Zhao J, Wang Z, Gao D, Zhao Y-G et al (2012) Rhizodegradation of petroleum hydrocarbons by Sesbania cannabina in bioaugmented soil with free and immobilized consortium. J Hazard Mater 237-238:262–269

    Article  CAS  Google Scholar 

  • Frick C, Farrell R, Germida J (1999) Assessment of phytoremediation as an in-situ technique for cleaning oil-contaminated sites. Calgary Petroleum Technology Alliance of Canada (PTAC), Calgary

    Google Scholar 

  • Gerardi M (2016) Wastewater bioaugmentation and biostimulation. In: Chapter 2: Bioaugmentation. DEStech, Lancaster

    Google Scholar 

  • Gonzalez EC, Rojas-Avelizapa LI, Cruz-Camarillo R, Rojas-Avelizapa NG (2005) Chapter 1, effect of bacteria augmentation on aromatic and asphaltenic fraction removal in solid culture. In: Contaminated soils, sediments & water. Springer, Berlin, pp 1–11

    Google Scholar 

  • Guiot SR, Tawfiki-Hajji K, Lépine F (2000) Immobilization strategies for bioaugmentation of anaerobic reactors treating phenolic compounds. Water Sci Technol 42:245–250

    Article  CAS  Google Scholar 

  • Herwijnen R, Joffe B, Ryngaert A, Hausner M, Springael D, Govers HA et al (2006) Effect of bioaugmentation and supplementary carbon sources on degradation of polycyclic aromatic hydrocarbons by a soil-derived culture. FEMS Microbiol Ecol 55:122–135

    Article  PubMed  CAS  Google Scholar 

  • Hosokawa R, Nagai M, Morikawa M, Okuyama H (2009) Autochthonous bioaugmentation and its possible application to oil spills. World J Microbiol Biotechnol 25:1519–1528

    Article  CAS  Google Scholar 

  • Hussein EI (2006) In: investigation into the mechanism(s) which permit the high-rate degradation of PAHS….Thesis. Department of Biology, Georgia State University, Atlanta

    Google Scholar 

  • ITRC (Interstate Technology and Regulatory Council) (2009) Phytotechnology technical and regulatory guidance and decision trees, revised. Phyto-3, Washington, DC

    Google Scholar 

  • Jeˇızeˇıquel K, Lebeau T (2008) Soil bioaugmentation by free and immobilized bacteria to reduce potentially phytoavailable cadmium. Bioresour Technol 99:690–698

    Article  CAS  Google Scholar 

  • Jha P, Panwar J, Jha PN (2015) Secondary plant metabolites and root exudates: guiding tools for polychlorinated biphenyl biodegradation. Int J Environ Sci Technol 12:789–802

    Article  CAS  Google Scholar 

  • Jørgensen KS, Puustinen J, Suortti AM (2000) Bioremediation of petroleum hydrocarbon-contaminated soil by composting in biopiles. Environ Pollut 107:245–254

    Article  PubMed  Google Scholar 

  • Kastner M, Jammali MB, Mahro B (1998) Impact of inoculation protocols, salinity, and pH on the degradation of polycyclic aromatic hydrocarbons (PAHs) and survival of PAH-degrading bacteria introduced into soil. Appl Environ Microbiol 64:359–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kästner M, Miltner A. (2016) Application of compost for effective bioremediation of organic contaminants and pollutants in soil, Appl Microbiol Biotechnol 100:3433–3449

    Article  PubMed  CAS  Google Scholar 

  • Kirk JL, Klironomos JN, Lee H, Trevors JT (2005) The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil. Environ Pollut 133:455–465

    Article  CAS  PubMed  Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant Microbe Interact 17:6–15

    Article  CAS  PubMed  Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54:305–315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leenen EJTM, Dos Santos VAP, Grolle KCF, Tramper J, Wijffels R (1996) Characteristics of and selection criteria for support materials for cell immobilization in wastewater treatment. Water Res 30:2985–2996

    Article  CAS  Google Scholar 

  • Ma B, He Y, Chen H, Xu JM, Rengel Z (2010) Dissipation of polycyclic aromatic hydrocarbons (PAHs) in the rhizosphere: synthesis through meta-analysis. Environ Pollut 158:855–861

    Article  CAS  PubMed  Google Scholar 

  • Mackova M, Dowling D, Macek T (2006) Phytoremediation rhizoremediation. In: Leigh MB (ed) Methods for rhizoremediation research: approaches to experimental design and microbial analysis. Springer, Berlin, pp 33–55

    Chapter  Google Scholar 

  • Martin-Gil J, Navas-Gracias L, Gomez-Sobrino E, Correa-Guimaraes A, Hernandez-Navarro S, Sanchez-Bascones M et al (2008) Composting and vermicomposting experiences in the treatment and bioconversion of asphaltenes from the prestige oil spill. Bioresour Technol 99:1821–1829

    Article  CAS  PubMed  Google Scholar 

  • Merkl N, Schultze-Kraft R, Infante C (2004) Phytoremediation of petroleum-contaminated soils in the tropics-pre-selection of plant species from eastern Venezuela. J Appl Bot Food Qual 78:185–192

    Google Scholar 

  • Mikkelsen A, Elgsaeter A (1995) Density distribution of calcium-induced alginate gels. A numerical study. Biopolymers 36:17–41

    Article  CAS  Google Scholar 

  • Mishra S, Jyot J, Kuhad RC, Lal B (2001) Evaluation of inoculum addition to stimulate in situ bioremediation of oily-sludge-contaminated soil. Appl Environ Microbiol 67:1675–1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nenadovic S, Nenadovic M, Kovacevic R, Matović L, Matović B, Jovanovic Z et al (2009) Influence of diatomite microstructure on its adsorption capacity for Pb (II). Sci Sinter 41:309–317

    Article  CAS  Google Scholar 

  • Odokuma LO, Dickson AA (2003) Bioremediation of a crude oil polluted tropical rain forest soil. Glob J Environ Sci 2:29–40

    CAS  Google Scholar 

  • Partovinia A, Rasekh B (2018) Review of the immobilized microbial cell systems for bioremediation of petroleum hydrocarbons polluted environments. Crit Rev Environ Sci Technol 48:1–38

    Article  CAS  Google Scholar 

  • Peng S, Zhou Q, Cai Z, Zhang Z (2009) Phytoremediation of petroleum contaminated soils by Mirabilis Jalapa L. in a greenhouse plot experiment. J Hazard Mater 168:1490–1496

    Article  CAS  PubMed  Google Scholar 

  • Phillips LA, Greer CW, Farrell RE, Germida JJ (2012) Plant root exudates impact the hydrocarbon degradation potential of a weathered-hydrocarbon contaminated soil. Appl Soil Ecol 52:56–64

    Article  Google Scholar 

  • Rahman KSM, Banat IM, Thahira J, Thayumanavan T, Lakshmanaperumalsamy P (2002) Bioremediation of gasoline contaminated soil by a bacterial consortium amended with poultry litter, coir pith and rhamnolipid biosurfactant. Bioresour Technol 81:25–32

    Article  CAS  PubMed  Google Scholar 

  • Ramos JL, Duque E, Van Dillewjin P, Daniels C, Krell T, Espinosa-Urgel M et al (2010) Removal of hydrocarbons and other related chemicals via the rhizosphere of plants. In: Timmis KN (ed) Handbook of Hydrocarbon and Lipid Microbiology, pp 2575–2581

    Chapter  Google Scholar 

  • Robson D, Knight D, Farrell R (2003) Ability of cold-tolerant plants to grow in hydrocarbon-contaminated soil. Int J Phytoremediation 5:105–123

    Article  CAS  PubMed  Google Scholar 

  • Singer AC, Crowley DE, Thompson IP (2003) Secondary plant metabolites in phytoremediation and biotransformation. Trends Biotechnol 21:123–130

    Article  CAS  PubMed  Google Scholar 

  • Siripattanakul S, Wirojanagud W, McEvoy J, Eakalak K (2008) Effect of cell-to-matrix ratio in polyvinyl alcohol immobilized pure and mixed cultures on atrazine degradation. Wat Air Soil Pollut Focus 8:257–266

    Article  CAS  Google Scholar 

  • Tang J, Wang R, Niu X, Zhou Q (2010) Enhancement of soil petroleum remediation by using a combination of ryegrass (Lolium perenne) and different microorganisms. Soil Till Res 110:87–93

    Article  Google Scholar 

  • Thangarajan R, Adetutu EM, Moore BR, Ogunbanwo ST, Ball AS (2011) Comparison between different bio-treatments of a hydrocarbon contaminated soil from a landfill site. Afr J Biotechnol 10:15151–15162

    Article  CAS  Google Scholar 

  • Trevors JT, Kuikman P, Van Elsas JD (1994) Release of bacteria into soil: cell numbers and distribution. Review article. J Microbiol Methods 19:247–259

    Article  Google Scholar 

  • Trevors JT, van Elsas JD, Lee H, Wolters AC (1993) Survival of alginate-encapsulated Pseudomonas fluorescens cells in soil. Appl Microbiol Biotechnol 39:637–643

    Article  Google Scholar 

  • Ueno A, Ito Y, Yumoto I, Okuyama H (2007) Isolation and characterization of bacteria from soil contaminated with diesel oil and the possible use of these in autochthonous bioaugmentation. World J Microbiol Biotechnol 23:1739–1745

    Article  CAS  PubMed  Google Scholar 

  • Van Gestel K, Mergaert J, Swings J, Coosemans J, Ryckeboer J (2003) Bioremediation of diesel oil-contaminated soil by composting with biowaste. Environ Pollut 125:361–368

    Article  PubMed  CAS  Google Scholar 

  • Vogel TM, Walter MV (2001) Bioaugmentation. In: Hurst CJ, Crawford RL, Garland JL et al (eds) Manual of environmental microbiology. American Society for Microbiology, Washington, DC, pp 952–959

    Google Scholar 

  • Wang ZY, Xu Y, Wang HY, Zhao J, Gao DM, Li FM, Xing B (2012) Biodegradation of crude oil in contaminated soils by free and immobilized microorganisms. Pedosphere 22:717–725

    Article  Google Scholar 

  • Wang ZY, Xu Y, Zhao J, Fengmin L, Dongmei G, Baoshan X (2011) Remediation of petroleum contaminated soils through composting and rhizosphere degradation. J Hazard Mater 190:677–685

    Article  CAS  PubMed  Google Scholar 

  • Wilson NG, Bradley G (1996) Enhanced degradation of petrol (Slovene diesel) in an aqueous system by immobilized Pseudomonas fluorescens. J Appl Bacteriol 80:99–104

    Article  CAS  Google Scholar 

  • Yañez-Ocampo G, Sanchez-Salinas E, Jimenez-Tobon GA, Penninckx M, Ortiz-Hernández ML (2009) Removal of two organophosphate pesticides by a bacterial consortium immobilized in alginate or tezontle. J Hazard Mater 168:1554–1561

    Article  PubMed  CAS  Google Scholar 

  • Yu KSH, Wong AHY, Yau KWY, Wong YS, Tam NFY (2005) Natural attenuation, biostimulation and bioaugmentation on biodegradation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments. Mar Pollut Bull 51:1071–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zawierucha I, Malina G (2011) Bioremediation of contaminated soils: effects of bioaugmentation and biostimulation on enhancing biodegradation of oil hydrocarbons. In: Singh A, Parmar N, Kuhad R (eds) Bioaugmentation, biostimulation and biocontrol. Soil biology: 108. Springer, Berlin, pp 187–201

    Chapter  Google Scholar 

  • Zhang K, Xu Y, Hua X, Han H, Wang J, Wang J et al (2008) An intensified degradation of phenanthrene with macroporous alginate–lignin beads immobilized Phanerochaete chrysosporium. Biochem Eng J 41:251–257

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by the Education Ministry of China (project 308016) and national program concerning water pollution control and management, China (2009ZX07010-008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhana Maqbool .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maqbool, F. et al. (2020). Inoculum Addition in the Presence of Plant Rhizosphere for Petroleum-Polluted Soil Remediation. In: Hakeem, K., Bhat, R., Qadri, H. (eds) Bioremediation and Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-35691-0_7

Download citation

Publish with us

Policies and ethics