Skip to main content

Microbial Biofilm Cell Systems for Remediation of Wastewaters

  • Chapter
  • First Online:
Bioremediation and Biotechnology

Abstract

Water resources are gradually decreasing and most of water is polluted by different pollutants from household, agricultural and industrial sources. Previously, the main focus of bioremediation treatment technologies was on the use of free microbial cells. Recently, immobilized microbial cells for the bioremediation of pollutants from wastewater have gained immense interest. Microbial biofilms are microbial cells attached on a surface via polymeric substances (extracellular polymeric substances). The main aim of this chapter is to present the role of immobilized microbial cell systems in bioremediation of different pollutants. Microbial cell immobilization methods are being employed to control various recalcitrant pollutants from wastewater, and the tendency of this interesting area is expected to increase in the future. Here, an attempt is made to discuss microbial biofilms and immobilization of microbial cells. Moreover, developments of immobilized cells are highlighted, and different immobilization support materials are discussed in reference to wastewater bioremediation. Also, the applications of immobilized microbial cells in different areas are demonstrated. Finally, brief conclusions and future research outlooks in the area of microbial biofilm cell systems for bioremediation of pollutants are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed YM, Al-Mamun A, Al Khatib MFR, Jameel AT, AlSaadi MAHAR (2015) Efficient lead sorption from wastewater by carbon nanofibers. Environ Chem Lett 13(3):341–346

    Article  CAS  Google Scholar 

  • Bayat Z, Hassanshahian M, Cappello S (2015) Immobilization of microbes for bioremediation of crude oil polluted environments: a mini review. Open Microbiol J 9:48

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhat RA, Shafiq-ur-Rehman, Mehmood MA, Dervash MA, Mushtaq N, Bhat JIA, Dar GH (2017) Current status of nutrient load in Dal Lake of Kashmir Himalaya. J Pharma Phytochem 6(6):165–169

    CAS  Google Scholar 

  • Bleve G, Lezzi C, Chiriatti M, D’Ostuni I, Tristezza M, Di Venere D, Sergio L, Mita G, Grieco F (2011) Selection of non-conventional yeasts and their use in immobilized form for the bioremediation of olive oil mill wastewaters. Bioresour Technol 102(2):982–989

    Article  CAS  PubMed  Google Scholar 

  • Buque EM, Chin-Joe I, Straathof AJ, Jongejan JA, Heijnen JJ (2002) Immobilization affects the rate and enantioselectivity of 3-oxo ester reduction by baker’s yeast. Enzym Microb Technol 31(5):656–664

    Article  CAS  Google Scholar 

  • Cesaro A, Naddeo V, Belgiorno V (2013) Wastewater treatment by combination of advanced oxidation processes and conventional biological systems. J Bioremed Biodegrad 4(8):1–8

    Google Scholar 

  • Couto SR (2009) Dye removal by immobilised fungi. Biotechnol Adv 27(3):227–235

    Article  CAS  Google Scholar 

  • Ereqat SI, Abdelkader AA, Nasereddin AF, Al-Jawabreh AO, Zaid TM, Letnik I, Abdeen ZA (2018) Isolation and characterization of phenol degrading bacterium strain Bacillus thuringiensis J20 from olive waste in Palestine. J Environ Sci Health A 53(1):39–45

    Article  CAS  Google Scholar 

  • Erkaya IA, Arica MY, Akbulut A, Bayramoglu G (2014) Biosorption of uranium (VI) by free and entrapped Chlamydomonas reinhardtii: kinetic, equilibrium and thermodynamic studies. J Radioanal Nucl Chem 299(3):1993–2003

    Article  CAS  Google Scholar 

  • Eroglu E, Agarwal V, Bradshaw M, Chen X, Smith SM, Raston CL, Iyer KS (2012) Nitrate removal from liquid effluents using microalgae immobilized on chitosan nanofiber mats. Green Chem 14(10):2682–2685

    Article  CAS  Google Scholar 

  • Groboillot A, Boadi D, Poncelet D, Neufeld R (1994) Immobilization of cells for application in the food industry. Crit Rev Biotechnol 14(2):75–107

    Article  CAS  PubMed  Google Scholar 

  • Gumpu MB, Sethuraman S, Krishnan UM, Rayappan JBB (2015) A review on detection of heavy metal ions in water–an electrochemical approach. Sensors Actuators B Chem 213:515–533

    Article  CAS  Google Scholar 

  • Gupta A, Balomajumder C (2015) Simultaneous removal of Cr (VI) and phenol from binary solution using Bacillus sp. immobilized onto tea waste biomass. J Water Process Eng 6:1–10

    Article  Google Scholar 

  • Hameed BB, Ismail ZZ (2018) Decolorization, biodegradation and detoxification of reactive red azo dye using non-adapted immobilized mixed cells. Biochem Eng J 137:71–77

    Article  CAS  Google Scholar 

  • Hartmann M (2005) Ordered mesoporous materials for bioadsorption and biocatalysis. Chem Mater 17(18):4577–4593

    Article  CAS  Google Scholar 

  • Hartmeier W (2012) Immobilized biocatalysts: an introduction. Springer Science & Business Media, Berlin

    Google Scholar 

  • Hou J, Dong G, Ye Y, Chen V (2014) Laccase immobilization on titania nanoparticles and titania-functionalized membranes. J Membr Sci 452:229–240

    Article  CAS  Google Scholar 

  • Ismail ZZ, Khudhair HA (2015) Recycling of immobilized cells for aerobic biodegradation of phenol in a fluidized bed bioreactor. Syst Cyber Informat 13(5):81–86

    Google Scholar 

  • Ispas C, Sokolov I, Andreescu S (2009) Enzyme-functionalized mesoporous silica for bioanalytical applications. Anal Bioanal Chem 393(2):543–554

    Article  CAS  PubMed  Google Scholar 

  • Jencarova J, Luptakova A (2017) The application of biogenically created sorbent for metal ions elimination. Inżynieria Mineralna 18

    Google Scholar 

  • Jimenez-Perez M, Sanchez-Castillo P, Romera O, Fernandez-Moreno D, Pérez-Martınez C (2004) Growth and nutrient removal in free and immobilized planktonic green algae isolated from pig manure. Enzym Microb Technol 34(5):392–398

    Article  CAS  Google Scholar 

  • Kadimpati KK, Mondithoka KP, Bheemaraju S, Challa VRM (2013) Entrapment of marine microalga, Isochrysis galbana, for biosorption of Cr (III) from aqueous solution: isotherms and spectroscopic characterization. Appl Water Sci 3(1):85–92

    Article  CAS  Google Scholar 

  • Ke Q, Zhang Y, Wu X, Su X, Wang Y, Lin H, Mei R, Zhang Y, Hashmi MZ, Chen C (2018) Sustainable biodegradation of phenol by immobilized Bacillus sp. SAS19 with porous carbonaceous gels as carriers. J Environ Manag 222:185–189

    Article  CAS  Google Scholar 

  • Kiran MG, Pakshirajan K, Das G (2018) Heavy metal removal from aqueous solution using sodium alginate immobilized sulfate reducing bacteria: mechanism and process optimization. J Environ Manag 218:486–496

    Article  CAS  Google Scholar 

  • Klein S, Avrahami R, Zussman E, Beliavski M, Tarre S, Green M (2012) Encapsulation of Pseudomonas sp. ADP cells in electrospun microtubes for atrazine bioremediation. J Ind Microbiol Biotechnol 39(11):1605–1613

    Article  CAS  PubMed  Google Scholar 

  • Kourkoutas Y, Bekatorou A, Banat IM, Marchant R, Koutinas A (2004) Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiol 21(4):377–397

    Article  CAS  Google Scholar 

  • Kumar TP, Mandlimath TR, Sangeetha P, Revathi S, Kumar SA (2018) Nanoscale materials as sorbents for nitrate and phosphate removal from water. Environ Chem Lett 16(2):389–400

    Article  CAS  Google Scholar 

  • Lertsutthiwong P, Boonpuak D, Pungrasmi W, Powtongsook S (2013) Immobilization of nitrite oxidizing bacteria using biopolymeric chitosan media. J Environ Sci 25(2):262–267

    Article  CAS  Google Scholar 

  • Lu J, Toy PH (2009) Organic polymer supports for synthesis and for reagent and catalyst immobilization. Chem Rev 109(2):815–838

    Article  CAS  PubMed  Google Scholar 

  • Luan M, Jing G, Piao Y, Liu D, Jin L (2017) Treatment of refractory organic pollutants in industrial wastewater by wet air oxidation. Arab J Chem 10:S769–S776

    Article  CAS  Google Scholar 

  • Magner E (2013) Immobilisation of enzymes on mesoporous silicate materials. Chem Soc Rev 42(15):6213–6222

    Article  CAS  PubMed  Google Scholar 

  • Mehta SK, Gaur JP (2001) Removal of Ni and Cu from single and binary metal solutions by free and immobilized Chlorella vulgaris. Eur J Protistol 37(3):261–271

    Article  Google Scholar 

  • Mohamed A, El-Sayed R, Osman T, Toprak M, Muhammed M, Uheida A (2016) Composite nanofibers for highly efficient photocatalytic degradation of organic dyes from contaminated water. Environ Res 145:18–25

    Article  CAS  PubMed  Google Scholar 

  • Mrudula S, Shyam N (2012) Immobilization of Bacillus megaterium MTCC 2444 by Ca-alginate entrapment method for enhanced alkaline protease production. Braz Arch Biol Technol 55(1):135–144

    Article  CAS  Google Scholar 

  • Ogugbue CJ, Morad N, Sawidis T, Oranusi NA (2012) Decolorization and partial mineralization of a polyazo dye by Bacillus firmus immobilized within tubular polymeric gel. 3. Biotech 2(1):67–78

    Google Scholar 

  • Ohta T, Ogbonna J, Tanaka H, Yajima M (1994) Development of a fermentation method using immobilized cells under unsterile conditions. 2. Ethanol and L-lactic acid production without heat and filter sterilization. Appl Microbiol Biotechnol 42(2–3):246–250

    Article  CAS  Google Scholar 

  • Podder M, Majumder C (2015) Bacteria immobilization on neem leaves/MnFe2O4 composite surface for removal of As (III) and As (V) from wastewater. Arab J Chem. https://doi.org/10.1016/j.arabjc.2015.08.025

    Article  CAS  Google Scholar 

  • Rahman RNZA, Ghazali FM, Salleh AB, Basri M (2006) Biodegradation of hydrocarbon contamination by immobilized bacterial cells. J Microbiol 44(3):354–359

    PubMed  Google Scholar 

  • Rodgers-Vieira EA, Zhang Z, Adrion AC, Gold A, Aitken MD (2015) Identification of anthraquinone-degrading bacteria in soil contaminated with polycyclic aromatic hydrocarbons. Appl Environ Microbiol 81(11):3775–3781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma S (2012) Bioremediation: features, strategies and applications. Asian J Pharm Life Sci 2231:4423

    Google Scholar 

  • Shi J, Podola B, Melkonian M (2007) Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: an experimental study. J Appl Phycol 19(5):417–423

    Article  CAS  Google Scholar 

  • SmuÅ‚ek W, Zdarta A, Guzik U, DudziÅ„ska-Bajorek B, Kaczorek E (2015) Rahnella sp. strain EK12: cell surface properties and diesel oil biodegradation after long-term contact with natural surfactants and diesel oil. Microbiol Res 176:38–47

    Article  PubMed  CAS  Google Scholar 

  • Stolarzewicz I, BiaÅ‚ecka-FlorjaÅ„czyk E, Majewska E, Krzyczkowska J (2011) Immobilization of yeast on polymeric supports. Chem Biochem Eng Q 25(1):135–144

    CAS  Google Scholar 

  • Suganya K, Revathi K (2016) Decolorization of reactive dyes by immobilized bacterial cells from textile effluents. Int J Curr Microbiol Appl Sci 5:528–532

    Article  CAS  Google Scholar 

  • Talha MA, Goswami M, Giri B, Sharma A, Rai B, Singh R (2018) Bioremediation of Congo red dye in immobilized batch and continuous packed bed bioreactor by Brevibacillus parabrevis using coconut shell bio-char. Bioresour Technol 252:37–43

    Article  PubMed  CAS  Google Scholar 

  • Tam N, Chan M, Wong Y, Popov V, Itoh H, Mander U (2010) Removal and biodegradation of polycyclic aromatic hydrocarbons by immobilized microalgal beads. WIT Trans Ecol Environ 140:391–402

    Article  CAS  Google Scholar 

  • Tang C-J, Duan C-S, Yu C, Song Y-X, Chai L-Y, Xiao R, Wei Z, Min X-B (2017) Removal of nitrogen from wastewaters by anaerobic ammonium oxidation (ANAMMOX) using granules in upflow reactors. Environ Chem Lett 15(2):311–328

    Article  CAS  Google Scholar 

  • Upendar G, Dutta S, Chakraborty J, Bhattacharyya P (2016) Removal of methylene blue dye using immobilized bacillus subtilis in batch & column reactor. Mater Today Proc 3(10):3467–3472

    Article  Google Scholar 

  • Wang W, Ding Y, Wang Y, Song X, Ambrose RF, Ullman JL, Winfrey BK, Wang J, Gong J (2016) Treatment of rich ammonia nitrogen wastewater with polyvinyl alcohol immobilized nitrifier biofortified constructed wetlands. Ecol Eng 94:7–11

    Article  CAS  Google Scholar 

  • WojcieszyÅ„ska D, Hupert-Kocurek K, Jankowska A, Guzik U (2012) Properties of catechol 2, 3-dioxygenase from crude extract of Stenotrophomonas maltophilia strain KB2 immobilized in calcium alginate hydrogels. Biochem Eng J 66:1–7

    Article  CAS  Google Scholar 

  • YiÄŸitoÄŸlu M, Temoçin Z (2010) Immobilization of Candida rugosa lipase on glutaraldehyde-activated polyester fiber and its application for hydrolysis of some vegetable oils. J Mol Catal B Enzym 66(1–2):130–135

    Article  CAS  Google Scholar 

  • Zacheus OM, Iivanainen EK, Nissinen TK, Lehtola MJ, Martikainen PJ (2000) Bacterial biofilm formation on polyvinyl chloride, polyethylene and stainless steel exposed to ozonated water. Water Res 34(1):63–70

    Article  CAS  Google Scholar 

  • Zhang Y-Q, Tao M-L, Shen W-D, Zhou Y-Z, Ding Y, Ma Y, Zhou W-L (2004) Immobilization of L-asparaginase on the microparticles of the natural silk sericin protein and its characters. Biomaterials 25(17):3751–3759

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Grimi N, Jaffrin MY, Ding L, Tang B, Zhang Z (2018) Optimization of RDM-UF for alfalfa wastewater treatment using RSM. Environ Sci Pollut Res 25(2):1439–1447

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Faisal Siddiqui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Siddiqui, M.F. et al. (2020). Microbial Biofilm Cell Systems for Remediation of Wastewaters. In: Hakeem, K., Bhat, R., Qadri, H. (eds) Bioremediation and Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-35691-0_14

Download citation

Publish with us

Policies and ethics