Skip to main content

Mycoremediation: A Sustainable Tool for Abating Environmental Pollution

  • Chapter
  • First Online:
Bioremediation and Biotechnology

Abstract

The foremost environmental problems the world is facing nowadays is the degradation of physical environment by way of adding more and more toxic substances. Based on the scientific evaluations, microbes can neutralize the toxic chemicals into least toxic compounds. The origins where from (most contaminated regions) microbes have been extracted play a crucial role for decontamination of polluted affected sites effectively. Mycoremediation is an eco-friendly tool that can be applied for different types of contaminated environs. This system is based on enzymes produced by numerous fungi. There are plenty of fungi species (Pleurotus ostreatus, Aspergillus niger, Trametes hirsuta, etc.) having tremendous potential for degradation and remediation of toxic pollutants. However, till now, fungi have not been significantly exploited as remediation tool for restoration of contaminated sites. Therefore, the need of the hour is the thorough investigation of the use of fungi as mycoremediant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Achal V, Pan X, Zhang D (2011) Remediation of copper-contaminated soil by Kocuria flava CR1, based on microbially induced calcite precipitation. Ecol Eng 37(10):1601–1605

    Article  Google Scholar 

  • Ahalya N, Ramachandra TV, Kanamadi RD (2003) Biosorption of heavy metals. Res J Chem Environ 7(4):4544–4552

    Google Scholar 

  • Ahn M-Y, Dec J, Kim J-E, Bollag J-M (2002) Treatment of 2, 4-dichlorophenol polluted soil with free and immobilized laccase. J Environ Qual 31:1509–1515

    Article  CAS  PubMed  Google Scholar 

  • Akhtar S, Mahmood-ul-Hassan M, Ahmad R, Suthor V, Yasin M (2013) Metal tolerance potential of filamentous fungi isolated from soils irrigated with untreated municipal effluent. Soil Environ 32:55–62

    CAS  Google Scholar 

  • Anahid S, Yaghmaei S, Ghobadinejad Z (2011) Heavy metal tolerance of fungi. Scientia Iranica 18(3):502–508

    Article  CAS  Google Scholar 

  • Bahraminia M, Zarei M, Ronaghi A, Ghasemi-Fasaei R (2016) Effectiveness of arbuscular mycorrhizal fungi in phytoremediation of lead- contaminated soil by vetiver grass. Int J Phytoremediation 18(7):730–737

    Article  CAS  PubMed  Google Scholar 

  • Bajpai P (1999) Application of enzymes in the pulp and paper industry. Biotechnol Prog 15:147–157. https://doi.org/10.1021/bp990013k

    Article  CAS  PubMed  Google Scholar 

  • Bajpai P, Mehna A, Bajpai PK (1993) Decolorization of Kraft bleach plant effluent with the white rot fungus Trametes versicolor. Process Biochem 28:377–384. https://doi.org/10.1016/0032-9592(93)80024-B

    Article  CAS  Google Scholar 

  • Bansal N, Tewari R, Soni R, Soni SK (2012) Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues. Waste Manag 32:1341–1346. https://doi.org/10.1016/j.wasman.2012.03.006

    Article  CAS  PubMed  Google Scholar 

  • Baratto MC, Juarez-Moreno K, Pogni R, Basosi R, Vazquez-Duhalt R (2015) EPR and LC-MS studies on the mechanism of industrial dye decolorization by versatile peroxidase from Bjerkandera adusta. Environ Sci Pollut Res 22:8683–8692

    Article  CAS  Google Scholar 

  • Batista-García RA, Kumar VV, Ariste A, Tovar-Herrera OE, Savary O, Peidro-Guzmán H, González-Abradelo D, Jackson SA, Dobson ADW, Sánchez-Carbente MDR, Folch-Mallol JL, Leduc R, Cabana H (2017) Simple screening protocol for identification of potential mycoremediation tools for the elimination of polycyclic aromatic hydrocarbons and phenols from hyperalkalophile industrial effluents. J Environ Manag 198(Pt 2):1–11

    Article  CAS  Google Scholar 

  • Ben Yahmed N, Jmel MA, Ben Alaya M, Bouallagui H, Marzouki MN, Smaali I (2016) A biorefinery concept using the green macroalgae Chaetomorpha linum for the coproduction of bioethanol and biogas. Energy Convers Manag 119:257–265. https://doi.org/10.1016/j.enconman.2016.04.046

    Article  CAS  Google Scholar 

  • Ben Yahmed N, Carrere H, Marzouki MN, Smaali I (2017) Enhancement of biogas production from Ulva sp. by using solid-state fermentation as biological pretreatment. Algal Res 27:206–214. https://doi.org/10.1016/j.algal.2017.09.005

    Article  Google Scholar 

  • Ben Yahmed N, Berrejeb N, Jmel MA, Jazzar S, Marzouki MN, Smaali I (2018) Efficient biocatalytic conversion of stranded green macroalgal biomass using a specific cellulases-based cocktail. Waste Biomass Valoriz. doi:https://doi.org/10.1007/s12649-018-0397-4

    Article  CAS  Google Scholar 

  • Bennett RM, Cordero PRF, Bautista GS, Dedeles GR (2013) Reduction of hexavalent chromium using fungi and bacteria isolated from contaminated soil and water samples. Chem Ecol 29:320–328

    Article  CAS  Google Scholar 

  • Bhat RA, Dervash MA, Mehmood MA, Bhat MS, Rashid A, Bhat JIA, Singh DV, Lone R (2017a) Mycorrhizae: a sustainable industry for plant and soil environment. In: Varma A et al (eds) Mycorrhiza-nutrient uptake, biocontrol, ecorestoration. Springer International, Berlin, pp 473–502

    Chapter  Google Scholar 

  • Bhat RA, Shafiq-ur-Rehman MMA, Dervash MA, Mushtaq N, Bhat JIA, Dar GH (2017b) Current status of nutrient load in dal Lake of Kashmir Himalaya. J Pharm Phytochem 6(6):165–169

    CAS  Google Scholar 

  • Bhat RA, Beigh BA, Mir SA, Dar SA, Dervash MA, Rashid A, Lone R (2018a) Biopesticide techniques to remediate pesticides in polluted ecosystems. In: Wani KA, Mamta (eds) Handbook of research on the adverse effects of pesticide pollution in aquatic ecosystems. IGI Global, pp 387–407

    Google Scholar 

  • Bhat RA, Dervash MA, Qadri H, Mushtaq N, Dar GH (2018b) Macrophytes, the natural cleaners of toxic heavy metal (THM) pollution from aquatic ecosystems. In: Environmental contamination and remediation. Cambridge Scholars, Cambridge, pp 189–209

    Google Scholar 

  • Bhatia D, Sharma NR, Singh J, Kanwar RS (2017) Biological methods for textile dye removal from wastewater: a review. Crit Rev Environ Sci Technol 47(19)

    Article  CAS  Google Scholar 

  • Bhattacharya S, Das A, Mangai G, Vignesh K, Sangeetha J (2011) Mycoremediation of congo red dye by filamentous fungi. Braz J Microbiol 42(4):1526–1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatti AA, Haq S, Bhat RA (2017) Actinomycetes benefaction role in soil and plant health. Microb Pathog 111:458–467

    Article  CAS  PubMed  Google Scholar 

  • Calvo AM, Copa-Patino JL, Alonso O, Gonzalez AE (1998) Studies of the production and characterization of laccase activity in the basidiomycete Coriolopsis gallica, an efficient decolorizer of alkaline effluents. Arch Microbiol 171:31–36

    Article  CAS  PubMed  Google Scholar 

  • Cecchi G, Roccotiello E, Piazza D, Simone, Riggi A, Mariotti MG, Zotti M (2017) Assessment of Ni accumulation capability by fungi for a possible approach to remove metals from soils and waters. J Environ Sci Health 52(3):166–170

    Article  CAS  Google Scholar 

  • Chakraborty S, Mukherjee A, Das TK (2013) Biochemical characterization of a lead-tolerant strain of Aspergillus foetidus: an implication of bioremediation of lead from liquid media. Int Biodeterior Biodegrad 84:134–142. https://doi.org/10.1016/j.ibiod.2012.05.031

    Article  CAS  Google Scholar 

  • Chan-Cupul W, Heredia-Abarca G, Rodríguez-Vázquez R (2016) Atrazine degradation by fungal co-culture enzyme extracts under different soil conditions. J Environ Sci Health 51(5):298–308

    Article  CAS  Google Scholar 

  • Chhaya U, Gupte A (2013) Possible role of laccase from Fusarium incarnatum UC-14 in bioremediation of Bisphenol A using reverse micelles system. J Hazard Mater 254:149–156

    Article  PubMed  CAS  Google Scholar 

  • D’Annibale A, Stazi SR, Vinciguerra V, Giovannozzi Sermanni G (2000) Oxirane-immobilized Lentinula edodes laccase: stability and phenolics removal efficiency in olive mill wastewater. J Biotechnol 77:265–273. https://doi.org/10.1016/S0168-1656(99)00224-2

    Article  PubMed  Google Scholar 

  • Damisa D, Oyegoke TS, Ijah UJJ, Adabara NU, Bala JD, Abdulsalam R (2013) Biodegradation of petroleum by fungi isolated from unpolluted tropical soil. Int J Appl Biol Pharm Technol 4:136–140

    Google Scholar 

  • Deng L, Su Y, Su H, Wang X, Zhu X (2007) Sorption and desorption of lead (II) from wastewater by green algae Cladophora fascicularis. J Hazard Mater 143(1–2):220–225

    Article  CAS  PubMed  Google Scholar 

  • Deshmukh R, Khardenavis AA, Purohit HJ (2016) Diverse metabolic capacities of fungi for bioremediation. Indian J Microbiol 56:247–264. https://doi.org/10.1007/s12088-016-0584-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhiman SS, Haw JR, Kalyani D, Kalia VC, Kang YC, Lee JK (2015) Simultaneous pretreatment and saccharification: green technology for enhanced sugar yields from biomass using a fungal consortium. Bioresour Technol 179:50–57. https://doi.org/10.1016/j.biortech.2014.11.059

    Article  CAS  PubMed  Google Scholar 

  • Duarte K, Justino CI, Pereira R, Panteleitchouk TS, Freitas AC, Rocha-Santos TA, Duarte AC (2013) Removal of the organic content from a bleached Kraft pulp mill effluent by a treatment with silica–alginate–fungi biocomposites. J Environ Sci Heal A Tox Hazard Subst Environ Eng 48:166–172

    Article  CAS  Google Scholar 

  • Ellegaard-Jensen L, Aamand J, Kragelund BB, Johnsen AH, Rosendahl S (2013) Strains of the soil fungus Mortierella show different degradation potentials for the phenylurea herbicide diuron. Biodegradation 24:765–774

    Article  CAS  PubMed  Google Scholar 

  • Enayatizamir N, Tabandeh F, Rodriguez-Couto S, Yakhchali B, Alikhani HA, Mohammadi L (2011) Biodegradation pathway and detoxification of the diazo dye reactive black 5 by Phanerochaete chrysosporium. Bioresour Technol 102:10359–10362. https://doi.org/10.1016/j.biortech.2011.08.130

    Article  CAS  PubMed  Google Scholar 

  • Falandysz J (2016) Mercury bio-extraction by fungus Coprinus comatus: a possible bioindicator and mycoremediator of polluted soils? Environ Sci Pollut Res Int 23(8):7444–7451

    Article  CAS  PubMed  Google Scholar 

  • Fester T (2013) Arbuscular mycorrhizal fungi in a wetland constructed for benzene-, methyl tert-butyl ether- and ammonia-contaminated groundwater bioremediation. Microb Biotechnol 6(1):80–84

    Article  PubMed  CAS  Google Scholar 

  • Fillat U, Prieto A, Camarero S, Martínez ÁT, Martínez MJ (2012) Biodeinking of flexographic inks by fungal laccases using synthetic and natural mediators. Biochem Eng J 67:97–103. https://doi.org/10.1016/j.bej.2012.05.010

    Article  CAS  Google Scholar 

  • Fomina M, Gadd GM (2014) Biosorption: current perspectives on concept, definition and application. Bioresour Technol 160:3–14

    Article  CAS  PubMed  Google Scholar 

  • Fosso-Kankeu E, Mulaba-Bafubiandi AF (2014) Implication of plants and microbial metalloproteins in the bioremediation of polluted waters: a review. Phys Chem Earth 67–69:242–252

    Article  Google Scholar 

  • Friss N, Myers-Keith P (1986) Biosorption of uranium and lead by Streptomyces longwoodensis. Biotechnol Bioeng 28:21–28

    Article  Google Scholar 

  • Fukunaga A, Anderson MJ (2011) Bioaccumulation of copper, lead and zinc by the bivalves Macomona liliana and Austrovenus stutchburyi. J Exp Mar Biol Ecol 396(2):244–252

    Article  CAS  Google Scholar 

  • Fulekar MH, Sharma J, Tendulkar A (2012) Bioremediation of heavy metals using biostimulation in laboratory bioreactor. Environ Monit Assess 184(12):7299–7307

    Article  CAS  PubMed  Google Scholar 

  • Gadd GM (2009) Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol: 13–28

    Article  CAS  Google Scholar 

  • Gadd GM, White C (1993) Microbial treatment of metal pollution—a working biotechnology? Trends Biotechnol 11:353–359

    Article  CAS  PubMed  Google Scholar 

  • Gazem MAH, Nazareth S (2013) Sorption of lead and copper from an aqueous phase system by marine-derived Aspergillus species. Ann Microbiol 63(2):503–511

    Article  CAS  Google Scholar 

  • Hadibarata T, Teh ZC, Zubir MM, Khudhair AB, Yusoff AR, Salim MR, Hidayat T (2013) Identification of naphthalene metabolism by white-rot fungus Pleurotus eryngii. Bioprocess Biosyst Eng 24:728–732

    Google Scholar 

  • Hernández-Ortega HA, Alarcón A, Ferrera-Cerrato R, Zavaleta-Mancera HA, López-Delgado HA, Mendoza-López MR (2012) Arbuscular mycorrhizal fungi on growth, nutrient status, and total antioxidant activity of Melilotus albus during phytoremediation of a diesel-contaminated substrate. J Environ Manag 95(Suppl):S319–S324

    Article  CAS  Google Scholar 

  • Holan ZR, Volesky B (1994) Biosorption of lead and nickel by biomass of marine algae. Biotechnol Bioeng 43(11):1001–1009

    Article  CAS  PubMed  Google Scholar 

  • Hong Y, Dashtban M, Chen S, Song R, Qin W (2011) Enzyme production and lignin degradation by four Basidiomycetous Fungi in submerged fermentation of peat containing medium. Int J Biol 4. https://doi.org/10.5539/ijb.v4n1p172

  • Huang J, Fu Y, Liu Y (2014) Comparison of alkali-tolerant fungus Myrothecium sp. IMER1 and white-rot fungi for decolorization of textile dyes and dye effluents. J Bioremed Biodegr 5:1–5

    Google Scholar 

  • Ilyina A, Castillo Sanchez MI, Villarreal Sanchez JA, Ramirez EG, Candelas RJ (2003) Isolation of soil bacteria for bioremediation of hydrocarbon contamination. Bull Moscow Univ 44(1):88–91

    Google Scholar 

  • Isola D, Selbmann L, de Hoog GS, Fenice M, Onofri S, Prenafeta-Boldú FX, Zucconi L (2013) Isolation and screening of black fungi as degraders of volatile aromatic hydrocarbons. Mycopathologia 175:369–379

    Article  PubMed  Google Scholar 

  • Janusz G, Kucharzyk KH, Pawlik A, Staszczak M, Paszczynski AJ (2013) Fungal laccase, manganese peroxidase and lignin peroxidase: gene expression and regulation. Enzyme Microb Technol 52:1–12. https://doi.org/10.1016/j.enzmictec.2012.10.003

    Article  CAS  PubMed  Google Scholar 

  • Jebapriya GR, Gnanadoss JJ (2013) Bioremediation of textile dye using white-rot fungi: a review. Int J Curr Res Rev 5:1–13

    Google Scholar 

  • Jiang CY, Sheng XF, Qian M, Wang QY (2008) Isolation and characterization of heavy metal resistant Burkholderia species from heavy metal contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal polluted soil. Chemosphere 72:157–164

    Article  CAS  PubMed  Google Scholar 

  • Joshi PK, Swarup A, Maheshwari S, Kumar R, Singh N (2011) Bioremediation of Heavy Metals in Liquid Media Through Fungi Isolated from Contaminated Sources. Indian J Microbiol 51(4):482–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Junghanns C, Moeder M, Krauss G, Martin C, Schlosser D (2005) Degradation of the xenoestrogen nonylphenol by aquatic fungi and their laccases. Microbiology 151:45–57. https://doi.org/10.1099/mic.0.27431-0

    Article  CAS  PubMed  Google Scholar 

  • Kadirvelu K, Senthilkumar P, Thamaraiselvi K, Subburam V (2002) Activated carbon prepared from biomass as adsorbent: elimination of Ni (II) from aqueous solution. Bioresour Technol 81:87–90

    Article  CAS  PubMed  Google Scholar 

  • Kanmani P, Aravind J, Preston D (2012) Remediation of chromium contaminants using bacteria. Int J Environ Sci Technol 9:183–193

    Article  CAS  Google Scholar 

  • Karas PA, Perruchon C, Exarhou K, Ehaliotis C, Karpouzas DG (2011) Potential for bioremediation of agro-industrial effluents with high loads of pesticides by selected fungi. Biodegradation 22(1):215–228

    Article  CAS  PubMed  Google Scholar 

  • Kaushik G (2015) Bioremediation of industrial effluents: distillery effluent. In: Applied environmental biotechnology: present scenario and future trends. Springer, Berlin, pp 19–32

    Google Scholar 

  • Khanday M, Bhat RA, Haq S, Dervash MA, Bhatti AA, Nissa M, Mir MR (2016) Arbuscular mycorrhizal fungi boon for plant nutrition and soil health. In: Hakeem KR, Akhtar J, Sabir M (eds) Soil science: agricultural and environmental prospectives. Springer International, Berlin, pp 317–332

    Chapter  Google Scholar 

  • Khardenavis AA, Wang JY, Ng WJ, Purohit HJ (2013) Management of various organic fractions of municipal solid waste via recourse to VFA and biogas generation. Environ Technol 34:2085–2097. https://doi.org/10.1080/09593330.2013.817446

    Article  CAS  PubMed  Google Scholar 

  • Kujan P, Prell A, Safár H, Sobotka M, Rezanka T, Holler P (2006) Use of the industrial yeast Candida utilis for cadmium sorption. Folia Microbiol 51(4):257–260

    Article  CAS  Google Scholar 

  • Kulshreshtha S, Mathur N, Bhatnagar P (2014) Mushroom as a product and their role in mycoremediation. AMB Express 4:29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kurniati E, Arfarita N, Imai T, Higuchi T, Kanno A, Yamamoto K, Sekine M (2014) Potential bioremediation of mercury-contaminated substrate using filamentous fungi isolated from forest soil. J Environ Sci 26:1223–1231

    Article  CAS  Google Scholar 

  • Lee YC, Chang SP (2011) The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae. Bioresour Technol 102(9):5297–5304

    Article  CAS  PubMed  Google Scholar 

  • Li S-P, Bi Y-L, Kong W-P, Wang J, Yu H-Y (2013) Effects of the arbuscular mycorrhizal fungi on environmental phytoremediation in coal mine areas. Huan Jing Ke Xue Huanjing Kexue 34(11):4455–4459

    PubMed  Google Scholar 

  • Liers C, Bobeth C, Pecyna M, Ullrich R, Hofrichter M (2010) DyP-like peroxidases of the jelly fungus Auricularia auricula-judae oxidize nonphenolic lignin model compounds and high-redox potential dyes. Appl Microbiol Biotechnol 85:1869–1879. https://doi.org/10.1007/s00253-009-2173-7

    Article  CAS  PubMed  Google Scholar 

  • Lin X, Li X, Sun T, Li P, Zhou Q, Sun L, Hu X (2009) Changes in microbial populations and enzyme activities during the bioremediation of oil-contaminated soil. Bull Environ Contam Toxicol 83:542–547

    Article  CAS  PubMed  Google Scholar 

  • Loukidou MX, Matis KA, Zouboulis AI, Liakopoulou-Kyriakidou M (2003) Removal of As(V) from wastewaters by chemically modified fungal biomass. Water Res 37(18):4544–4552

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Zhuo R, Liu H, Yu D, Jiang M, Zhang X, Yang Y (2014) Efficient decolorization and detoxification of the sulfonated azo dye Reactive Orange 16 and simulated textile wastewater containing Reactive Orange 16 by the white-rot fungus Ganoderma sp. En3 isolated from the forest of Tzu-chin Mountain in China. Biochem Eng J 82:1–9

    Article  CAS  Google Scholar 

  • Machado MD, Soares EV, Soares HM (2010) Removal of heavy metals using a brewer’s yeast strain of Saccharomyces cerevisiae: chemical speciation as a tool in the prediction and improving of treatment efficiency of real electroplating effluents. J Hazard Mater 180(1–3):347–353

    Article  CAS  PubMed  Google Scholar 

  • Magan N, Fragoeiro S, Bastos C (2010) Environmental factors and bioremediation of xenobiotics using white rot fungi. Mycobiology 38(4):238–248

    Article  PubMed  PubMed Central  Google Scholar 

  • Mane PC, Bhosle AB (2012) Bioremoval of some metals by living algae spirogyra sp. and Spirulina sp. from aqueous solution. Int J Environ Res 6(2):571–576

    CAS  Google Scholar 

  • Marco E, Font X, Sánchez A, Gea T, Gabarrell X, Caminal G (2013) Co-composting as a management strategy to reuse the white-rot fungus Trametes versicolor after its use in a biotechnological process. Int J Environ Waste Manag 11:100. https://doi.org/10.1504/ijewm.2013.050637

    Article  CAS  Google Scholar 

  • Martins MR, Pereira P, Lima N, Cruz-Morais J (2013) Degradation of Metalaxyl and Folpet by filamentous fungi isolated from Portuguese (Alentejo) vineyard soils. Arch Environ Contam Toxicol 65:67–77

    Article  CAS  PubMed  Google Scholar 

  • Maruthi YA, Hossain K, Thakre S (2013) Aspergillus flavus: a potential bioremediator for oil contaminated soils. Eur J Sustain Dev 2:57–66

    Article  Google Scholar 

  • Mattuschka B, Junghaus K, Straube G (1993) Biosorption of metals by waste biomass. In: Torma AE, Apel ML, Brierley CL (eds) Biohydrometallurgical technologies, vol 2. The Minerals, Metals & Materials Society, Warrendale

    Google Scholar 

  • Mehmood MA, Qadri H, Bhat RA, Rashid A, Ganie SA, Dar GH, Shafiq-ur-Rehman (2019) Heavy metal contamination in two commercial fish species of a trans-Himalayan freshwater ecosystem. Environ Monit Assess 191:104. https://doi.org/10.1007/s10661-019-7245-2

    Article  CAS  PubMed  Google Scholar 

  • Mejare M, Bülow L (2001) Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol 19(2):67–73

    Article  CAS  PubMed  Google Scholar 

  • Milstein O, Haars A, Majcherczyk A, Trojanowski J, Tautz D, Zanker H, Hüttermann A (1988) Removal of chlorophenols and chlorolignins from bleaching effluent by combined chemical and biological treatment. Water Sci Technol 20:161–170. https://doi.org/10.2166/wst.1988.0019

    Article  CAS  Google Scholar 

  • Mouhamadou B, Faure M, Sage L, Marçais J, Souard F, Geremia RA (2013) Potential of autochthonous fungal strains isolated from contaminated soils for degradation of polychlorinated biphenyls. Fungal Biol 117:268–274

    Article  CAS  PubMed  Google Scholar 

  • Mulligan CN, Yong R, Gibbs BF (2001) Remediation technologies for metal contaminated soils and groundwater: an evaluation. Eng Geol 60(1–4):193–207

    Article  Google Scholar 

  • Murphy V, Hughes H, McLoughlin P (2008) Comparative study of chromium biosorption by red, green and brown seaweed biomass. Chemosphere 70(6):1128–1134

    Article  CAS  PubMed  Google Scholar 

  • Mushtaq N, Bhat RA, Dervash MA, Qadri H, Dar GH (2018) Biopesticides: the key component to remediate pesticide contamination in an ecosystem. In: Environmental contamination and remediation. Cambridge Scholars, Cambridge, pp 152–178

    Google Scholar 

  • Nagy B, Mânzatu C, Maicaneanu A, Indolean C, Lucian BT, Majdik C (2014) Linear and nonlinear regression analysis for heavy metals removal using Agaricus bisporus macrofungus. Arab J Chem 10:S3569–S3579

    Article  CAS  Google Scholar 

  • Nayak V, Pai PV, Pai A, Pai S, Sushma YD, Rao CV (2013) A comparative study of caffeine degradation by four different fungi. Biorem J 17:79–85

    Article  CAS  Google Scholar 

  • Niku-Paavola M-L, Viikari L (2000) Enzymatic oxidation of alkenes. J Mol Catal B Enzym 10:435–444

    Article  CAS  Google Scholar 

  • Novotný C, Svobodová K, Erbanová P, Cajthaml T, Kasinath A, Lang E, Šašek V (2004) Ligninolytic fungi in bioremediation: extracellular enzyme production and degradation rate. Soil Biol Chem 36:1545–1551. https://doi.org/10.1016/j.soilbio.2004.07.019

    Article  CAS  Google Scholar 

  • Passarini MRZ, Rodrigues MVN, da Silva M, Sette LD (2011) Marine-derived filamentous fungi and their potential application for polycyclic aromatic hydrocarbon bioremediation. Mar Pollut Bull 62(2):364–370

    Article  CAS  PubMed  Google Scholar 

  • Perpetuo EA, Souza CB, Nascimento CAO (2011) Engineering bacteria for bioremediation. In: Carpi A (ed) Progress in molecular and environmental bioengineering—from analysis and modeling to technology applications. In Tech, Rijeka, pp 605–632

    Google Scholar 

  • Pierzynski GM, Sims JT, Vance GF (2000) Soil and environmental quality. CRC, Boca Raton

    Google Scholar 

  • Pointing SB, Vrijmoed L (2000) Decolorization of azo and triphenylmethane dyes by Pycnoporus sanguineus producing laccase as the sole phenoloxidase. World J Microbiol Biotechnol 16:317–318

    Article  CAS  Google Scholar 

  • Pozdnyakova NN (2012) Involvement of the ligninolytic system of white-rot and litter-decomposing fungi in the degradation of polycyclic aromatic hydrocarbons. Biotechnol Res Int 2012:243217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Purnomo AS, Mori T, Putra SR, Kondo R (2013) Biotransformation of heptachlor and heptachlor epoxide by white-rot fungus Pleurotus ostreatus. Int Biodeterior Biodegrad 82:40–44

    Article  CAS  Google Scholar 

  • Rabie GH (2005) Role of arbuscular mycorrhizal fungi in phytoremediation of soil rhizosphere spiked with poly aromatic hydrocarbons. Mycobiology 33(1):41–50

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajendran P, Muthukrishnan J, Gunasekaran P (2003) Microbes in heavy metal remediation. Indian J Exp Biol 41:935–944

    CAS  PubMed  Google Scholar 

  • Ramasamy RK, Congeevaram S, Thamaraiselvi K (2011) Evaluation of isolated fungal strain from e-waste recycling facility for effective sorption of toxic heavy metal Pb (II) ions and fungal protein molecular characterization-a Mycoremediation approach. Asian J Exp Biol Sci 2(2):342–347

    Google Scholar 

  • Rani B, Kumar V, Singh J, Bisht S, Teotia P, Sharma S, Kela R (2014) Bioremediation of dyes by fungi isolated from contaminated dye effluent sites for bio-usability. Braz J Microbiol 45(3):1055–1063

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reya I, Lakshmi Prabha M, Renitta E (2013) Equilibrium and kinetic studies on biosorption of Cr (VI) using novel Aspergillus jegita isolated from tannery effluent. Res J Chem Environ 17:72–78

    CAS  Google Scholar 

  • Riggle PJ, Kumamoto CA (2000) Role of a Candida albicans P1-type ATPase in resistance to copper and silver ion toxicity. J Bacteriol 182:4899–4905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rita de Cássia M, de Barros Gomes E, Pereira N Jr, Marin-Morales MA, KMG M, de Gusmão NB (2013) Biotreatment of textile effluent in static bioreactor by Curvularia lunata URM 6179 and Phanerochaete chrysosporium URM 6181. Bioresour Technol 142:361–367

    Article  CAS  Google Scholar 

  • Rivero A, Niell S, Cesio V, Cerdeiras MP, Heinzen H (2012) Analytical methodology for the study of endosulfan bioremediation under controlled conditions with white rot fungi. J Chromatogr B 907:168–172

    Article  CAS  Google Scholar 

  • Rodarte-Morales AI, Feijoo G, Moreira MT, Lema JM (2011) Degradation of selected pharmaceutical and personal care products (PPCPs) by white-rot fungi. World J Microbiol Biotechnol 27:1839–1846

    Article  Google Scholar 

  • Romera E, González F, Ballester A, Blázques MI, Munoz JA (2007) Comparative study of biosorption of heavy metals using different types of algae. Bioresour Technol 98(17):3344–3353

    Article  CAS  PubMed  Google Scholar 

  • Rosales E, Pazos M, Ángeles SM (2013) Feasibility of solid-state fermentation using spent fungi-substrate in the biodegradation of PAHs. CLEAN Soil Air Water 41:610–615

    Article  CAS  Google Scholar 

  • Saleem M, Brim H, Hussain S, Arshad M, Leigh MB (2008) Perspectives on microbial cell surface display in bioremediation. Biotechnol Adv 26(2):151–161

    Article  CAS  PubMed  Google Scholar 

  • Saratale R, Saratale G, Chang J-S, Govindwar S (2009) Decolorization and biodegradation of textile dye navy blue HER by Trichosporon beigelii NCIM-3326. J Hazard Mater 166:1421–1428

    Article  CAS  PubMed  Google Scholar 

  • Saunders RJ, Paul NA, Hu Y, de Nys R (2012) Sustainable sources of biomass for bioremediation of heavy metals in wastewater derived from coal-fired power generation. PLoS One 7(5):e36470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Say R, Yimaz N, Denizli A (2003) Removal of heavy metal ions using the fungus Penicillium canescens. Adsorpt Sci Technol 21(7):643–650

    Article  CAS  Google Scholar 

  • Shafi S, Bhat RA, Bandh SA, Shameem N, Nisa H (2018) Microbes: key agents in the sustainable environment and cycling of nutrients. In: Environmental contamination and remediation. Cambridge Scholars, Cambridge. 152-179-188

    Google Scholar 

  • Silambarasan S, Abraham J (2013) Ecofriendly method for bioremediation of chlorpyrifos from agricultural soil by novel fungus Aspergillus terreus JAS1. Water Air Soil Pollut 224:1369

    Article  CAS  Google Scholar 

  • Singh MP, Vishwakarma SK, Srivastava AK (2013) Bioremediation of Direct Blue 14 and Extracellular Ligninolytic Enzyme Production by White Rot Fungi: Pleurotus Spp. Biomed Res Int 2013:1801–1856

    Google Scholar 

  • Singh M, Srivastava PK, Verma PC, Kharwar RN, Singh N, Tripathi RD (2015) Soil fungi for mycoremediation of arsenic pollution in agriculture soils. J Appl Microbiol 119(5):1278–1290

    Article  CAS  PubMed  Google Scholar 

  • Singh DV, Bhat JIA, Bhat RA, Dervash MA, Ganei SA (2018) Vehicular stress a cause for heavy metal accumulation and change in physico-chemical characteristics of road side soils in Pahalgam. Environ Monit Assess 190:353. https://doi.org/10.1007/s10661-018-6731-2

    Article  CAS  PubMed  Google Scholar 

  • Singhal RK, Joshi S, Tirumalesh K, Gurg RP (2004) Reduction of uranium concentration in well water by Chlorella (Chlorella pyrenoidosa) a fresh water algae immobilized in calcium alginate. J Radio Analyt Nucl Chem 261:73–78

    Article  CAS  Google Scholar 

  • Soares GMB, Costa-Ferreira M, Pessoa de Amorim MT (2001) Decolorization of an anthraquinone-type dye using a laccase formulation. Bioresour Technol 79:171–177. https://doi.org/10.1016/S0960-8524(01)00043-8

    Article  CAS  PubMed  Google Scholar 

  • Sofi NA, Bhat RA, Rashid A, Mir NA, Mir SA, Lone R (2017) Rhizosphere mycorrhizae communities an input for organic agriculture. In: Varma A et al (eds) Mycorrhiza-nutrient uptake, biocontrol, ecorestoration. Springer International, Berlin, pp 387–413

    Chapter  Google Scholar 

  • Song HP, Li XG, Sun JS, Xu SM, Han X (2008) Application of a magnetotatic bacterium, Stenotrophomonas sp. to the removal of Au(III) from contaminated wastewater with a magnetic separator. Chemosphere 72:616–621

    Article  CAS  PubMed  Google Scholar 

  • Stella T, Covino S, Čvančarová M, Filipová A, Petruccioli M, D’Annibale A, Cajthaml T (2017) Bioremediation of long-term PCB-contaminated soil by white-rot fungi. J Hazard Mater 324(Pt B):701–710

    Article  CAS  PubMed  Google Scholar 

  • Strong PJ, Burgess JE (2007) Bioremediation of a wine distillery wastewater using white rot fungi and the subsequent production of laccase. Water Sci Technol 56(2):179–186

    Article  CAS  PubMed  Google Scholar 

  • Tabrizi L, Mohammadi S, Delshad M, Zadeh M, Babak (2015) Effect of arbuscular mycorrhizal fungi on yield and phytoremediation performance of pot Marigold (Calendula officinalis L.) under heavy metals stress. Int J Phytoremediation 17(12):1244–1252

    Article  CAS  PubMed  Google Scholar 

  • Tastan BE, Ertugrul S, Donmez G (2010) Effective bioremoval of reactive dye and heavy metals by Aspergillus versicolor. Bioresour Technol 101(3):870–876

    Article  CAS  PubMed  Google Scholar 

  • Taştan BE, Çakir DN, Dönmez G (2016) A new and effective approach to boron removal by using novel boron-specific fungi isolated from boron mining wastewater. Water Sci Technol 73(3):543–549

    Article  PubMed  CAS  Google Scholar 

  • Thatoi H, Das S, Mishra J, Rath BP, Das N (2014) Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review. J Environ Manag 146:383–399

    Article  CAS  Google Scholar 

  • Tsezos M, Volesky B (1981) Biosorption of uranium and thorium. Biotechnol Bioeng 23:583–604

    Article  CAS  Google Scholar 

  • Turlo J (2014) The biotechnology of higher fungi-current state and perspectives. Folia Biol Oecol 10:49–65

    Article  Google Scholar 

  • Vaseem H, Singh VK, Singh MP (2017) Heavy metal pollution due to coal washery effluent and its decontamination using a macrofungus, Pleurotus ostreatus. Ecotoxicol Environ Saf 145:42–49

    Article  CAS  PubMed  Google Scholar 

  • Viswanath B, Rajesh B, Janardhan A, Kumar AP, Narasimha G (2014) Fungal laccases and their applications in bioremediation. Enzyme Res 2014:163242. https://doi.org/10.1155/2014/163242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volesky B (2004) Sorption and biosorption. BV-Sorbex, Montreal

    Google Scholar 

  • Wong KKY, Richardson JD, Mansfield SD (2000) Enzymatic treatment of mechanical pulp fibers for improving papermaking properties. Biotechnol Prog 16:1025–1029. https://doi.org/10.1021/bp000064d

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Zhao Y, Liu L, Fan B, Li M (2013) Remediation of soil contaminated with decabrominated diphenyl ether using white-rot fungi. J Environ Eng Landsc Manag 21:171–179

    Article  Google Scholar 

  • Xun F, Xie B, Liu S, Guo C (2014) Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation. Environ Sci Pollut Res Int 22(1):598–608

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Liang Y, Ghosh A, Song Y, Chen H, Tang M (2015) Assessment of arbuscular mycorrhizal fungi status and heavy metal accumulation characteristics of tree species in a lead-zinc mine area: potential applications for phytoremediation. Environ Sci Pollut Res Int 22(17):13179–13193

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Liang Y, Han X, Chiu T-Y, Ghosh A, Chen H, Tang M (2016) The roles of arbuscular mycorrhizal fungi (AMF) in phytoremediation and tree-herb interactions in Pb contaminated soil. Sci Rep 6:20469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young D, Rice J, Martin R, Lindquist E, Lipzen A, Grigoriev I, Hibbett D (2015) Degradation of bunker C fuel oil by white-rot fungi in sawdust cultures suggests potential applications in bioremediation. PLoS One 10(6):e0130381. https://doi.org/10.1371/journal.pone.0130381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang W, Gao X (2013) Acid-volatile sulfide and simultaneously extracted metals in surface sediments of the southwestern coastal Laizhou Bay, Bohai Sea: concentrations, spatial distributions and the indication of heavy metal pollution status. Mar Pollut Bull 76:128–138

    Article  CAS  PubMed  Google Scholar 

  • Zotti M, Piazza D, Simone, Roccotiello E, Lucchetti G, Mariotti MG, Marescotti P (2014) Microfungi in highly copper-contaminated soils from an abandoned Fe-cu sulphide mine: growth responses, tolerance and bioaccumulation. Chemosphere 117:471–476

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raina, S.A., Yahmed, N.B., Bhat, R.A., Dervash, M.A. (2020). Mycoremediation: A Sustainable Tool for Abating Environmental Pollution. In: Hakeem, K., Bhat, R., Qadri, H. (eds) Bioremediation and Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-35691-0_13

Download citation

Publish with us

Policies and ethics