Skip to main content

Role of White Willow (Salix alba L.) for Cleaning Up the Toxic Metal Pollution

  • Chapter
  • First Online:
Bioremediation and Biotechnology

Abstract

Plants in urban territories assume a fundamental job to purify the contamination in human conditions. Quickly developing biomass plants, for example, Salix species, are promising for use in phytoremediation of defiled land. It is realized that substantial metals are taken up and translocated by plants to various degrees. The section portrays the decision of eco-accommodating Salix alba species and their correct situation in the urban condition to defeat the contamination issues. White willow imitations can aggregate generous measures of Cd and Zn in the over-the-ground biomass and have along these lines been tried for phytoextraction of decently polluted soils. This section likewise audits the potential for the phytoremediation of substantial metal-defiled land by the Salix alba. The perspectives from various examinations on Salix alba have been utilized to exhibit the limit and plausibility of utilizing it in phytoextraction. Consequently, to augment phytoextraction productivity, it is critical to choose a quickly developing and high biomass plant with high take-up of substantial metals, which is additionally perfect with motorized development systems and neighborhood climate conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aktaruzzaman M, Fakhruddin ANM, Chowdhury MAZ, Fardous Z, Alam MK (2013) Accumulation of heavy metals in soil and their transfer to leafy vegetables in the region of Dhaka Aricha highway, Savar, Bangladesh. Pak J Biol Sci 16(7):332–338

    Article  CAS  Google Scholar 

  • Atafar Z, Mesdaghinia A, Nouri J, Homaee M, Yunesian M (2010) Effect of fertilizer application on soil heavy metal concentration. Environ Monit Assess 160(1–4):83–89

    Article  CAS  Google Scholar 

  • Atagana HI (2011) Bioremediation of co-contamination of crude oil and heavy metals in soil by phytoremediation using Chromolaena odorata (L.)King & HE Robinson. Water Air Soil Pollut 215:261–271

    Article  CAS  Google Scholar 

  • Baker AJM, McGrath SP, Sidoli CMD, Reeves RD (1994) The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resour Conserv Recyl 11:41–49

    Article  Google Scholar 

  • Berndes G, Fredrikson F, Borjesson P (2004) Cadmium accumulation and Salix-based phytoextraction on arable land in Sweden. Agric Ecosyst Environ 103:20–23

    Article  Google Scholar 

  • Bissonnette L, St-Arnaud M, Labrecque M (2010) Phytoextraction of heavy metals by two Salicaceae clones in symbiosis with arbuscular mycorrhizal fungi during the second year of a field trial. Plant Soil 332:55–67. https://doi.org/10.1007/s11104-009-0273-x

    Article  CAS  Google Scholar 

  • Brieger G, Wells JR, Hunter RD (1992) Content in fly ash ecosystem. Water Air Soil Pollut 63:87–103

    Article  CAS  Google Scholar 

  • Cloutier HB, Turmel MC, Mercier C, Courchesne F (2014) The sequestration of trace elements by willow (Salix purpurea)—which soil properties favor uptake and accumulation. Environ Sci Pollut Res 21(6):4759–4771

    Article  Google Scholar 

  • Cooper EM, Sims JT, Cunningham JW, Berti WR (1999) Chelate-assisted phytoextraction of lead from contaminated soils. J Environ Qual 28:1709–1719

    Article  CAS  Google Scholar 

  • Cunningham SD, Owen DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110(3):715–719

    Article  CAS  Google Scholar 

  • Das P, Samantaray S, Rout GR (1997) Studies on cadmium toxicity in plants: a review. Environ Pollut 98(1):29–36

    Article  CAS  Google Scholar 

  • Dickinson NM (2000) Strategies for sustainable woodland on contaminated soils. Chemosphere 41:259–263

    Article  CAS  Google Scholar 

  • Gerhardt KE, Huang XD, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176:20–30

    Article  CAS  Google Scholar 

  • Goyal P, Sharma P, Srivastava S, Srivastava MM (2008) Saraca indica leaf powder for decontamination of Pb: removal, recovery, adsorbent characterization and equilibrium modelling. Int J Environ SciTech 5(1):27–34

    Article  CAS  Google Scholar 

  • Greger M, Landberg T (1999) Use of willow in phytoextraction. Int J Phytoremediation 1:115–123

    Article  CAS  Google Scholar 

  • Hammer D, Kayser A, Keller C (2003) Phytoextraction of Cd and Zn with Salix viminalis in field trials. Soil Use Manag 19:187–192

    Article  Google Scholar 

  • Hazrat A, Khan E, Anwar SM (2013) Phytoremediation of heavy metal concepts and applications. Chemosphere 91-7:869–881

    Google Scholar 

  • Jadia CD, Fulekar MH (2009) Phytoremediation of heavy metals: recent techniques. Afr J Biotechnol 8:921–928

    CAS  Google Scholar 

  • Kocik A, Truchan M, Rozen A (2007) Application of willows (Salix viminalis) and earthworms (Eisenia fetida) in sewage sludge treatment. Eur J Soil Biol 43:327–331

    Article  Google Scholar 

  • Laureysens I, Blust R, De Temmerman L, Lemmens C, Ceulemans R (2004) Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture: I. seasonal variation in leaf, wood and bark concentrations. Environ Pollut 131:485–494

    Article  CAS  Google Scholar 

  • Ledin S (1998) Environmental consequences when growing short rotation forest in Sweden. Biomass Bioenergy 15(1):49–55

    Article  Google Scholar 

  • Lovley DR, Coates JD (1997) Bioremediation of metal contamination. Environ Biotechnol 8:285–289

    CAS  Google Scholar 

  • Maria D, SusannaRAR KM, Sessitsch A, Wenzel WW, Gorfer M, Strauss J, Puschenreiter M (2011) Interactions between accumulation of trace elements and macronutrients in Salix caprea after inoculation with Rhizosphere microorganisms. Chemosphere 84(9):1256–1261

    Article  Google Scholar 

  • Marmiroli M, Pietrini F, Maestri E et al (2011) Growth, physiological and molecular traits in Salicaceae trees investigated for phytoremediation of heavy metals and organics. Tree Physiol 31:1319–1334

    Article  CAS  Google Scholar 

  • Maxted AP, Black CR, West HM, NMJ C, SP MG, Young SD (2007) Phytoextraction of cadmium and zinc by Salix from soil historically amended with sewage sludge. Plant Soil 290:157–172. https://doi.org/10.1007/s11104-006-9149-5

    Article  CAS  Google Scholar 

  • Meers E, Vandecasteele B, Ruttens A, Vangronsveld J, Tack FMG (2007) Potential of five willow species (Salix spp.) for phytoextraction of heavy metals. Environ Exp Bot 60:57–68. https://doi.org/10.1016/j.envexpbot.2006.06.008

    Article  CAS  Google Scholar 

  • Miroslaw M, Pawel R, Iwona R, Zygmunt K, Piotr G, Kinga S, Katarzyna S, Agnieszka S (2010) Biomass productivity and phytoremediation potential of Salix alba and Salix viminalis. Biomass Bioenergy 34:1410–1418

    Article  Google Scholar 

  • Mühlbachová G (2009) Microbial biomass dynamics after addition of EDTA into heavy metal contaminated soils. Plant Soil Environ 55(12):544–550

    Article  Google Scholar 

  • Newman LA, Reynolds CM (2004) Phytodegradation of organic compounds. Curr Opin Biotechnol 15:225–230

    Article  CAS  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39. https://doi.org/10.1146/annurev.arplant.56.032604.144214

    Article  CAS  PubMed  Google Scholar 

  • Pulford ID, Riddel-Black D, Stewart C (2002) Heavy metal uptake by willow clones from sewage sludge-treated soil: the potential for phytoremediation. Int J Phytoremediation 4:59–72

    Article  CAS  Google Scholar 

  • Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees-a review. Environ Int 29(4):529–540

    Article  CAS  Google Scholar 

  • Purdy JJ, Smart LB (2008) Hydroponic screening of shrub willow (Salix spp.) for arsenic tolerance and uptake. Int J Phytoremediation 10(6):515–528

    Article  CAS  Google Scholar 

  • Rattan RK, Datta SP, Chhonkar PK, Suribabu K, Singh AK (2005) Long-term impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater: a case study. Agric Ecosyst Environ 109:310–322

    Article  CAS  Google Scholar 

  • Ross SM, Kaye KJ (1994) The meaning of metal toxicity in soil-plant systems. In: Ross SM (ed) Toxic metals in soil-plant systems. Wiley, New York, pp 27–61

    Google Scholar 

  • Schaff SD, Pezeshki SR, Shields FD (2003) Effects of soil conditions on survival and growth of black willow cuttings. Environ Manag 31:748–763

    Article  Google Scholar 

  • Shen ZG, Zhao FJ, McGrath SP (1997) Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the non-hyperaccumulator Thlaspi ochroleucum. Plant Cell Environ 20:898–906

    Article  CAS  Google Scholar 

  • Vande WI, Van CN, Van-de CL, Verheyen K, Lemeur R (2007) Short-rotation forestry of birch, maple, poplar and willow in Flanders (Belgium) II. Energy production and CO2 emission reduction potential. Biomass Bioenergy 31:276–283

    Article  Google Scholar 

  • Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16(7):76–94

    Article  Google Scholar 

  • Vervaeke P, Luyssaert S, Mertens J, Meers E, Tack FMG, Lust N (2003) Phytoremediation prospects of willow stands on contaminated sediment: a field trial. Environ Pollut 126:275–282

    Article  CAS  Google Scholar 

  • Watson C, Pulford ID, Riddell-Black D (2003) Development of a hydroponic screening technique to assess heavy metal resistance in willow (Salix). Int J Phytoremediation 5:333–349

    Article  CAS  Google Scholar 

  • White C, Gadd GM (1997) An internal sedimentation bioreactor for laboratory scale removal of toxic metals from soil leachates using biogenic sulphide precipitation. J Ind Microbiol Biotechnol 18(6):414–421

    Article  CAS  Google Scholar 

  • Wilkinson G (1999) Poplars and willows for soil erosion control in New Zealand. Biomass Bioenergy 16:263–274

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Malik, J.A., Wani, A.A., Wani, K.A., Bhat, M.A. (2020). Role of White Willow (Salix alba L.) for Cleaning Up the Toxic Metal Pollution. In: Hakeem, K., Bhat, R., Qadri, H. (eds) Bioremediation and Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-35691-0_12

Download citation

Publish with us

Policies and ethics