Skip to main content

Commercial Aspects of Biomass Deconstruction with Ionic Liquids

  • Chapter
  • First Online:
Commercial Applications of Ionic Liquids

Abstract

The adaption of any new process from academic research to industrial-scale requires a robust economic profile demonstrating it can compete with peer technologies. IonoSolv process is a recently developed ionic liquid-based pretreatment that pioneers the use of low-cost ionic liquids for biomass fractionation. The use of low-cost protic ionic liquids elevated the techno-economic profile of the process, making its potential commercialization highly viable. In this chapter, the authors give an overview of key process-related aspects that underpinned this transformation, with special highlights on the progressive milestones achieved in developing a promising commercial ionic liquid-based pretreatment process. We also highlight the current challenges and knowledge gaps that need to be tackled to further elevate the technology readiness level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beller M, Centi G, Sun L (2017) Chemistry future: priorities and opportunities from the sustainability perspective. ChemSusChem 10:6–13. https://doi.org/10.1002/cssc.201601739

    Article  CAS  PubMed  Google Scholar 

  2. Fulton LM, Lynd LR, Körner A, Greene N, Tonachel LR (2015) The need for biofuels as part of a low carbon energy future. Biofuels Bioprod Biorefining 9:476–483. https://doi.org/10.1002/bbb.1559

  3. IPCC (2015) Foreword, preface, dedication and in memoriam. Climate change 2014: mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. pp. v–vi, Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781107415416

  4. Dale BE, Anderson JE, Brown RC, Csonka S, Dale VH, Herwick G, Jackson RD, Jordan N, Kaffka S, Kline KL, Lynd LR (2014) Take a closer look: biofuels can support environmental, economic and social goals. Environ Sci Technol 48:7200–7203. https://doi.org/10.1021/es5025433

    Article  CAS  PubMed  Google Scholar 

  5. Isikgor FH, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 6:4497–4559. https://doi.org/10.1039/C5PY00263J

    Article  CAS  Google Scholar 

  6. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686. https://doi.org/10.1016/j.biortech.2004.06.025

    Article  CAS  Google Scholar 

  7. Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685. https://doi.org/10.1016/j.biotechadv.2011.05.005

    Article  CAS  PubMed  Google Scholar 

  8. Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess 4:7. https://doi.org/10.1186/s40643-017-0137-9

    Article  PubMed  PubMed Central  Google Scholar 

  9. Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861. https://doi.org/10.1016/j.biortech.2009.11.093

    Article  CAS  PubMed  Google Scholar 

  10. Albers SC, Berklund AM, Graff GD (2016) The rise and fall of innovation in biofuels. Nat Biotechnol 34:814–821. https://doi.org/10.1038/nbt.3644

    Article  CAS  PubMed  Google Scholar 

  11. Oliveira FM, Pinheiro IO, Souto-Maior AM, Martin C, Gonçalves AR, Rocha GJ (2013) Industrial-scale steam explosion pretreatment of sugarcane straw for enzymatic hydrolysis of cellulose for production of second generation ethanol and value-added products. Bioresour Technol 130:168–173. https://doi.org/10.1016/j.biortech.2012.12.030

    Article  CAS  PubMed  Google Scholar 

  12. Bals B, Rogers C, Jin M, Balan V, Dale B (2010) Evaluation of ammonia fibre expansion (AFEX) pretreatment for enzymatic hydrolysis of switchgrass harvested in different seasons and locations. Biotechnol Biofuels 3:1. https://doi.org/10.1186/1754-6834-3-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Saha BC, Iten LB, Cotta MA, Wu YV (2005) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem 40:3693–3700. https://doi.org/10.1016/j.procbio.2005.04.006

    Article  CAS  Google Scholar 

  14. Zhuang X, Wang W, Yu Q, Qi W, Wang Q, Tan X, Zhou G, Yuan Z (2016) Liquid hot water pretreatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products. Bioresour Technol 199:68–75. https://doi.org/10.1016/j.biortech.2015.08.051

    Article  CAS  PubMed  Google Scholar 

  15. Zhao X, Cheng K, Liu D (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82:815–827. https://doi.org/10.1007/s00253-009-1883-1

    Article  CAS  PubMed  Google Scholar 

  16. Fort DA, Remsing RC, Swatloski RP, Moyna P, Moyna G, Rogers RD (2007) Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chem 9:63–69. https://doi.org/10.1039/B607614A

    Article  CAS  Google Scholar 

  17. An Y-X, Zong M-H, Wu H, Li N (2015) Pretreatment of lignocellulosic biomass with renewable cholinium ionic liquids: Biomass fractionation, enzymatic digestion and ionic liquid reuse. Bioresour Technol 192:165–171. https://doi.org/10.1016/j.biortech.2015.05.064

    Article  CAS  PubMed  Google Scholar 

  18. Hu S, Zhang Z, Zhou Y, Han B, Fan H, Li W, Song J, Xie Y (2008) Conversion of fructose to 5-hydroxymethylfurfural using ionic liquids prepared from renewable materials. Green Chem 10:1280–1283. https://doi.org/10.1039/b810392e

    Article  CAS  Google Scholar 

  19. Rogers RD, Seddon KR (2003) Ionic liquids–solvents of the future? Science 302:792–793. https://doi.org/10.1126/science.1090313

    Article  PubMed  Google Scholar 

  20. Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150. https://doi.org/10.1039/B006677J

    Article  CAS  PubMed  Google Scholar 

  21. García-Verdugo E, Altava B, Burguete MI, Lozano P, Luis SV (2015) Ionic liquids and continuous flow processes: a good marriage to design sustainable processes. Green Chem 17:2693–2713. https://doi.org/10.1039/C4GC02388A

    Article  Google Scholar 

  22. Brandt-Talbot A, Gschwend FJV, Fennell PS, Lammens TM, Tan B, Weale J, Hallett JP (2017) An economically viable ionic liquid for the fractionation of lignocellulosic biomass. Green Chem 19:3078–3102. https://doi.org/10.1039/C7GC00705A

    Article  CAS  Google Scholar 

  23. Jørgensen H, Pinelo M (2017) Enzyme recycling in lignocellulosic biorefineries. Biofuels Bioprod Biorefining 11:150–167. https://doi.org/10.1002/bbb.1724

  24. Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan GA, Wyman CE (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344:1246843. https://doi.org/10.1126/science.1246843

    Article  CAS  PubMed  Google Scholar 

  25. Yuan T-Q, Wang W, Zhang L-M, Xu F, Sun R-C (2013) Reconstitution of cellulose and lignin after [C2mim][OAc] pretreatment and its relation to enzymatic hydrolysis. Biotechnol Bioeng 110:729–736. https://doi.org/10.1002/bit.24743

    Article  CAS  PubMed  Google Scholar 

  26. Li C, Knierim B, Manisseri C, Arora R, Scheller HV, Auer M, Vogel KP, Simmons BA, Singh S (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour Technol 101:4900–4906. https://doi.org/10.1016/j.biortech.2009.10.066

    Article  CAS  PubMed  Google Scholar 

  27. Singh S, Simmons BA, Vogel KP (2009) Visualization of biomass solubilization and cellulose regeneration during ionic liquid pretreatment of switchgrass. Biotechnol Bioeng 104:68–75. https://doi.org/10.1002/bit.22386

    Article  CAS  PubMed  Google Scholar 

  28. Shi J, Thompson VS, Yancey NA, Stavila V, Simmons BA, Singh S (2017) Impact of mixed feedstocks and feedstock densification on ionic liquid pretreatment efficiency. Biofuels 4:63–72. https://doi.org/10.4155/bfs.12.82

  29. George A, Brandt A, Tran K, Zahari SMNS, Klein-Marcuschamer D, Sun N, Sathitsuksanoh N, Shi J, Stavila V, Parthasarathi R, Singh S, Holmes BM, Welton T, Simmons BA, Hallett JP (2015) Design of low-cost ionic liquids for lignocellulosic biomass pretreatment. Green Chem 17:1728–1734. https://doi.org/10.1039/C4GC01208A

    Article  CAS  Google Scholar 

  30. Chen L, Sharifzadeh M, Mac Dowell N, Welton T, Shah N, Hallett JP (2014) Inexpensive ionic liquids: [HSO4]-based solvent production at bulk scale. Green Chem 16:3098–3106. https://doi.org/10.1039/C4GC00016A

  31. De Rose A, Buna M, Strazza C, Olivieri N, Stevens T, Peeters L, Tawil-Jamault D (2017) Technology readiness level: guidance principles for renewable energy technologies. Report EUR 27988 EN, European Commission, Brussels. https://doi.org:10.2777/577767

  32. Gschwend FJV, Brandt A, Chambon CL, Tu W-C, Weigand L, Hallett JP (2016) Pretreatment of lignocellulosic biomass with low-cost ionic liquids. J Vis Exp 114:e54246. http://doi:10.3791/54246

  33. Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975. https://doi.org/10.1021/ja025790m

    Article  CAS  PubMed  Google Scholar 

  34. Lynd LR (2017) The grand challenge of cellulosic biofuels. Nat Biotechnol 35:912–915. https://doi.org/10.1038/nbt.3976

    Article  CAS  PubMed  Google Scholar 

  35. Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2083. https://doi.org/10.1021/cr980032t

  36. Dai C, Zhang J, Huang C, Lei Z (2017) Ionic liquids in selective oxidation: catalysts and solvents. Chem Rev 117:6929–6983. https://doi.org/10.1021/acs.chemrev.7b00030

    Article  CAS  PubMed  Google Scholar 

  37. Chen Y, Zhang X, Zhang D, Yu P, Ma Y (2011) High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes. Carbon 49:573–580. https://doi.org/10.1016/j.carbon.2010.09.060

    Article  CAS  Google Scholar 

  38. Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafi GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sustain Energy Rev 27:77–93. https://doi.org/10.1016/j.rser.2013.06.033

    Article  CAS  Google Scholar 

  39. Stark A (2011) Ionic liquids in the biorefinery: a critical assessment of their potential. Energy Environ Sci 4:19–32. https://doi.org/10.1039/C0EE00246A

    Article  CAS  Google Scholar 

  40. Biganska O, Navard P (2009) Morphology of cellulose objects regenerated from cellulose-N-methylmorpholine N-oxide–water solutions. Cellulose 16:179–188. https://doi.org/10.1007/s10570-008-9256-y

  41. Zhang Y-HP, Cui J, Lynd LR, Kuang LR (2006) A transition from cellulose swelling to cellulose dissolution by o-phosphoric acid: Evidence from enzymatic hydrolysis and supramolecular structure. Biomacromolecules 7: 644–648. https://doi.org/10.1021/bm050799c

  42. Charles G (1933) Cellulose solution and cellulose derivative and process of making same, US patent no 1,924,238. US Patent and Trademark Office, Washington

    Google Scholar 

  43. Tadesse H, Luque R (2011) Advances on biomass pretreatment using ionic liquids: an overview. Energy Environ Sci 4:3913–3929. https://doi.org/10.1039/c0ee00667j

    Article  CAS  Google Scholar 

  44. Michud A, Tanttu M, Asaadi S, Ma Y, Netti E, Kääriainen P, Persson A, Berntsson A, Hummel M, Sixta H (2016) Ioncell-F: ionic liquid-based cellulosic textile fibers as an alternative to viscose and Lyocell. Text Res J 86:543–552. https://doi.org/10.1177/0040517515591774

    Article  CAS  Google Scholar 

  45. Zhao H, Holladay JE, Brown H, Zhang ZC (2007) Metal chlorides in ionic liquid solvents convert sugar to 5-hydroxymethylfurfural. Science 316:1597–1600. https://doi.org/10.1126/science.1141199

    Article  CAS  PubMed  Google Scholar 

  46. van Putten RJ, van der Waal JC, de Jong ED, Rasrendra CB, Heeres HJ, de Vries JG (2013) Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem Rev 113:1499−1597. https://doi.org/10.1021/cr300182k

  47. Werpy T, Petersen G (eds.) (2004) Top value added chemicals from biomass volume I—results of screening for potential candidates from sugars and synthesis gas. U.S. Department of Energy, National Renewable Energy Laboratory, Golden, CO. https://doi.org/10.2172/15008859

  48. Eminov S, Brandt A, Wilton-Ely JDET, Hallett JP (2016) The highly selective and near-quantitative conversion of glucose to 5-hydroxymethylfurfural using ionic liquids. PLoS ONE 11:e0163835. https://doi.org/10.1371/journal.pone.0163835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rosatella AA, Simeonov SP, Frade RFM, Afonso CAM (2011) 5-Hydroxymethylfurfural (HMF) as a building block platform: biological properties, synthesis and synthetic applications. Green Chem 13:754–793. https://doi.org/10.1039/c0gc00401d

    Article  CAS  Google Scholar 

  50. Hou Q, Li W, Zhen M, Liu L, Chen Y, Yang Q, Huang F, Zhang S, Ju M (2017) An ionic liquid–organic solvent biphasic system for efficient production of 5-hydroxymethylfurfural from carbohydrates at high concentrations. RSC Adv 7:47288–47296. https://doi.org/10.1039/C7RA10237B

    Article  CAS  Google Scholar 

  51. Lima S, Neves P, Antunes MM, Pillinger M, Ignatyev N, Valente AA (2009) Conversion of mono/di/polysaccharides into furan compounds using 1-alkyl-3-methylimidazolium ionic liquids. Appl Catal A Gen 363:93–99. https://doi.org/10.1016/j.apcata.2009.04.049

    Article  CAS  Google Scholar 

  52. Greaves TL, Drummond CJ (2008) Protic ionic liquids: properties and applications. Chem Rev 108:206–237. https://doi.org/10.1021/cr068040u

    Article  CAS  PubMed  Google Scholar 

  53. Greaves TL, Kennedy DF, Mudie ST, Drummond CJ (2010) Diversity observed in the nanostructure of protic ionic liquids. J Phys Chem B 114:10022–10031. https://doi.org/10.1021/jp103863z

    Article  CAS  PubMed  Google Scholar 

  54. Deetlefs M, Seddon KR (2010) Assessing the greenness of some typical laboratory ionic liquid preparations. Green Chem 12:17–30. https://doi.org/10.1039/B915049H

    Article  CAS  Google Scholar 

  55. Greaves TL, Weerawardena A, Krodkiewska I, Drummond CJ (2008) Protic ionic liquids: physicochemical properties and behavior as amphiphile self-assembly solvents. J Phys Chem B 112:896–905. https://doi.org/10.1021/jp0767819

    Article  CAS  PubMed  Google Scholar 

  56. Greaves TL, Weerawardena A, Fong C, Krodkiewska I, Drummond CJ (2006) Protic ionic liquids: Solvents with tunable phase behavior and physicochemical properties. J Phys Chem B Ibid. 110:26506. https://doi.org/10.1021/jp068102k

    Article  CAS  PubMed  Google Scholar 

  57. Yoshizawa M, Xu W, Angell CA (2003) Ionic liquids by proton transfer: vapor pressure, conductivity, and the relevance of ΔpKa from aqueous solutions. J Am Chem Soc 125:15411–15419. https://doi.org/10.1021/ja035783d

    Article  CAS  PubMed  Google Scholar 

  58. Greaves TL, Drummond CJ (2015) Protic ionic liquids: evolving structure–property relationships and expanding applications. Chem Rev 115:11379–11448. https://doi.org/10.1021/acs.chemrev.5b00158

    Article  CAS  PubMed  Google Scholar 

  59. Penttilä A, Uusi-Kyyny P, Alopaeus V (2014) Distillable protic ionic liquid 2-(hydroxy)ethylammonium acetate (2-HEAA): density, vapor pressure, vapor–liquid equilibrium, and solid–liquid equilibrium. Ind Eng Chem Res 53:19322–19330. https://doi.org/10.1021/ie503823a

    Article  CAS  Google Scholar 

  60. Earle MJ, Esperança JMSS, Gilea MA, Canongia Lopes JN, Rebelo LPN, Magee JW, Seddon KR, Widegren JA (2006) The distillation and volatility of ionic liquids. Nature 439:831–834. https://doi.org/10.1038/nature04451

    Article  CAS  PubMed  Google Scholar 

  61. Menne S, Vogl T, Balducci A (2014) Lithium coordination in protic ionic liquids. Phys Chem Chem Phys 16:5485–5489. https://doi.org/10.1039/c3cp55183k

    Article  CAS  PubMed  Google Scholar 

  62. Mayrand-Provencher L, Lin S, Lazzerini D, Rochefort D (2010) Pyridinium-based protic ionic liquids as electrolytes for RuO2 electrochemical capacitors. J Power Sour 195:5114–5121. https://doi.org/10.1016/j.jpowsour.2010.02.073

    Article  CAS  Google Scholar 

  63. Kanzaki R, Kodamatani H, Tomiyasu T, Watanabe H, Umebayashi Y (2016) A pH scale for the protic ionic liquid ethylammonium nitrate. Angew Chem Int Ed 55:6266–6269. https://doi.org/10.1002/anie.201511328

    Article  CAS  Google Scholar 

  64. Kanzaki R, Doi H, Song X, Hara S, Ishiguro S, Umebayashi Y (2012) Acid–base property of N–methylimidazolium-based protic ionic. J Phys Chem B 116:14146−14152. https://doi.org/10.1021/jp308477p

  65. Hashimoto K, Fujii K, Shibayama M (2013) Acid–base property of protic ionic liquid, 1-alkylimidazolium bis(trifluoromethanesulfonyl)amide studied by potentiometric titration. J Mol Liq 188:143–147. https://doi.org/10.1016/j.molliq.2013.08.023

    Article  CAS  Google Scholar 

  66. da Costa Lopes AM, João KG, Morais ARC, Bogel-Łukasik E, Bogel-Łukasik R (2013) Ionic liquids as a tool for lignocellulosic biomass fractionation. Sustain Chem Process 1:3. https://doi.org/10.1186/2043-7129-1-3

    Article  CAS  Google Scholar 

  67. Kautto J, Realff MJ, Ragauskas AJ (2013) Design and simulation of an organosolv process for bioethanol production. Biomass Convers Biorefinery 3:199–212. https://doi.org/10.1007/s13399-013-0074-6

    Article  CAS  Google Scholar 

  68. Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers Manag 51:1412–1421. https://doi.org/10.1016/j.enconman.2010.01.015

    Article  CAS  Google Scholar 

  69. Chen H, Liu J, Chang X, Chen D, Xue Y, Liu P, Lin H, Han S (2017) A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Process Technol 160:196–206. https://doi.org/10.1016/j.fuproc.2016.12.007

    Article  CAS  Google Scholar 

  70. Kilpelainen I, Xie H, King A, Granstrom M, Heikkinen S, Argyropoulos DS (2007) Dissolution of wood in ionic liquids. J Agric Food Chem 55:9142–9148. https://doi.org/10.1021/jf071692e

    Article  CAS  PubMed  Google Scholar 

  71. Brandt A, Gräsvik J, Hallett JP, Welton T (2013) Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem 15:550–583. https://doi.org/10.1039/c2gc36364j

    Article  CAS  Google Scholar 

  72. Sun N, Rahman M, Qin Y, Maxim ML, Rodríguez H, Rogers RD (2009) Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem 11:646–655. https://doi.org/10.1039/b822702k

  73. Cheng G, Varanasi P, Li C, Liu H, Melnichenko YuB, Simmons BA, Kent MS, Singh S (2011) Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis. Biomacromol 12:933–941. https://doi.org/10.1021/bm101240z

    Article  CAS  Google Scholar 

  74. Wang Y, Zhang L, Zhang R, Liu G, Cheng G (2014) Understanding changes in cellulose crystalline structure of lignocellulosic biomass during ionic liquid pretreatment by XRD. Bioresour Technol 151:402–405. https://doi.org/10.1016/j.biortech.2013.10.009

    Article  CAS  PubMed  Google Scholar 

  75. Trinh LTP, Lee YJ, Lee J-W, Lee H-J (2015) Characterization of ionic liquid pretreatment and the bioconversion of pretreated mixed softwood biomass. Biomass Bioenerg 81:1–8. https://doi.org/10.1016/j.biombioe.2015.05.005

    Article  CAS  Google Scholar 

  76. Remsing RC, Hernandez G, Swatloski RP, Massefski WW, Rogers RD, Moyna G (2008) Solvation of carbohydrates in N, N′-dialkylimidazolium ionic liquids: a multinuclear NMR spectroscopy study. J Phys Chem B 112:11071–11078. https://doi.org/10.1021/jp8042895

    Article  CAS  PubMed  Google Scholar 

  77. Fukaya Y, Hayashi K, Wada M, Ohno H (2008) Cellulose dissolution with polar ionic liquids under mild conditions: required factors for anions. Green Chem 10:44–46. https://doi.org/10.1039/B713289A

    Article  CAS  Google Scholar 

  78. Fukaya Y, Sugimoto A, Ohno H (2006) Superior solubility of polysaccharides in low viscosity, polar and halogen-free 1,3-dialkylimidazolium formates. Biomacromol 7:3295–3297. https://doi.org/10.1021/bm060327d

    Article  CAS  Google Scholar 

  79. Liu H, Sale KL, Holmes BM, Simmons BA, Singh S (2010) Understanding the interactions of cellulose with ionic liquids: a molecular dynamics study. J Phys Chem B 114:4293–4301. https://doi.org/10.1021/jp9117437

  80. Ab Rani MA, Brant A, Crowhurst L, Dolan A, Lui M, Hassan NH, Hallett JP, Hunt PA, Niedermeyer H, Perez-Arlandis JM, Schrems M (2011) Understanding the polarity of ionic liquids. Phys Chem Chem Phys 13:16831–16840. https://doi.org/10.1039/c1cp21262a

    Article  CAS  PubMed  Google Scholar 

  81. Rosatella AA, Afonso CAM (2015) The dissolution of biomass in ionic liquids towards pre-treatment approach. In: Bogel-Lukasik R (Ed.) Ionic liquids in the biorefinery concept, RSC Green Chemistry No. 36, The Royal Society of Chemistry, pp 38–64. https://doi.org/10.1039/9781782622598-00038

  82. Upfal J, MacFarlane DR, Forsyth SA (2007) Solvents for use in the treatment of lignin-containing materials. US patent application no 2007/0215300A1

    Google Scholar 

  83. Varanasi S, Schall CA, Dadi AP, Anderson J, Rao K, Kumar G, Paripati P (2011) Biomass pretreatment. US patent no 8,030,030

    Google Scholar 

  84. Lee SH, Doherty TV, Linhardt RJ, Dordick JS (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102:1368–1376. https://doi.org/10.1002/bit.22179

  85. Pu Y, Jiang N, Ragauskas AJ (2007) Ionic liquid as a green solvent for lignin. J Wood Chem Technol 27:23–33. https://doi.org/10.1080/02773810701282330

    Article  CAS  Google Scholar 

  86. Tan SS, MacFarlane DR, Upfal J, Edye LA, Doherty WOS, Patti AF, Pringle JM, Scott JL (2009) Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid. Green Chem 11:339–345. https://doi.org/10.1039/b815310h

    Article  CAS  Google Scholar 

  87. Brandt A, Ray MJ, To TQ, Leak DJ, Murphy RJ (2011) Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid–water mixtures. Green Chem 13:2489–2499. https://doi.org/10.1039/c1gc15374a

  88. Brandt-Talbot A, Murphy RJ, Leak DJ, Welton T, Hallett J (2017) Treatment of biomass to dissolve lignin with ionic liquid. US patent no 9,765,478

    Google Scholar 

  89. Sheldon R (2001) Catalytic reactions in ionic liquids. Chem Commun 2399–2407. https://doi.org/10.1039/B107270F

  90. Supap T, Idem R, Tontiwachwuthikul P (2011) Mechanism of formation of heat stable salts (HSSs) and their roles in further degradation of monoethanolamine during CO2 capture from flue gas streams. Energy Procedia 4:591–598. https://doi.org/10.1016/j.egypro.2011.01.093

    Article  CAS  Google Scholar 

  91. Axelsson L, Franzén M, Ostwald M, Berndes G, Lakshmi G, Ravidranath NH (2012) Perspective: Jatropha cultivation in southern India: assessing farmers’ experiences. Biofuels Bioprod Biorefining 6:246–256. https://doi.org/10.1002/bbb.1324

  92. Fox DM, Awad WH, Gilman JW, Maupin PH, De Long HC, Trulove PC (2003) Flammability, thermal stability, and phase change characteristics of several trialkylimidazolium salts. Green Chem 5:724–727. https://doi.org/10.1039/B308444B

    Article  CAS  Google Scholar 

  93. Cao Y, Mu T (2014) Comprehensive investigation on the thermal stability of 66 ionic liquids by thermogravimetric analysis. Ind Eng Chem Res 53:8651–8664. https://doi.org/10.1021/ie5009597

    Article  CAS  Google Scholar 

  94. Chiaramonti D, Prussi M, Ferrero S, Oriani L, Ottonello P, Torre P, Cherchi F (2012) Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method. Biomass Bioenerg 46:25–35. https://doi.org/10.1016/j.biombioe.2012.04.020

    Article  CAS  Google Scholar 

  95. Subramaniam B, Helling RK, Bode CJ (2016) Quantitative sustainability analysis: a powerful tool to develop resource-efficient catalytic technologies. ACS Sustain Chem Eng 4:5859–5865. https://doi.org/10.1021/acssuschemeng.6b01571

    Article  CAS  Google Scholar 

  96. Achinivu EC, Howard RM, Li G, Gracz H, Henderson WA (2014) Lignin extraction from biomass with protic ionic liquids. Green Chem 16:1114–1119. https://doi.org/10.1039/C3GC42306A

    Article  CAS  Google Scholar 

  97. Maton C, De Vos N, Stevens CV (2013) Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools. Chem Soc Rev 42:5963–5977. https://doi.org/10.1039/c3cs60071h

    Article  CAS  PubMed  Google Scholar 

  98. Hallett JP, Welton T (2011) Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem Rev 111:3508–3576. https://doi.org/10.1021/cr1003248

  99. Sanders JPM, Clark JH, Harmsen GJ, Heeres HJ, Heijnen JJ, Kersten SR, van Swaaij WPM, Moulijn JA (2012) Process intensification in the future production of base chemicals from biomass. Chem Eng Process Process Intensif 51:117–136. https://doi.org/10.1016/j.cep.2011.08.007

    Article  CAS  Google Scholar 

  100. Klein-Marcuschamer D, Simmons BA, Blanch HW (2011) Techno-economic analysis of a lignocellulosic ethanol biorefinery with ionic liquid pre-treatment. Biofuels Bioprod Biorefining 5:562–569. https://doi.org/10.1002/bbb.303

  101. Murthy Konda NVSN, Shi J, Singh S, Blanch HW, Simmons BA, Klein-Marcuschamer D (2014) Understanding cost drivers and economic potential of two variants of ionic liquid pretreatment for cellulosic biofuel production. Biotechnol Biofuels 7:86. https://doi.org/10.1186/1754-6834-7-86

    Article  Google Scholar 

  102. Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A, Schoen P, Lukas J, Olthof B, Worley M, Sexton S, Dudgeon D (2011) Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol, NREL/TP-5100-4776 Technical Report

    Google Scholar 

  103. Ebel K, Koehler H, Gamer AO, Jäckh R (2011) Imidazole and derivatives. Ullmann’s encyclopedia of industrial chemistry, vol 1. Wiley-VCH, New York, pp 131–139

    Google Scholar 

  104. Jessop PG (2011) Searching for green solvents. Green Chem 13:1391–1398. https://doi.org/10.1039/c0gc00797h

    Article  CAS  Google Scholar 

  105. Clarke CJ, Tu W-C, Levers O, Bröhl A, Hallett JP (2018) Green and sustainable solvents in chemical processes. Chem Rev 118:747–800. https://doi.org/10.1021/acs.chemrev.7b00571

    Article  CAS  PubMed  Google Scholar 

  106. Tao L, Aden A, Elander RT, Pallapolu VR, Lee YY, Garlock RJ, Balan V, Dale BE, Kim Y, Mosier NS, Ladisch MR, Falls M, Holtzapple MT, Sierra R, Shi J, Ebrik MA, Redmont T, Yang B, Wyman CE, Hames B, Thomas S, Warner RE (2011) Process and technoeconomic analysis of leading pretreatment technologies for lignocellulosic ethanol production using switchgrass. Bioresour Technol 102:11105–11114. https://doi.org/10.1016/j.biortech.2011.07.051

    Article  CAS  PubMed  Google Scholar 

  107. Kazi FK, Fortman JA, Anex RP, Hsu DD, Aden A, Dutta A, Kothandaraman G (2010) Techno-economic comparison of process technologies for biochemical ethanol production from corn stover. Fuel 89:S20–S28. https://doi.org/10.1016/j.fuel.2010.01.001

    Article  CAS  Google Scholar 

  108. Gschwend FJV, Malaret F, Shinde S, Brandt-Talbot A, Hallett JP (2016) Rapid pretreatment of Miscanthus using the low-cost ionic liquid triethylammonium hydrogen sulfate at elevated temperatures. Green Chem 20:3486–3498. https://doi.org/10.1039/C8GC00837J

  109. Shinde SD, Meng X, Kumar R, Ragauskas AJ (2018) Recent advances in understanding the pseudo-lignin formation in a lignocellulosic biorefinery. Green Chem 20:2192–2205. https://doi.org/10.1039/C8GC00353J

    Article  Google Scholar 

  110. Li W, Sun N, Stoner B, Jiang X, Lu X, Rogers RD (2011) Rapid dissolution of lignocellulosic biomass in ionic liquids using temperatures above the glass transition of lignin. Green Chem 13:2038–2047. https://doi.org/10.1039/c1gc15522a

    Article  CAS  Google Scholar 

  111. Arora R, Manisseri C, Li C, Ong MD, Scheller HV, Vogel K, Simmons BA, Singh S (2010) Monitoring and analyzing process streams towards understanding ionic liquid pretreatment of switchgrass (Panicum virgatum L.). Bioenergy Res 3:134–145. https://doi.org/10.1007/s12155-010-9087-1

  112. Modenbach AA, Nokes SE (2013) Enzymatic hydrolysis of biomass at high-solids loadings—a review. Biomass Bioenerg 56:526–544. https://doi.org/10.1016/j.biombioe.2013.05.031

    Article  CAS  Google Scholar 

  113. Samaniuk JR, Scott CT, Root TW, Klingenberg DJ (2012) Rheological modification of corn stover biomass at high solids concentrations. J Rheol 56:649–665. https://doi.org/10.1122/1.3702101

    Article  CAS  Google Scholar 

  114. Papa G, Feldman T, Sale KL, Adani F, Singh S, Simmons BA (2017) Parametric study for the optimization of ionic liquid pretreatment of corn stover. Bioresour Technol 241:627–637. https://doi.org/10.1016/j.biortech.2017.05.167

    Article  CAS  PubMed  Google Scholar 

  115. Cruz AG, Scullin C, Mu C, Cheng G, Stavila V, Varanasi P, Xu D, Mentel J, Chuang Y-D, Simmons BA, Singh S (2013) Impact of high biomass loading on ionic liquid pretreatment. Biotechnol Biofuels 6:52. https://doi.org/10.1186/1754-6834-6-52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wu H, Mora-Pale M, Miao J, Doherty TV, Linhardt RJ, Dordick JS (2011) Facile pretreatment of lignocellulosic biomass at high loadings in room temperature ionic liquids. Biotechnol Bioeng 108:2865–2875. https://doi.org/10.1002/bit.23266

    Article  CAS  PubMed  Google Scholar 

  117. Auxenfans T, Buchoux S, Larcher D, Husson G, Husson E, Sarazin C (2014) Enzymatic saccharification and structural properties of industrial wood sawdust: Recycled ionic liquids pretreatments. Energy Convers Manag 88:1094–1103. https://doi.org/10.1016/j.enconman.2014.04.027

    Article  CAS  Google Scholar 

  118. Qiu Z, Aita GM (2013) Pretreatment of energy cane bagasse with recycled ionic liquid for enzymatic hydrolysis. Bioresour Technol 129:532–537. https://doi.org/10.1016/j.biortech.2012.11.062

    Article  CAS  PubMed  Google Scholar 

  119. da Costa Lopes AM, João KG, Rubik DF, Bogel-Łukasik E, Duarte LC, Andreaus J, Bogel-Łukasik R (2013) Pre-treatment of lignocellulosic biomass using ionic liquids: wheat straw fractionation. Bioresour Technol 142:198–208. https://doi.org/10.1016/j.biortech.2013.05.032

  120. Badgujar KC, Bhanage BM (2015) Factors governing dissolution process of lignocellulosic biomass in ionic liquid: current status, overview and challenges. Bioresour Technol 178:2–18. https://doi.org/10.1016/j.biortech.2014.09.138

    Article  CAS  PubMed  Google Scholar 

  121. Sun J, Shi J, Murthy Konda NVSN, Campos D, Liu D, Nemser S, Shamshina J, Dutta T, Berton P, Gurau G, Rogers RD, Simmons BA, Singh S (2017) Efficient dehydration and recovery of ionic liquid after lignocellulosic processing using pervaporation. Biotechnol Biofuels 1:154. https://doi.org/10.1186/s13068-017-0842-9

    Article  CAS  Google Scholar 

  122. Mai NL, Ahn K, Koo Y-M (2014) Methods for recovery of ionic liquids—a review. Process Biochem 49:872–881. https://doi.org/10.1016/j.procbio.2014.01.016

    Article  CAS  Google Scholar 

  123. Reid JESJ, Walker AJ, Shimizu S (2015) Residual water in ionic liquids: clustered or dissociated? Phys Chem Chem Phys 17:14710–14718. https://doi.org/10.1039/C5CP01854D

    Article  CAS  PubMed  Google Scholar 

  124. Mateyawa S, Xie DF, Truss RW, Halley PJ, Nicholson TM, Shamshina JL, Rogers RD, Boehm MW, McNally T (2013) Effect of the ionic liquid 1-ethyl-3-methylimidazolium acetate on the phase transition of starch: Dissolution or gelatinization? Carbohydr Polym 94:520–530. https://doi.org/10.1016/j.carbpol.2013.01.024

    Article  CAS  PubMed  Google Scholar 

  125. Hoerning A, Ribeiro FRG, Cardozo Filho L, Lião LM, Corazza M, Voll FAP (2016) Boiling point elevation of aqueous solutions of ionic liquids derived from diethanolamine base and carboxylic acids. J Chem Thermodyn 98:1–8. https://doi.org/10.1016/j.jct.2016.02.017

    Article  CAS  Google Scholar 

  126. Haerens K, Van Deuren S, Matthijs E, Van der Bruggen B (2010) Challenges for recycling ionic liquids by using pressure driven membrane processes. Green Chem 12:2182–2188. https://doi.org/10.1039/c0gc00406e

    Article  CAS  Google Scholar 

  127. Lynam JG, Chow GI, Coronella CJ, Hiibel SR (2016) Ionic liquid and water separation by membrane distillation. Chem Eng J 288:557–561. https://doi.org/10.1016/j.cej.2015.12.028

    Article  CAS  Google Scholar 

  128. Li Y, Zhang S, Ding Q, Feng D, Qin B, Hu L (2017) The corrosion and lubrication properties of 2-mercaptobenzothiazole functionalized ionic liquids for bronze. Tribol Int 114:121–131. https://doi.org/10.1016/j.triboint.2017.04.022

    Article  CAS  Google Scholar 

  129. Turner MB, Spear SK, Huddleston JG, Holbrey JD, Rogers RD (2003) Ionic liquid salt-induced inactivation and unfolding of cellulase from Trichoderma reesei. Green Chem 5:443–447. https://doi.org/10.1039/b302570e

    Article  CAS  Google Scholar 

  130. Ganske F, Bornscheuer UT (2006) Growth of Escherichia coli, Pichia pastoris and Bacillus cereus in the presence of the ionic liquids [BMIM][BF4] and [BMIM][PF6] and organic solvents. Biotechnol Lett 28:465–469. https://doi.org/10.1007/s10529-006-0006-7

    Article  CAS  PubMed  Google Scholar 

  131. Xu F, Sun J, Murthy Konda NVSN, Shi J, Dutta T, Scown CD, Simmons BA, Singh S (2016) Transforming biomass conversion with ionic liquids: process intensification and the development of a high-gravity, one-pot process for the production of cellulosic ethanol. Energy Environ Sci 9:1042–1049. https://doi.org/10.1039/C5EE02940F

    Article  CAS  Google Scholar 

  132. Gladden JM, Allgaier M, Miller CS, Hazen TC, VanderGheynst JS, Hugenholtz P, Simmons BA, Singer SW (2011) Glycoside hydrolase activities of thermophilic bacterial consortia adapted to switchgrass. Appl Environ Microbiol 77:5804–5812. https://doi.org/10.1128/AEM.00032-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Park JI, Steen EJ, Burd H, Evans SS, Redding-Johnson AM, Batth T, Benke PI, D’haeseleer P, Sun N, Sale KL, Keasling JD, Lee TS, Petzold CJ, Mukhopadhyay A, Singer SW, Simmons BA, Gladden JM (2012) A thermophilic ionic liquid-tolerant cellulase cocktail for the production of cellulosic biofuels. PLoS One 7:e37010. https://doi.org/10.1371/journal.pone.0037010

  134. Shi J, Gladden JM, Sathitsuksanoh N, Kambam P, Sandoval L, Mitra D, Zhang S, George A, Singer SW, Simmons BA, Singh S (2013) One-pot ionic liquid pretreatment and saccharification of switchgrass. Green Chem 15:2579–2589. https://doi.org/10.1039/c3gc40545a

    Article  CAS  Google Scholar 

  135. Shi J, Balamurugan K, Parthasarathi R, Sathitsuksanoh N, Zhang S, Stavila V, Subramanian V, Simmons BA, Singh S (2014) Understanding the role of water during ionic liquid pretreatment of lignocellulose: co-solvent or anti-solvent? Green Chem 16:3830–3840. https://doi.org/10.1039/C4GC00373J

    Article  CAS  Google Scholar 

  136. Dilasari B, Jung Y, Sohn J, Kim S, Kwon K (2016) Review on corrosion behavior of metallic materials in room temperature ionic liquids. Int J Electrochem Sci 11:1482–1495. https://doi.org/10.1021/acssuschemeng.5b00974

    Article  CAS  Google Scholar 

  137. Ma Y, Han F, Li Z, Xia C (2016) Corrosion behavior of metallic materials in acidic-functionalized ionic liquids. ACS Sustain Chem Eng 4:633–639. https://doi.org/10.1021/acssuschemeng.5b00974

    Article  CAS  Google Scholar 

  138. Guo Y, Xu B, Liu Y, Yang W, Yin X, Chen Y, Le J, Chen Z (2017) Corrosion inhibition properties of two imidazolium ionic liquids with hydrophilic tetrafluoroborate and hydrophobic hexafluorophosphate anions in acid medium. J Ind Eng Chem 56:234–247. https://doi.org/10.1016/j.jiec.2017.07.016

    Article  CAS  Google Scholar 

  139. Verma C, Ebenso EE, Quraishi MA (2017) Ionic liquids as green and sustainable corrosion inhibitors for metals and alloys: an overview. J Mol Liq 233:403–414. https://doi.org/10.1016/j.molliq.2017.02.111

    Article  CAS  Google Scholar 

  140. Zhang QB, Hua YX (2009) Corrosion inhibition of mild steel by alkylimidazolium ionic liquids in hydrochloric acid. Electrochim Acta 54:1881–1887. https://doi.org/10.1016/j.electacta.2008.10.025

    Article  CAS  Google Scholar 

  141. Kannan P, Karthikeyan J, Murugan P, Rao TS, Rajendran N (2016) Corrosion inhibition effect of novel methyl benzimidazolium ionic liquid for carbon steel in HCl medium. J Mol Liq 221:368–380. https://doi.org/10.1016/j.molliq.2016.04.130

    Article  CAS  Google Scholar 

  142. Uerdingen M, Treber C, Balser M, Schmitt G, Werner C (2005) Corrosion behaviour of ionic liquids. Green Chem 7:321–325. https://doi.org/10.1039/b419320m

    Article  CAS  Google Scholar 

  143. Schweitzer PA (2004) Corrosion resistance tables: metals, nonmetals, coatings, mortars, plastics, elastomers and linings, and fabrics. CRC Press, Boca Raton

    Google Scholar 

  144. Li C, Liang L, Sun N, Thompson VS, Xu F, Narani A, He Q, Tanjore D, Pray TR, Simmons BA, Singh S (2017) Scale-up and process integration of sugar production by acidolysis of municipal solid waste/corn stover blends in ionic liquids. Biotechnol Biofuels 10:13. https://doi.org/10.1186/s13068-016-0694-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Shekiro J III, Kuhn EM, Nagle NJ, Tucker MP, Elander RT, Schell DJ (2014) Characterization of pilot-scale dilute acid pretreatment performance using deacetylated corn stover. Biotechnol Biofuels 7:23. https://doi.org/10.1186/1754-6834-7-23

    Article  CAS  Google Scholar 

  146. Kermani NA, Petrushina I, Nikiforov A, Jensen JO, Rokni M (2016) Corrosion behavior of construction materials for ionic liquid hydrogen compressor. Int J Hydrogen Energy 41:16688–16695. https://doi.org/10.1016/j.ijhydene.2016.06.221

    Article  CAS  Google Scholar 

  147. Dilasari B, Jung Y, Kwon K (2016) Comparative study of corrosion behavior of metals in protic and aprotic ionic liquids. Electrochem Commun 73:20–23. https://doi.org/10.1016/j.elecom.2016.10.009

    Article  CAS  Google Scholar 

  148. Lynd LR, Liang X, Biddy MJ, Allee A, Cai H, Foust T, Himmel ME, Laser MS, Wang M, Wyman CE (2017) Cellulosic ethanol: status and innovation. Curr Opin Biotechnol 45:202–211. https://doi.org/10.1016/j.copbio.2017.03.008

    Article  CAS  PubMed  Google Scholar 

  149. Coleman D, Gathergood N (2010) Biodegradation studies of ionic liquids. Chem Soc Rev 39:600–637. https://doi.org/10.1039/b817717c

    Article  CAS  PubMed  Google Scholar 

  150. Righi S, Morfino A, Galletti P, Samorì C, Tugnoli A, Stramigioli C (2011) Comparative cradle-to-gate life cycle assessments of cellulose dissolution with 1-butyl-3-methylimidazolium chloride and N-methyl-morpholine-N-oxide. Green Chem 13:367–375. https://doi.org/10.1039/C0GC00647E

    Article  CAS  Google Scholar 

  151. Zhang Y, Bakshi BR, Demessie ES (2008) Life cycle assessment of an ionic liquid versus molecular solvents and their applications. Environ Sci Technol 42:1724–1730. https://doi.org/10.1021/es0713983

    Article  CAS  PubMed  Google Scholar 

  152. Tao L, Tan ECD, Aden A, Elander RT (2014) Techno-economic analysis and life-cycle assessment of lignocellulosic biomass to sugars using various pretreatment technologies. In: Sun J, Ding S-Y, Doran-Peterson J (eds.) Biological conversion of biomass for fuels and chemicals: Exploration from natural utilization systems. RSC Energy and Environment Series 10, The Royal Society of Chemistry, pp. 358–380. https://doi.org/10.1039/9781849734738-00358

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason P. Hallett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abouelela, A.R., Gschwend, F.V., Malaret, F., Hallett, J.P. (2020). Commercial Aspects of Biomass Deconstruction with Ionic Liquids. In: Shiflett, M. (eds) Commercial Applications of Ionic Liquids. Green Chemistry and Sustainable Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-35245-5_5

Download citation

Publish with us

Policies and ethics