Skip to main content

Single-Layer Multi-sensor Task Allocation System

  • Chapter
  • First Online:
Distributed Heterogeneous Multi Sensor Task Allocation Systems

Part of the book series: Automation, Collaboration, & E-Services ((ACES,volume 7))

Abstract

This chapter defines the multi–sensor task allocation in a single-layer system. The allocation problem is described and algorithms for multi-agent and multi-sensor task allocation are presented.  Figure 5.1 illustrates the Layer 1 architecture of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Afshar AB, Haddad O, Marińo MA, Adams BJ (2007) Honey-bee mating optimization (HBMO) algorithm for optimal reservoir operation. J Franklin Inst 344(5):452–462

    Article  MATH  Google Scholar 

  2. Altahir AA, Asirvadam VS, Hamid NHB, Sebastian P, Saad NB, Ibrahim RB, Dass SC (2018) Optimizing visual sensor coverage overlaps for multiview surveillance systems. IEEE Sens J 18(11):4544–4552

    Article  Google Scholar 

  3. Amador S, Zivan R (2017) Incentivizing cooperation between heterogeneous agents in dynamic task allocation. In: Proceedings of 16th international conference on autonomous agents and multiagent systems (AAMAS), Sāo Paulo, Brazil, pp 1082–1090

    Google Scholar 

  4. Amador S, Okamoto S, Zivan R (2014) Dynamic multi-agent task allocation with spatial and temporal constraints. Proceedings of the 2014 international conference on Autonomous agents and multi-agent systems,1495–1496

    Google Scholar 

  5. Andina D, Pham DT (2007) Computational intelligence: for engineering and manufacturing. Springer-Verlag, New York Inc

    Book  MATH  Google Scholar 

  6. Baert Q, Caron AC, Morge M, Routier JC (2018) Fair multi-agent task allocation for large datasets analysis. Knowl Inf Syst 54(3):591–615

    Article  Google Scholar 

  7. Bailis P, Nagpal R, Werfel J (2010) Positional communication and private information in honeybee foraging models. In: Dorigo M, Birattari M, Di Caro G, Doursat R, Engelbrecht A, Floreano D, Gambardella L, Grob R, Sahin E, Sayama H, StÄutzle T (eds) Swarm intelligence, volume 6234 of lecture notes in computer science, Springer Berlin, Heidelberg, pp 263–274

    Google Scholar 

  8. Balamurugan R, Natarajan AM, Premalatha K (2015) Stellar-mass black hole optimization for biclustering microarray gene expression data. Appl Artif Intell 29(4):353–381

    Article  Google Scholar 

  9. Ball MG, Qela B, Wesolkowski S (2016) A review of the use of computational intelligence in the design of military surveillance networks. In: Recent advances in computational intelligence in defense and security, Springer, pp 663–693

    Google Scholar 

  10. Banerjee S, Hecker JP (2017) A multi-agent system approach to load-balancing and resource allocation for distributed computing. In: First complex systems digital campus world E-conference, Springer, pp 41–54

    Google Scholar 

  11. Bayındır L (2016) A review of swarm robotics tasks. Neurocomputing 172:292–321

    Article  Google Scholar 

  12. Bianchi L, Dorigo M, Gambardella LM, Gutjahr WJ (2009) A survey on metaheuristics for stochastic combinatorial optimization. Nat Comput 8(2):239–287

    Article  MathSciNet  MATH  Google Scholar 

  13. Blum C, Li X (2008) Swarm intelligence in optimization. Springer, Berlin, pp 43–85

    Book  Google Scholar 

  14. Blum C, Roli A (2003) Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput Surv (CSUR) 35(3):268–308

    Article  Google Scholar 

  15. Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems. Oxford University Press Inc, New York

    MATH  Google Scholar 

  16. Botelho S, Alami R (2001) Multi-robot cooperation through the common use of “Mechanisms”. In: Proceedings of IEEE/RSJ international conference on intelligent robots and systems (IROS), Maui, USA, pp 375–380

    Google Scholar 

  17. Botelho SC, Alami R (1999) M+: A scheme for multi-robot cooperation through negotiated task allocation and achievement. IEEE international conference on robotics and automation, Detroit, USA, vol 2, pp 1234–1239

    Google Scholar 

  18. Dias MB, Zlot R, Kalra N, Stentz A (2006) Market-based multirobot coordination: a survey and analysis. Proc IEEE 94(7):1257–1270

    Article  Google Scholar 

  19. Dias M (2004) TraderBots: a new paradigm for robust and efficient multirobot coordination in dynamic environments. Ph.D. thesis, Carnegie Mellon University

    Google Scholar 

  20. Dias MB, Zinck M, Zlot R, Stentz A (2004) Robust multirobot coordination in dynamic environments. IEEE Proceedings of International Conference on Robotics and Automation, 3435–3442

    Google Scholar 

  21. Dorigo M, Birattari M, Stützle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1(4):28–39

    Article  Google Scholar 

  22. Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man, Cybern Part B (Cybernetics) 26(1):29–41

    Article  Google Scholar 

  23. Ducatelle F, Di Caro GA, Pinciroli C, Mondada F, Gambardella L (2011) Communication assisted navigation in robotic swarms: self-organization and cooperation. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 4981–4988

    Google Scholar 

  24. Dudek G, Jenkin M, Milios E, Wilkes D (1993) A taxonomy for swarm robots. IEEE/RSJ Int Conf Intell Robots Syst 1:441–447

    Google Scholar 

  25. Engelbrecht AP (2005) Fundamentals of computational swarm intelligence. Wiley and Sons Ltd, Chichester

    Google Scholar 

  26. Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial intelligence through simulated evolution. Wiley & Sons, New York

    MATH  Google Scholar 

  27. Von Frisch K (1967) The dance language and orientation of bees. Harvard University Press, Cambridge

    Google Scholar 

  28. Garnier S, Gautrais J, Theraulaz G (2007) The biological principles of swarm intelligence. Swarm Intell 1(1):3–31

    Article  Google Scholar 

  29. Ge Q, Yang Q, Zhuo P, Liu G, Tang S (2019) Genetic algorithm-based sensor allocation with nonlinear centralized fusion observable degree. IEEE Trans Neural Netw Learn Syst

    Google Scholar 

  30. Gerkey BP, Matarić MJ (2002) Sold!: auction methods for multi-robot coordination. IEEE Trans Robot Autom, Spec Issue Multi-Robot Syst 18(5):758–768

    Article  Google Scholar 

  31. Gerkey BP, Matarić MJ (2000) MURDOCH: publish/subscribe task allocation for heterogeneous agents. In: Proceedings of the fourth international conference on autonomous agents, Barcelona, Spain, pp 203–204

    Google Scholar 

  32. Glover F (1986) Future paths for integer programming and links to artificial intelligence. Comput Oper Res 13(5):533–549

    Article  MathSciNet  MATH  Google Scholar 

  33. Guerrero J, Oliver G (2004) Multi-robot task allocation method for heterogeneous tasks with priorities. In: Proceedings of the 7th international symposium on distributed autonomous robotic systems (DARS), Toulouse, France

    Google Scholar 

  34. Gutiérrez A, Campo A, Monasterio-Huelin F, Magdalena L, Dorigo M (2010) Collective decision-making based on social odometry. Neural Comput Appl 19(6):807–823

    Article  Google Scholar 

  35. Hefeeda M, Bagheri M (2009) Forest fire modeling and early allocation using wireless sensor networks. Ad Hoc Sensor Wireless Netw 7(3–4):169–224

    Google Scholar 

  36. Holland J (1975) Adaptation in natural and artificial systems: an introductory analysis with application to biology. Control and artificial intelligence. MIT Press

    Google Scholar 

  37. Hüttenrauch M, Adrian S, Neumann G (2019) Deep reinforcement learning for swarm systems. J Mach Learn Res 20(54):1–31

    MathSciNet  MATH  Google Scholar 

  38. Jevtić A, Gutiérrez A (2011) Distributed bees algorithm parameters optimization for a cost efficient task allocation in swarms of robots. Sensors 11(11):10880–10893

    Article  Google Scholar 

  39. Jevtić A, Gutiérrez A, Andina D, Jamshidi M (2012) Distributed bees algorithm for task allocation in swarm of robots. IEEE Syst J 6(2):296–304

    Article  Google Scholar 

  40. Jevtić A (2011) Swarm intelligence: novel tools for optimization, feature extraction, and multi-agent system modeling. Ph.D. thesis

    Google Scholar 

  41. Jones C, Shell D, Matarić MJ, Gerkey B (2004) Principled approaches to the design of multi-robot systems. In: Proceedings of the workshop on networked robotics, IEEE/RSJ international conference on intelligent robots and systems (IROS 2004)

    Google Scholar 

  42. Jones EG, Dias MB, Stentz A (2007) Learning-enhanced market-based task allocation for oversubscribed domains. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems. San Diego, CA

    Google Scholar 

  43. Kalra N, Stentz A, Ferguson D (2005) Hoplites: a market framework for complex tight coordination in multi-agent teams. In: Proceedings of the international conference on robotics and automation (ICRA), New Orleans, USA, pp 1170–1177

    Google Scholar 

  44. Kalra N, Stentz A, Ferguson D (2007) A generalized framework for solving tightly-coupled multirobot planning problems. In: Proceedings of the international conference on robotics and automation (ICRA), Rome, Italy, pp 1050–4729

    Google Scholar 

  45. Karaboga D, Akay B (2009) A comparative study of artificial bee colony algorithm. Appl Math Comput 214(1):108–132

    MathSciNet  MATH  Google Scholar 

  46. Khamis A, Hussein A, Elmogy A (2015) Multi-robot task allocation: a review of the state-of-the-art. in cooperative robots and sensor networks, Springer, pp 31–51

    Google Scholar 

  47. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    Article  MathSciNet  MATH  Google Scholar 

  48. Lai K, Rasmusson L, Adar E, Zhang L, Huberman BA (2005) Tycoon: an implementation of a distributed, market-based resource allocation system. Multiagent Grid Syst 1(3):169–182

    Article  MATH  Google Scholar 

  49. Lee DH (2018) Resource-based task allocation for multi-robot systems. Robot Auton Syst 103:151–161

    Article  Google Scholar 

  50. Lee CKH, Ho GTS, Choy KL, Pang GKH (2014) A RFID-based recursive process mining system for quality assurance in the garment industry. Int J Prod Res 52(14):4216–4238

    Article  Google Scholar 

  51. Lučić P, Teodorović D (2002) Transportation modeling: an artificial life approach. In: 14th IEEE international conference on tools with artificial intelligence, pp 216–223

    Google Scholar 

  52. Macarthur KS, Stranders R, Ramchurn SD, Jennings NR (2011) A distributed anytime algorithm for dynamic task allocation in multi-agent systems. In: Proceedings of the 25th conference on artificial intelligence, pp 701–706

    Google Scholar 

  53. Matarić MJ (1994) Interaction and intelligent behavior (No. AI-TR-1495). Massachusetts Institute of Tech. Cambridge Artificial Intelligence Lab

    Google Scholar 

  54. Mosteo AR, Montano L, Lagoudakis MG (2008) Multi-robot routing under limited communication range. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), Pasadena, USA, pp 1531–1536

    Google Scholar 

  55. Nanjanath M, Gini M (2010) Repeated auctions for robust task execution by a robot team. Robot Auton Syst 58(7):900–909

    Article  Google Scholar 

  56. Nanjanath M, Gini M (2006) Dynamic task allocation for robots via auctions. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), Orlando, USA, pp 2781–2786

    Google Scholar 

  57. Neapolitan RE, Naimipour K (1996) Foundations of algorithms, D. C. Heath and Company, Lexington, MA, USA

    Google Scholar 

  58. Ng KKH, Lee CKM, Chan FT, Lv Y (2018) Review on meta-heuristics approaches for airside operation research. Appl Soft Comput 66:104–133

    Article  Google Scholar 

  59. Osman IH, Laporte G (1996) Metaheuristics: a bibliography. Ann Oper Res 63:513–623

    Article  MATH  Google Scholar 

  60. Ou TC, Su WF, Liu XZ, Huang SJ, Tai TY (2016) A modified bird-mating optimization with hill-climbing for connection decisions of transformers. Energies 9(9):671

    Article  Google Scholar 

  61. Pham DT, Ghanbarzadeh A, Koc E, Otri S, Rahim S, Zaidi M (2011) The bees algorithm–a novel tool for complex optimisation. Intelligent production machines and systems-2nd I* PROMS virtual international conference, Elsevier, p 454

    Google Scholar 

  62. Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization. Swarm Intell 1(1):33–57

    Article  Google Scholar 

  63. Poole D, Mackworth AK (2010) Artificial intelligence—foundations of computational agents. Cambridge University Press

    Google Scholar 

  64. Ramchurn SD, Farinelli A, Macarthur KS, Jennings NR (2010) Decentralized coordination in robocup rescue. Comput J 53(9):1447–1461

    Article  Google Scholar 

  65. Ramchurn SD, Polukarov M, Farinelli A, Truong C, Jennings NR (2010a) Coalition formation with spatial and temporal constraints. In: Proceedings of the 9th international conference on autonomous agents and multiagent systems (AAMAS-10), Toronto, Canada, pp 1181–1188

    Google Scholar 

  66. Rechenberg I (1973) Evolutions strategie: optimierung technischer Systeme nach Prinzipien der biologischen Evolution. frommann-holzbog, Stuttgart, Germany

    Google Scholar 

  67. Robin C, Lacroix S (2015) Multi-robot task allocation and tracking: taxonomy and survey. Auton Robots, pp 1–32

    Google Scholar 

  68. Schwarzrock J, Zacarias I, Bazzan AL, de Araujo Fernandes RQ, Moreira LH, de Freitas EP (2018) Solving task allocation problem in multi Unmanned Aerial Vehicles systems using Swarm intelligence. Eng Appl Artif Intell 72:10–20

    Article  Google Scholar 

  69. Skiena SS (1998) The algorithm design manual: text. 1. Springer Science & Business Media

    Google Scholar 

  70. Smith RG (1980) The contract net protocol: high-level communication and control in a distributed problem solver. IEEE Trans Comput 12:1104–1113

    Article  Google Scholar 

  71. Sörensen K, Sevaux M, Glover F (2018) A history of metaheuristics. Handbook of heuristics, pp 1–18

    Google Scholar 

  72. Tang Z, Ozguner U (2005) Motion planning for multitask surveillance with mobile sensor agents. IEEE Robot 21:898–908

    Article  Google Scholar 

  73. Tang F, Parker LE (2005) Asymtre: automated synthesis of multi-robot task solutions through software reconfiguration. In: Proceedings of the IEEE international conference on robotics and automation, ICRA, pp 1501–1508

    Google Scholar 

  74. Tao Y (2018) Swarm intelligence in humans: a perspective of emergent evolution. Physica A 502:436–446

    Article  Google Scholar 

  75. Teodorović D, Dell’Orco M (2005) Bee colony optimization—a cooperative learning approach to complex transportation problems. Advanced OR and AI methods in transportation. In: Proceedings of 10th meeting of the EURO working group on transportation, p 5160

    Google Scholar 

  76. Tkach I, Jevtić A, Nof SY, Edan Y (2013) Automatic multi-sensor task allocation using modified distributed bees algorithm. In: IEEE international conference on systems, man, and cybernetics (SMC), Manchester, England, pp 1401–1406

    Google Scholar 

  77. Tkach I, Jevtić A, Nof S, Edan Y (2018) A modified distributed bees algorithm for multi-sensor task allocation. Sensors 18(3):759

    Article  Google Scholar 

  78. Walsh WE, Wellman MP (1998) A market protocol for decentralized task allocation. In: Proceedings of the international conference on multi-agent systems, pp 325–332

    Google Scholar 

  79. Wedde HF, Farooq M, Zhang Y (2004) Beehive: an efficient fault-tolerant routing algorithm inspired by honey bee behavior. Ant Colony, optimization and swarm intelligence, Lecture notes in computer science, vol 3172. Springer-Verlag, pp 83–94

    Google Scholar 

  80. Werger B, Matarić MJ (2000) Broadcast of local eligibility for multi-task observation. In: Parker LE, Bekey G, Barhen J (eds) Distributed autonomous robotic system, Springer, Berlin, Germany, vol 4, pp 347–356

    Google Scholar 

  81. Wolski R, Plank JS, Brevik J, Bryan T (2001) Analyzing market-based resource allocation strategies for the computational grid. Int J High Perform Comput Appl 15(3):258–281

    Article  Google Scholar 

  82. Yang XS (2005) Engineering optimizations via nature-inspired virtual bee algorithms. Artif Intell Knowl Eng Appl Bioinsp Appr 3562:317–323

    Google Scholar 

  83. Yedidsion H, Zivan R, Farinelli A (2018) Applying max-sum to teams of mobile sensing agents. Eng Appl Artif Intell 71:87–99

    Article  Google Scholar 

  84. Zhang J, Li W, Han N, Kan J (2008) Forest fire allocation system based on a ZigBee wireless sensor network. Front For China 3(3):369–374

    Article  Google Scholar 

  85. Zlot R, Stentz A (2006) Market-based multirobot coordination for complex tasks. Int J Robot Res. Special issue on the 4th international conference on field and service robotics, 25(1):73–101

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itshak Tkach .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tkach, I., Edan, Y. (2020). Single-Layer Multi-sensor Task Allocation System. In: Distributed Heterogeneous Multi Sensor Task Allocation Systems. Automation, Collaboration, & E-Services, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-030-34735-2_5

Download citation

Publish with us

Policies and ethics