Skip to main content

Nano-Based Materials and Their Synthesis

  • Chapter
  • First Online:
Nanomaterials and Environmental Biotechnology

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

  • 851 Accesses

Abstract

Nanotechnology is one of the most exigent and fastest-growing branches in the field of science and engineering. Metal nanoparticles produced by nanotechnology have received global attention due to their extensive applications in the biomedical and physiochemical fields. Synthesis of nanoparticles is conducted through physical, chemical, and biological or green method. A physical and chemical technique of synthesizing nanoparticles have proved to be quite expensive and potentially hazardous to the environment. Toxic and perilous chemicals involved in the synthesis of nanoparticles through chemical synthesis possess various biological risks and are responsible for several health diseases. Recently, synthesizing metal nanoparticles using microorganisms and plants has been extensively studied and has been recognized as a green and efficient way for further exploiting microorganisms as convenient manufactories. Microorganisms provide diverse environment for biosynthesis of nanoparticles. These particles are safe and eco-friendly with a lot of applications in medicine, agriculture, cosmetic industry, drug delivery, and biochemical sensors. The challenges for redressal include optimal production and minimal time to obtain desired size and shape, to enhance the stability of nanoparticles and optimization of specific microorganisms for specific application. Products from nature or those derived from natural products, such as extracts of various plants or parts of plants, tea, coffee, banana, simple amino acids, as well as wine, table sugar, and glucose, have been used as reductants and as capping agents during synthesis. Polyphenols found in plant material often play a key role in these processes. The techniques involved are simple, environmentally friendly, and generally one-pot processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alshatwi AA, Athinarayanan J, Subbarayan PV (2015) Green synthesis of platinum nanoparticles that induce cell death and G2/M-phase cell cycle arrest in human cervical cancer cells. J Mater Sci Mater Med 26(1):1–9

    Article  CAS  Google Scholar 

  • Armendariz V et al (2004) Size controlled gold nanoparticle formation by Avena sativa biomass use of plants in nanobiotechnology. J Nanopart Res 6(4):377–382

    Article  CAS  Google Scholar 

  • Azizi S et al (2014) Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Mater Lett 116:275–277

    Article  CAS  Google Scholar 

  • Balaji DS, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar BK, Venkataraman A (2009) Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf B Biointerfaces 68:88–92

    Article  CAS  PubMed  Google Scholar 

  • Bansal V, Rautaray D, Ahmad A, Sastry M (2004) Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Mater Chem 14(22):3303–3305

    Article  CAS  Google Scholar 

  • Bansal V, Rautaray D, Bharde A et al (2005) Fungus-mediated biosynthesis of silica and titania particles. J Mater Chem 15(26):2583–2589

    Article  CAS  Google Scholar 

  • Bansal V et al (2006) Room-temperature biosynthesis of ferro-electric barium titanate nanoparticles. J Am Chem Soc 128(36):11958–11963

    Article  CAS  PubMed  Google Scholar 

  • Bhainsa KCD, Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B Biointerfaces 47:160–164

    Article  CAS  PubMed  Google Scholar 

  • Bharde A, Rautaray D, Bansal V, Ahmad A, Sarkar I, Yusuf SM, Sanyal M, Sastry M (2006) Extracellular biosynthesis of magnetite using fungi. Small 2:135–141

    Article  CAS  PubMed  Google Scholar 

  • Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK (2009) Fabrication of silver nanoparticles by Phomaglomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol 48:173–179

    Article  CAS  PubMed  Google Scholar 

  • Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M (2011) Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf B Biointerfaces 83:42–48

    Article  CAS  PubMed  Google Scholar 

  • Das S, Das A, Guha A (2008) Adsorption behavior of mercury on functionalized Aspergillus versicolor mycelia: atomic force microscopic study. Langmuir 25:360–366

    Article  CAS  Google Scholar 

  • Das SK, Das AR, Guha AK (2009) Gold nanoparticles: microbial synthesis and application in water hygiene management. Langmuir 25:8192–8199

    Article  CAS  PubMed  Google Scholar 

  • Das RK, Borthakur BB, Bora U (2010) Green synthesis of gold nanoparticles using ethanolic leaf extract of Centella asiatica. Mater Lett 64(13):1445–1447

    Article  CAS  Google Scholar 

  • Fayaz AM, Balaji K, Girilal M, Kalaichelvan PT, Venkatesan R (2009) Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. J Agric Food Chem 57:6246–6252

    Article  CAS  Google Scholar 

  • Gericke M, Pinches A (2006) Microbial production of gold nanoparticles. Gold Bull 39(1):22–28

    Article  CAS  Google Scholar 

  • Hoag GE et al (2009) Degradation of bromothymol blue by ‘greener’ nano-scale zero-valent iron synthesized using tea polyphenols. J Mater Chem 19(45):8671–8677

    Article  CAS  Google Scholar 

  • Huang J et al (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18(10):105104

    Article  CAS  Google Scholar 

  • Jain N, Bhargava A, Majumdar S, Tarafdar JC, Panwar J (2011) Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale 3:635–641

    Article  CAS  PubMed  Google Scholar 

  • Jena J et al (2013) Biosynthesis and characterization of silver nanoparticles using microalga Chlorococcum humicola and its antibacterial activity. Int J Nanomater Biostruct 3:1–8

    Google Scholar 

  • Jha AK, Prasad K (2010) Ferroelectric BaTiO3 nanoparticles biosynthesis and characterization. Colloids Surf B Biointerfaces 75(1):330–334

    Article  CAS  PubMed  Google Scholar 

  • Jha AK, Prasad K, Prasad K (2009) A green low-cost biosynthesis of Sb2O3 nanoparticles. Biochem Eng J 43(3):303–306

    Article  CAS  Google Scholar 

  • Jo JH, Singh P, Kim YJ, Wang C, Mathiyalagan R (2015) Pseudomonas deceptionensis DC5-mediated synthesis of extracellular silver nanoparticles. Artif Cells Nanomed Biotechnol 44: 1576–1581

    Article  PubMed  CAS  Google Scholar 

  • Joerger R, Klaus T, Granqvist C (2000) Biologically produced silver-carbon composite materials for optically functional thin film coatings. Adv Mater 12(6):407–409

    Article  CAS  Google Scholar 

  • Joglekar S et al (2011) Novel route for rapid biosynthesis of lead nanoparticles using aqueous extract of Jatropha curcas L. latex. Mater Lett 65(19):3170–3172

    Article  CAS  Google Scholar 

  • Kathiresan K, Manivannan S, Nabeel M, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B Biointerfaces 71:133–137

    Article  CAS  PubMed  Google Scholar 

  • Konishi Y, sukiyama T, Ohno K et al (2006) Intracellular recovery of gold by microbial reduction of AuCl-4ions using the anaerobic bacterium Shewanella algae. Hydrometallurgy 81(1):24–29

    Article  CAS  Google Scholar 

  • Kumar SA, Ansary AA, Abroad A, Khan MI (2007) Extracellular biosynthesis of CdSe quantum dots by the fungus, Fusarium oxysporum. J Biomed Nanotechnol 3(2):190–194

    Article  CAS  Google Scholar 

  • Kumar SA, Peter YA, Nadeau JL (2008) Facile biosynthesis, separation and conjugation of gold nanoparticles to doxorubicin. Nanotechnology 19:495101. https://doi.org/10.1088/0957-4484/19/49/495101

    Article  CAS  PubMed  Google Scholar 

  • Lengke MF, Fleet ME, Southam G (2006) Synthesis of platinum nanoparticles by reaction of filamentous cyanobacteria with platinum (IV)-chloride complex. Langmuir 22(17):7318–7323

    Article  CAS  PubMed  Google Scholar 

  • Mahanty A, Bosu R, Panda P et al (2013) Microwave assisted rapid combinatorial synthesis of silver nanoparticles using E. coli culture supernatant. Inter J Pharma Bio Sci 4(2):1030–1035

    CAS  Google Scholar 

  • Maliszewska I, Szewczyk K, Waszak K (2009) Biological synthesis of silver nanoparticles. J Phys Conf Ser 146. https://doi.org/10.1088/1742-6596/146/1/012025

    Google Scholar 

  • Manivasagan P, Venkatesan J, Senthilkumar K et al (2013) Biosynthesis, antimicrobial and cytotoxic effect of silver nanoparticles using a novel Nocardiopsis sp. MBRC-1. Biomed Res Int 2013:287638-9

    Google Scholar 

  • Medda S et al (2015) Biosynthesis of silver nanoparticles from Aloe vera leaf extract and antifungal activity against Rhizopus sp. and Aspergillus sp. Appl Nanosci 5(7):875–880

    Article  CAS  Google Scholar 

  • Mishra A, Tripathy S, Wahab R, Jeong SH, Hwang I, Yang YB, Kim YS, Shin HS, Yun SI (2011) Microbial synthesis of gold nanoparticles using the fungus Penicillium brevicompactum and their cytotoxic effects against mouse mayo blast cancer C2C12 cells. Appl Microbiol Biotechnol 92:617–630

    Article  CAS  PubMed  Google Scholar 

  • Momeni S, Nabipour I (2015) A simple green synthesis of palladium nanoparticles with sargassum alga and their electrocatalytic activities towards hydrogen peroxide. Appl Biochem Biotechnol 176:1–13

    Article  CAS  Google Scholar 

  • MubarakAli D et al (2012) Synthesis and characterization of CdS nanoparticles using C-phycoerythrin from the marine. Mater Lett 74:8–11

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar PV, Alam M, Kumar R et al (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515–519

    Article  CAS  Google Scholar 

  • Mukherjee P et al (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chembiochem 3(5):461–463

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee P, Roy M, Mandal BP, Dey GK, Mukherjee PK, Ghatak J, Tyagi AK, Kale SP (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology 19:1–7

    Google Scholar 

  • Musarrat J, Dwivedi S, Singh BR, Al-Khedhairy AA, Azam A, Naqvi A (2010) Production of antimicrobial silver nanoparticles in water extracts of the fungus Amylomycesrouxii strain KSU-09. Bioresour Technol 101:8772–8776

    Article  CAS  PubMed  Google Scholar 

  • Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des 2(4):293–298

    Article  CAS  Google Scholar 

  • Narayanan K, Sakthivel N (2013) Mycocrystallization of gold ions by the fungus Cylindrocladium floridanum. World J Microbiol Biotechnol 29:2207–2211

    Article  CAS  PubMed  Google Scholar 

  • Nasrollahzadeh M, Sajadi SM, Khalaj M (2014) Green synthesis of copper nanoparticles using aqueous extract of the leaves of Euphorbia esula L and their catalytic activity for ligand-free Ullmann-coupling reaction and reduction of 4-nitrophenol. RSC Adv 4(88):47313–47318

    Article  CAS  Google Scholar 

  • Nune SK et al (2009) Green nanotechnology from tea: phytochemicals in tea as building blocks for production of bio-compatible gold nanoparticles. J Mater Chem 19(19):2912–2920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oza G et al (2012) Facile biosynthesis of gold nanoparticles exploiting optimum pH and temperature of fresh water algae Chlorella pyrenoidusa. Adv Appl Sci Res 3(3):1405–1412

    CAS  Google Scholar 

  • Pandian SRK, Deepak V, Kalishwaralal K, Muniyandi J, Rameshkumar N, Gurunathan S (2009) Synthesis of PHB nanoparticles from optimized medium utilizing dairy industrial waste using Brevibacteriumcasei SRKP2: a green chemistry approach. Colloids Surf B 74(1):266–273

    Article  CAS  Google Scholar 

  • Parial D et al (2012) Screening of different algae for green synthesis of gold nanoparticles. Eur J Phycol 47(1):22–29

    Article  CAS  Google Scholar 

  • Perez-Gonzalez T, Jimenez-Lopez C, Neal AL et al (2010) Magnetite biomineralization induced by Shewanella oneidensis. Geochim Cosmochim Acta 74(3):967–979

    Article  CAS  Google Scholar 

  • Prasad K, Jha AK, Kulkarni A (2007) Lactobacillus assisted synthesis of titanium nanoparticles. Nanoscale Res Lett 2(5):248–250

    Article  CAS  PubMed Central  Google Scholar 

  • Rai M, Yadav A, Gade A (2008) CRC 675—current trends in phytosynthesis of metal nanoparticles. Crit Rev Biotechnol 28(4):277–284

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83

    Article  CAS  PubMed  Google Scholar 

  • Rajakumar G, Rahuman A, Roopan SM, Khanna VG, Elango G, Kamaraj C, Zahir AA, Velayutham K (2012) Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria. Spectrochim Acta A Mol Biomol Spectrosc 91:23–29

    Article  CAS  PubMed  Google Scholar 

  • Raliya R (2013) Rapid, low-cost, and ecofriendly approach her for iron nanoparticle synthesis using Aspergillus oryzaeTFR9. J Nanopart. https://doi.org/10.1155/2013/141274

    Article  CAS  Google Scholar 

  • Raliya R, Tarafdar JC (2012) Novel approach for silver nanoparticle synthesis using AspergillusterreusCZR-1: mechanism perspective. J Bionanosci 6:12–16

    Article  CAS  Google Scholar 

  • Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in Clusterbean (Cyamopsis tetragonoloba L.). Agirc Res 2:48–57

    Article  CAS  Google Scholar 

  • Raliya R, Biswas P, Tarafdar JC (2015) TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.). Biotechnol Rep 5:22–26

    Article  Google Scholar 

  • Raut RW et al (2013) Rapid biosynthesis of platinum and palladium metal nanoparticles using root extract of Asparagus racemosus Linn. Adv Mater Lett 4(8):650–654

    Article  CAS  Google Scholar 

  • Rautaray D, Sanyal A, Adyanthaya SD, Ahmad A, Sastry M (2004) Biological synthesis of strontium carbonate crystals using the fungus Fusarium oxysporum. Langmuir 20(16):6827–6833

    Article  CAS  PubMed  Google Scholar 

  • Riddin T, Gericke M, Whiteley C (2006) Analysis of the inter-and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology. Nanotechnology 17(14):3482

    Article  CAS  PubMed  Google Scholar 

  • Sangeetha G, Rajeshwari S, Venckatesh R (2011) Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: structure and optical properties. Mater Res Bull 46(12):2560–2566

    Article  CAS  Google Scholar 

  • Sanghi R, Verma P (2009) Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresour Technol 100(1):501–504

    Article  CAS  PubMed  Google Scholar 

  • Sanghi R, Verma P (2010) pH dependent fungal proteins in the green synthesis of gold nanoparticles. Adv Mater Lett 1:193–199

    Article  Google Scholar 

  • Sanpo N, Wen C, Berndt CC et al (2013) Antibacterial properties of spinel ferrite nanoparticles. In: Mendez A (ed) Microbial pathogens and strategies for combating them: science, technology and education. Formatex Research Centre, Badajoz, pp 239–250

    Google Scholar 

  • Santhoshkumar T et al (2011) Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res 108(3):693–702

    Article  PubMed  Google Scholar 

  • Sanyal A, Rautaray D, Bansal V, Ahmad A, Sastry M (2005) Heavy-metal remediation by a fungus as a means of production of lead and cadmium carbonate crystals. Langmuir 21(16):7220–7224

    Article  CAS  PubMed  Google Scholar 

  • Sau TK, Murphy CJ (2004) Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am Chem Soc 126(28):8648–8649

    Article  CAS  PubMed  Google Scholar 

  • Senapati S, Ahmad A, Khan MI, Sastry M, Kumar R (2005) Extracellular biosynthesis of bimetallic Au-Ag alloy nanoparticles. Small 1(5):517–520

    Article  CAS  PubMed  Google Scholar 

  • Shahverdi AR, Minaeian S, Jamalifar H et al (2007) Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem 42:919–923

    Article  CAS  Google Scholar 

  • Shankar SS, Ahmad A, Sastry M (2003a) Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Prog 19(6):1627–1631

    Article  CAS  PubMed  Google Scholar 

  • Shankar SS, Ahmad A, Pasricha R, Sastry M (2003b) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822–1826

    Article  CAS  Google Scholar 

  • Shankar SS et al (2005) Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings. Chem Mater 17(3):566–572

    Article  CAS  Google Scholar 

  • Shukla VK et al (2012) Green synthesis of nanosilver as a sensor for detection of hydrogen peroxide in water. J Hazard Mater 213:161–166

    Article  PubMed  CAS  Google Scholar 

  • Singh P, Kim Y-J, Wang C, Mathiyalagan R, Yang DC (2015) Artificial cells. Nanomed Biotechnol 44(6):1569–1575

    Google Scholar 

  • Singh P, Kim Y-J, Zhang D, Yang D-C (2016) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34:7

    Article  CAS  Google Scholar 

  • Subhankari I, Nayak P (2013) Synthesis of copper nanoparticles using Syzygium aromaticum (Cloves) aqueous extract by using green chemistry. World J Nano Sci Technol 2(1):14–17

    Google Scholar 

  • Suresh J, Yuvakkumar R, Sundrarajan M, Hong SI (2014) Green synthesis of magnesium oxide nanoparticles. In Advanced Materials Research (Vol. 952, pp. 141–144). Trans Tech Publications

    Google Scholar 

  • Sushma NJ et al (2016) Facile approach to synthesize magnesium oxide nanoparticles by using Clitoria ternatea—characterization and in vitro antioxidant studies. Appl Nanosci 6(3):437–444

    Article  CAS  Google Scholar 

  • Tarafdar JC, Raliya R, Rathore I (2012) Microbial synthesis of phosphorous nanoparticle from tri-calcium phosphate using Aspergillus tubingensis TFR-5. J Bionanosci 6:84–89

    Article  CAS  Google Scholar 

  • Velmurugan P, Shim J, You Y, Choi S, Kamala-Kannan S, Lee KJ, Kim HJ, Oh BT (2010) Removal of zinc by live, dead, and dried biomass of Fusarium spp. isolated from the abandoned-metal mine in South Korea and its perspective of producing nanocrystals. J Hazard Mater 182:317–324

    Article  CAS  PubMed  Google Scholar 

  • Vigneshwaran N, Kathe A (2007) Silver-protein (core-shell) nanoparticle production using spent mushroom substrate. Langmuir 23:7113–7117

    Article  CAS  PubMed  Google Scholar 

  • Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61(6):1413–1418

    Article  CAS  Google Scholar 

  • Wang T et al (2014) Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater. Sci Total Environ 466:210–213

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Kim YJ, Singh P, Mathiyalagan R, Jin Y et al (2015) Green synthesis of silver nanoparticles by Bacillus methylotrophicus, and their antimicrobial activity. Artif Cells Nanomed Biotechnol 44:1127–1132

    Google Scholar 

  • Xie J et al (2007) Silver nanoplates: from biological to biomimetic synthesis. ACS Nano 1(5):429–439

    Article  CAS  PubMed  Google Scholar 

  • Yan S, He W, Sun C et al (2009) The biomimetic synthesis of zinc phosphate nanoparticles. Dyes Pigments 80(2):254–258

    Article  CAS  Google Scholar 

  • Yong P et al (2002) Bioreduction and biocrystallization of palladium by Desulfovibrio desulfuricans NCIMB 8307. Biotechnol Bioeng 80(4):369–379

    Article  CAS  PubMed  Google Scholar 

  • Yuvakkumar R et al (2014) Rambutan (Nephelium lappaceum L.) peel extract assisted biomimetic synthesis of nickel oxide nanocrystals. Mater Lett 128:170–174

    Article  CAS  Google Scholar 

  • Zhang H et al (2005) Biosorption and bioreduction of diamine silver complex by Corynebacterium. J Chem Technol Biotechnol 80(3):285–290

    Article  CAS  Google Scholar 

  • Zhang X, He X, Wang K, Yang X (2011) Different active biomolecules involved in biosynthesis of gold nanoparticles by three fungus species. J Biomed Nanotechnol 7:245–254

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, He W, Zhong S et al (2009) Biosynthesis and magnetic properties of mesoporous Fe3O4 composites. J Magn Magn Mater 321(8):1025–1028

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chaudhary, S., Pathak, A.K., Ahmad, S. (2020). Nano-Based Materials and Their Synthesis. In: Bhushan, I., Singh, V., Tripathi, D. (eds) Nanomaterials and Environmental Biotechnology. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-34544-0_8

Download citation

Publish with us

Policies and ethics