Skip to main content

Stiff Degradation of Granular Material – A DEM Approach

  • Conference paper
  • First Online:
Advanced Numerical Methods in Foundation Engineering (GeoMEast 2019)

Abstract

The stiffness degradation of granular materials such as soils due to cyclic loading has been widely explored in the experimental studies, mostly in triaxial or oedometer apparatus. Such behaviour can be observed due to the cyclic loading at very small strains, which is considered as elastic range. While increasing the cyclic strain amplitude, the stiffness or secant shear modulus (G) reduces non-linearly and forms a S-shaped curve with the shear strain (γ). A discrete element method (DEM) is adopted in this study to have enhance the understanding of soil response to cyclic strain amplitude. It was found later in this study that the stiffness of granular material reduced as void ratio (e) increased. The maximum stiffness was highly dependent on e, but not p′. However, the normalized stiffness degradation curve was influenced by both initial states i.e. e and p′; p′ seemingly had more impact of the normalized stiffness degradation than e.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Been, K., Jefferies, M.G.: A state parameter for sands. Géotechnique 35(2), 99–112 (1985)

    Article  Google Scholar 

  • Cundall, P.A., Strack, O.D.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  • Goudarzy, M., Rahemi, N., Rahman, M.M., Schanz, T.: Predicting the maximum shear modulus of sands containing nonplastic fines. J. Geotech. Geoenviron. Eng. 143(9), 06017013 (2017)

    Article  Google Scholar 

  • Goudarzy, M., Rahman, M.M., König, D., Schanz, T.: Influence of non-plastic fines content on maximum shear modulus of granular materials. Soils Found. 56(6), 973–983 (2016)

    Article  Google Scholar 

  • Gu, X., Yang, J., Huang, M.: DEM simulations of the small strain stiffness of granular soils: effect of stress ratio. Granular Matter 15(3), 287–298 (2013)

    Article  Google Scholar 

  • Hardin, B.O., Richart Jr., F.: Elastic wave velocities in granular soils. J. Soil Mech. Found. Div, 89(Proc. Paper 3407) (1963)

    Google Scholar 

  • Huang, X., O’Sullivan, C., Hanley, K., Kwok, C.: Discrete-element method analysis of the state parameter. Geotechnique 64(12), 954–965 (2014)

    Article  Google Scholar 

  • Idriss, I.M., Dobry, R., Sing, R.: Nonlinear behavior of soft clays during cyclic loading. J. Geotech. Geoenviron. Eng. 104(ASCE 14265) (1978)

    Google Scholar 

  • Nguyen, H.B.K., Rahman, M.M.: The role of micro-mechanics on the consolidation history of granular materials. Aust. Geomech. 52(3), 27–36 (2017)

    Google Scholar 

  • Nguyen, H.B.K., Rahman, M.M., Cameron, D.A., Fourie, A.B.: The effect of consolidation path on undrained behaviour of sand - a DEM approach. In: Computer Methods and Recent Advances in Geomechanics, pp. 175–180. CRC Press (2015)

    Google Scholar 

  • Nguyen, H.B.K., Rahman, M.M., Fourie, A.B.: Characteristic behaviour of drained and undrained triaxial tests: a DEM study. J. Geotech. Geoenviron. Eng. 144(9), 04018060 (2018a)

    Article  Google Scholar 

  • Nguyen, H.C., O’Sullivan, C., Otsubo, M.: Discrete element method analysis of small-strain stiffness under anisotropic stress states. Géotechnique Lett. 8(3), 183–189 (2018b)

    Article  Google Scholar 

  • Rahman, M.M., Cubrinovski, M., Lo, S.R.: Initial shear modulus of sandy soils and equivalent granular void ratio. Geomech. Geoengin. 7(3), 219–226 (2012)

    Article  Google Scholar 

  • Rahman, M.M., Nguyen, H.B.K., Rabbi, A.T.M.Z.: The effect of consolidation on undrained behaviour of granular materials: a comparative study between experiment and DEM simulation. Geotech. Res. 5(4), 199–217 (2018)

    Article  Google Scholar 

  • Vucetic, M., Dobry, R.: Degradation of marine clays under cyclic loading. J. Geotech. Eng. 114(2), 133–149 (1988)

    Article  Google Scholar 

  • Yang, J., Dai, B.: Is the quasi-steady state a real behaviour? A micromechanical perspective. Géotechnique 61, 175 (2011)

    Google Scholar 

  • Yang, J., Gu, X.: Shear stiffness of granular material at small strains: does it depend on grain size? Géotechnique 63(2), 165 (2013)

    Article  Google Scholar 

  • Zhao, J., Guo, N.: Unique critical state characteristics in granular media considering fabric anisotropy. Géotechnique 63(8), 695–704 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Mizanur Rahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mizanur Rahman, M., Nguyen, H.B.K., Wang, HC. (2020). Stiff Degradation of Granular Material – A DEM Approach. In: Shehata, H., Das, B., Selvadurai, A., Fayed, A. (eds) Advanced Numerical Methods in Foundation Engineering. GeoMEast 2019. Sustainable Civil Infrastructures. Springer, Cham. https://doi.org/10.1007/978-3-030-34193-0_5

Download citation

Publish with us

Policies and ethics