Skip to main content

Patterns and Processes of Diversification in Amazonian White Sand Ecosystems: Insights from Birds and Plants

  • Chapter
  • First Online:
Neotropical Diversification: Patterns and Processes

Abstract

White sand ecosystems (WSE) occur in nutrient-poor sandy soils patchily distributed throughout the lowlands of Amazonia. The diversification and current patterns of diversity of birds and plants specialized to the WSE were likely affected by abiotic conditions in very different ways relative to those in the upland Terra Firme forest, which has been more frequently studied over the years. Here, we review information on the geological origin of WSE substrates in Amazonia, and analyze current patterns of distribution of species and genetic diversity of plants and birds associated with these environments. Specifically, we analyze data on community composition to assess patterns of species diversity and turnover, and review and summarize published genetic data to unravel phylogenetic origins and phylogeographic patterns. Despite having lower species richness relative to other Amazonian ecosystems, the WSE present unique assemblages of species. The WSE are older than the Quaternary, yet their Pleistocene history has been dynamic, and the phylogenetic and population genetic patterns of the WSE taxa are consistent with this dynamism. The WSE were sensitive to Pleistocene climatic changes, likely undergoing lineage diversification and local extinctions. With increasing threats to Amazonian ecosystems, the low resilience of the WSE to disturbance needs to be factored into conservation management—particularly in the face of future climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 04 July 2020

    The original version of the book was inadvertently published with an incorrect fore name of the author in chapters 10 and 11 as C. Camila Ribas. The name has been now corrected as Camila C. Ribas

References

  • Adeney JM, Christensen NL, Vicentini A, Cohn-Haft M (2016) White-sand ecosystems in Amazonia. Biotropica 48:7–23. https://doi.org/10.1111/btp.12293

    Article  Google Scholar 

  • Almeida-Neto M, Guimarães P, Guimarães PR Jr, Loyola RD, Ulrich W (2008) A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117:1227–1239

    Google Scholar 

  • Alonso JA, Whitney B (2003) New distributional records of birds from white-sand forests of the northern Peruvian Amazon, with implications for biogeography of northern South America. Condor 105:552–566

    Google Scholar 

  • Alonso JA, Metz MR, Fine PVA (2013) Habitat specialization by birds in western Amazonian white-sand forests. Biotropica 45:365–372

    Google Scholar 

  • Anderson AB (1981) White-sand vegetation of Brazilian Amazonia. Biotropica 13:199–210

    Google Scholar 

  • Arruda DM, Schaefer CEG, Fonseca RS, Solar RRC, Fernandes-Filho EI (2017) Vegetation cover of Brazil in the last 21 ka: new insights into the Amazonian refugia and Pleistocenic arc hypotheses. Glob Ecol Biogeogr 27:47–56

    Google Scholar 

  • Baker PA, Fritz SC, Burns SJ, Ekdahl E, Rigsby CA (2009) The nature and origin of decadal to millennial scale climate variability in the southern tropics of South America: the Holocene record of Lago Umayo, Peru. In: Vimeux F, Sylvestre F, Khodri M (eds) Past climate variability in South America and surrounding regions: from the last glacial maximum to the Holocene. Springer, Amsterdam, pp 301–322. https://doi.org/10.1007/978-90-481-2672-9_13

    Chapter  Google Scholar 

  • Bleackley D, Khan EJA (1963) Observations on the white-sand areas of the Berbice Formation, British Guiana. J Soil Sci 14:44–51

    Google Scholar 

  • Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Model 153:51–68

    Google Scholar 

  • Borcard D, Legendre P, Avois-Jacquet C, Tuomisto H (2004) Dissecting the spatial structure of ecological data at multiple scales. Ecology 85:1826–1832

    Google Scholar 

  • Borges SH (2013) Bird species distribution in a complex Amazonian landscape: species diversity, compositional variability and biotic-environmental relationships. Stud Neotropical Fauna Environ 48:106–118

    Google Scholar 

  • Borges SH, Almeida RA (2011) Birds of the Jaú National Park and adjacent areas, Brazilian Amazon: new species records with reanalysis of a previous checklist. Rev Bras Ornitol 19:108–133

    Google Scholar 

  • Borges SH, Cornelius C, Moreira M, Ribas C, Conh-Haft M, Capurucho JM, Vargas C, Almeida R (2016a) Bird communities in Amazonian white-sand vegetation patches: effects of landscape configuration and biogeographic context. Biotropica 48:121–131

    Google Scholar 

  • Borges SH, Cornelius C, Ribas C, Almeida R, Guilherme E, Aleixo A, Dantas S, Santos MPD, Moreira M (2016b) What is the avifauna of Amazonian white-sand vegetation? Bird Conserv Int 26:192–204

    Google Scholar 

  • Bueno GT (2009) Empobrecimento e Podzolização de Solos Lateríticos da Bacia do Rio Negro e Gênese dos Podzóis na Alta Bacia Amazônica. Tese de Doutorado, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista

    Google Scholar 

  • Campbell KE, Frailey CD, Romero-Pittman L (2006) The Pan-Amazonian Ucayali Peneplain, late Neogene sedimentation in Amazonia, and the birth of the modern Amazon River system. Palaeogeogr Palaeoclimatol Palaeoecol 239:166–219. https://doi.org/10.1016/j.palaeo.2006.01.020

    Article  Google Scholar 

  • Capurucho JMG, Cornelius C, Borges SH, Cohn-Haft M, Aleixo A, Metzger JP, Ribas CC (2013) Combining phylogeography and landscape genetics of Xenopipo atronitens (Aves: Pipridae), a white sand campina specialist, to understand Pleistocene landscape evolution in Amazonia. Biol J Linn Soc 110:60–76. https://doi.org/10.1111/bij.12102

    Article  Google Scholar 

  • Capurucho JMG, Ashley MV, Ribas CC, Bates JM (2018) Connecting Amazonian, Cerrado, and Atlantic forest histories: Paraphyly, old divergences, and modern population dynamics in tyrant-manakins (Neopelma/Tyranneutes, Aves: Pipridae). Mol Phylogenet Evol 127:696–705

    PubMed  Google Scholar 

  • Carneiro-Filho A, Schwartz D, Tatumi SH, Rosique T (2002) Amazonian paleodunes provide evidence for drier climate phases during the Late Pleistocene–Holocene. Quat Res 58:205–209

    Google Scholar 

  • Costa LP (2003) The historical bridge between the Amazon and the Atlantic Forest of Brazil: a study of molecular phylogeography with small mammals. J Biogeogr 30:71–86

    Google Scholar 

  • Costa FM, Terra-Araujo MH, Zartman CE, Frische CC, Carvalho FA, Hopkins MJG, Viana PL, Prata EMB, Vicentini A (2019) Islands in a green ocean: geographic endemism and biogeography of the lowland white-sand flora in Central Amazonia. Biotropica 00:1–12

    Google Scholar 

  • Cowling SA, Maslin MA, Sykes MT (2001) Paleovegetation simulations of lowland Amazonia and implications for neotropical allopatry and speciation. Quat Res 55:140–149

    CAS  Google Scholar 

  • Cracraft J (1985) Historical biogeography and patterns of differentiation within the South American avifauna: areas of endemism. Ornithol Monogr 36:49–84

    Google Scholar 

  • D’Apolito C, Absy ML, Latrubesse EM (2017) The movement of pre-adapted cool taxa in north-central Amazonia during the last glacial. Quat Sci Rev 169:1–12. https://doi.org/10.1016/j.quascirev.2017.05.017

    Article  Google Scholar 

  • Damasco G, Vicentini A, Castilho CV, Pimentel TP, Nascimento HE (2013) Disentangling the role of edaphic variability, flooding regime and topography of Amazonian white-sand vegetation. J Veg Sci 24:384–394

    Google Scholar 

  • Demarchi LO, Scudeller VV, Moura LC, Dias-Terceiro RG, Lopes A, Wittmann FK, Piedade MTF (2018) Floristic composition, structure and soil-vegetation relations in three white-sand soil patches in central Amazonia. Acta Amazon 48:46–56

    Google Scholar 

  • Dray S, Legendre P, Peres-Neto PR (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol Model 196:483–493

    Google Scholar 

  • Dubroeucq D, Volkoff B, Pédro G (1991) La couverture pédologique du Bouclier du Nord de l’Amazonie (bassin du Haut Rio Negro). Séquence évolutive des sols et son rôle dans l’aplanissement généralisé des zones tropicales perhumides. C R Acad Sci Paris 312:663–671

    Google Scholar 

  • Duivenvoorden JF, Lips JM (1995) A land-ecological study of soils, vegetation and plant diversity in Colombian Amazonia, Tropenbos edn. The Tropenbos Foundation, Wageningen, 438 p

    Google Scholar 

  • Ferreira M, Aleixo A, Ribas CC, Santos MPD (2017) Biogeography of the Neotropical genus Malacoptila (Aves: Bucconidae): the influence of the Andean orogeny, Amazonian drainage evolution and palaeoclimate. J Biogeogr 44:748–759

    Google Scholar 

  • Ferreira M, Fernandes AM, Aleixo A, Antonelli A, Olsson U, Bates JM, Cracraft J, Ribas CC (2018) Evidence for mtDNA capture in the jacamar Galbula leucogastra/chalcothorax species-complex and insights on the evolution of white-sand ecosystems in the Amazon basin. Mol Phylogenet Evol 129:149–157

    CAS  PubMed  Google Scholar 

  • Fine PV, García-Villacorta R, Pitman NC, Mesones I, Kembel SW (2010) A floristic study of the white-sand forests of Peru. Ann Mo Bot Gard 97:283–305

    Google Scholar 

  • Fine PV, Baraloto C (2016) Habitat endemism in white-sand forests: insights into the mechanisms of lineage diversification and community assembly of the Neotropical flora. Biotropica 48:24–33

    Google Scholar 

  • Fine PV, Mesones I, Coley PD (2004) Herbivores promote habitat specialization by trees in Amazonian forests. Science 305:663–665

    CAS  PubMed  Google Scholar 

  • Fine PV, Zapata F, Daly DC (2014) Investigating processes of neotropical rain forest tree diversification by examining the evolution and historical biogeography of the Protieae (Burseraceae). Evolution 68:1988–2004

    PubMed  Google Scholar 

  • Givnish TJ, Evans TM, Zjhra ML, Patterson TB, Berry PE, Sytsma KJ (2000) Molecular evolution, adaptive radiation, and geographic diversification in the amphiatlantic family Rapateaceae: evidence from ndhF sequences and morphology. Evolution 54:1915–1937

    CAS  PubMed  Google Scholar 

  • Guevara JE, Damasco G, Baraloto C et al (2016) Low phylogenetic beta diversity and geographic neo-endemism in Amazonian white-sand forests. Biotropica 48:34–46

    Google Scholar 

  • Häggi C, Chiessi CM, Merkel U, Mulitza S, Prange M, Schulz M, Schefuß E (2017) Response of the Amazon rainforest to late Pleistocene climate variability. Earth Planet Sci Lett 479:50–59. https://doi.org/10.1016/J.EPSL.2017.09.013

    Article  Google Scholar 

  • Hennig C (2018) fpc: flexible Procedures for Clustering. R package version 2:2–3. https://CRAN.R-project.org/package=fpc.

    Google Scholar 

  • Heyligers PC (1963) Vegetation and soil of a white-sand savanna in Suriname. N.V. Noord-Hollandsche Uitgevers Maatschappij, Amsterdam, p 148

    Google Scholar 

  • Hoorn C, Bogotá-A GR, Romero-Baez M, Lammertsma EI, Flantua SGA, Dantas EL, Dino R, do Carmo DA, Chemale F (2017) The Amazon at sea: onset and stages of the Amazon River from a marine record, with special reference to Neogene plant turnover in the drainage basin. Glob Planet Change 153:51–65. https://doi.org/10.1016/j.gloplacha.2017.02.005

    Article  Google Scholar 

  • Horbe AMC, Horbe MA, Suguio K (2004) Tropical Spodosols in northeastern Amazonas State, Brazil. Geoderma 119:55–68. https://doi.org/10.1016/S0016-7061(03)00233-7

    Article  CAS  Google Scholar 

  • Huber O (1988) Guayana highlands versus Guayana lowlands, a reappraisal. Taxon 37:595–614

    Google Scholar 

  • Iriondo M, Latrubesse EM (1994) A probable scenario for a dry climate in central Amazonia during the late Quaternary. Quat Int 21:121–128. https://doi.org/10.1016/1040-6182(94)90026-4

    Article  Google Scholar 

  • Isler ML, Bravo GA, Brumfield RT (2013) Taxonomic revision of Myrmeciza (Aves: Passeriformes: Thamnophilidae) into 12 genera based on phylogenetic, morphological, behavioral, and ecological data. Zootaxa 3717:469–497.

    Google Scholar 

  • Ives AR, Helmus MR (2010) Phylogenetic metrics of community similarity. Am Nat 176:E128–E142

    PubMed  Google Scholar 

  • Janzen DH (1974) Tropical blackwater rivers, animals, and mast fruiting by the Dipterocarpaceae. Biotropica 6:69–103

    Google Scholar 

  • Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled seamless SRTM data V4—SRTM Resampled 250m [Online]. Int Cent Trop Agric. http://gisweb.ciat.cgiar.org/TRMM/SRTM_Resampled_250m/. Accessed 17 June 2018

  • Jetz W et al (2012) The global diversity of birds in space and time. Nature 491:444–448

    CAS  PubMed  Google Scholar 

  • Junk WJ, Piedade MTF, Schöngart J, Cohn-Haft M, Adeney JM, Wittmann F (2011) A classification of major naturally-occurring amazonian lowland wetlands. Wetlands 31:623–640

    Google Scholar 

  • Klinge H (1965) Podzol soils in the Amazon Basin. J Soil Sci 16:95–103

    Google Scholar 

  • Koutavas A, Lynch-Stieglitz J (2004) Variability of the marine ITCZ over the eastern Pacific during the past 30,000 years. In: Diaz HF, Bradley RS (eds) The Hadley circulation: present, past and future, advances in global change research. Springer, Dordrecht, pp 347–369. https://doi.org/10.1007/978-1-4020-2944-8

    Chapter  Google Scholar 

  • Kubitzki K (1989) The ecogeographical differentiation of Amazonian inundation forests. Plant Syst Evol 162:285–304

    Google Scholar 

  • Kubitzki K (1990) The psammophilous flora of northern South America. Mem N Y Bot Gard 64:248–253

    Google Scholar 

  • Laranjeiras TO, Naka LN, Bechtoldt CL, Vieira TV, Andretti CB, Cerqueira MC, Torres MF (2014) The avifauna of Virua National Park, Roraima, reveals megadiversity in northern Amazonia. Rev Bras Ornitol 22:138–171

    Google Scholar 

  • Latrubesse EM, Cozzuol M, Silva-Caminha SAF, Rigsby CA, Absy ML, Jaramillo C (2010) The Late Miocene paleogeography of the Amazon Basin and the evolution of the Amazon River system. Earth-Sci Rev 99:99–124

    CAS  Google Scholar 

  • Lutz HL, Weckstein JD, Patane JSL, Bates JM, Aleixo A (2013) Biogeography and spatio-temporal diversification of Selenidera and Andigena Toucans (Aves: Ramphastidae). Mol Phylogenet Evol 69:873–883

    PubMed  Google Scholar 

  • Mafra AL, Miklós AAW, Volkoff B, Melfi AJ (2002) Pedogênese numa seqüência latossolo-espodossolo na região do alto rio Negro, Amazonas. Rev Bras Ciênc Solo 26:381–394. https://doi.org/10.1590/S0100-06832002000200012

    Article  CAS  Google Scholar 

  • Matos MV, Borges SH, d’Horta FM, Cornelius C, Latrubesse E, Cohn-Haft M, Ribas CC (2016) Comparative phylogeography of two bird species, Tachyphonus phoenicius (Thraupidae) and Polytmus theresiae (Trochilidae), specialized in Amazonian white-sand vegetation. Biotropica 48:110–120. https://doi.org/10.1111/btp.12292

    Article  Google Scholar 

  • Matthews T (2015) Analysing and modelling the impact of habitat fragmentation on species diversity: a macroecological perspective. Front Biogeogr 7. https://doi.org/10.21425/F57225942

  • Mendonça BAF, Simas FNB, Schafer CEGR, Fernandes Filho EI, Vale Júnior JF, Mendonça JGF (2014) Podzolized soils and paleoenvironmental implications of white-sand vegetation (Campinarana) in the Viruá National Park, Brazil. Geoderma Reg 2:9–20

    Google Scholar 

  • Misiewicz TM, Fine PV (2014) Evidence for ecological divergence across a mosaic of soil types in an Amazonian tropical tree: Protium subserratum (Burseraceae). Mol Ecol 23:2543–2558

    PubMed  Google Scholar 

  • Naka LN, Brumfield RT (2018) The dual role of Amazonian rivers in the generation and maintenance of avian diversity. Sci Adv 4:eaar8575. https://doi.org/10.1126/sciadv.aar8575

    Article  PubMed  PubMed Central  Google Scholar 

  • Oren DC (1981) Zoogeographic analysis of the white sand campina avifauna of Amazonia. Ph.D. dissertation, Harvard University, Cambridge, MA

    Google Scholar 

  • Paradis E (2012) Analysis of phylogenetics and evolution with R, 2nd edn. Springer, New York

    Google Scholar 

  • Parolin P, Wittmann F (2010) Struggle in the flood: tree responses to flooding stress in four tropical floodplain systems. AoB Plants 2010:plq003

    PubMed  PubMed Central  Google Scholar 

  • Pennington RT, Lehmann CER, Rowland LM (2018) Tropical savannas and dry forests. Curr Biol 28:R527–R548

    Google Scholar 

  • Prance GT (1996) Islands in Amazonia. Philosophical Trans R Soc B: Biol Sci 351:823–833

    Google Scholar 

  • Prata EMB (2016) Delimitação de espécies e história de diversificação do complexo Pagamea guianensis (Rubiaceae) na América do Sul Tropical. Unpublished D. Phil. Thesis, Insituto Nacional de Pesquisas da Amazônia

    Google Scholar 

  • Prata EMB, Sass C, Rodrigues DP, Domingos FMCB, Specht CD, Damasco G, Ribas CC, Fine PVA, Vicentini A (2018) Towards integrative taxonomy in Neotropical botany: disentangling the Pagamea guianensis species complex (Rubiaceae). Bot J Linn Soc 188:213–231

    Google Scholar 

  • Quesada CA, Phillips OL, Schwarz M, Czimczik CI, Baker TR, Patiño S et al (2012) Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 9:2203–2246

    Google Scholar 

  • Rangel TF et al (2018) Modeling the ecology and evolution of biodiversity: biogeographical cradles, museums, and graves. Science 361:eaar5452. https://doi.org/10.1126/science.aar5452

    Article  CAS  PubMed  Google Scholar 

  • Räsänen M, Linna A, Irion G, Hernani LR, Huaman RV, Wesselingh F (1998) Geologia y Geoformas de la Zona de Iquitos. In: Kalliola R, Flores Paitan S (eds) Geoecología y Desarrollo Amazónico: Estudio Integrado En La Zona de Iquitos, Perú. Turun Yliopisto, Turko, p 544

    Google Scholar 

  • Ribas CC, Aleixo A, Nogueira ACR, Miyaki CY, Cracraft J (2012) A palaeobiogeographic model for biotic diversification within Amazonia over the past three million years. Proc R Soc B Biol Sci 279:681–689. https://doi.org/10.1098/rspb.2011.1120

    Article  Google Scholar 

  • Richards PW (1941) Lowland tropical podsols and their vegetation. Nature 148:129–131. https://doi.org/10.1038/148129a0

    Article  Google Scholar 

  • Roddaz M, Baby P, Brusset S, Hermoza W, Darrozes JM (2005a) Forebulge dynamics and environmental control in Western Amazonia: the case study of the Arch of Iquitos (Peru). Tectonophysics 399:87–108. https://doi.org/10.1016/j.tecto.2004.12.017

    Article  Google Scholar 

  • Roddaz M, Viers J, Brusset S, Baby P, Hérail G (2005b) Sediment provenances and drainage evolution of the Neogene Amazonian foreland basin. Earth Planet Sci Lett 239:57–78. https://doi.org/10.1016/j.epsl.2005.08.007

    Article  CAS  Google Scholar 

  • Roddaz M, Viers J, Brusset S, Baby P, Boucayrand C, Hérail G (2006) Controls on weathering and provenance in the Amazonian foreland basin: insights from major and trace element geochemistry of Neogene Amazonian sediments. Chem Geol 226:31–65. https://doi.org/10.1016/j.chemgeo.2005.08.010

    Article  CAS  Google Scholar 

  • Rossetti DF, Bertani TC, Zani H, Cremon EH, Hayakawa EH (2012a) Late Quaternary sedimentary dynamics in Western Amazonia: implications for the origin of open vegetation/forest contrasts. Geomorphology 177–178:74–92. https://doi.org/10.1016/j.geomorph.2012.07.015

    Article  Google Scholar 

  • Rossetti DF, Zani H, Cohen MCL, Cremon ÉH (2012b) A Late Pleistocene-Holocene wetland megafan in the Brazilian Amazonia. Sediment Geol 282:276–293. https://doi.org/10.1016/j.sedgeo.2012.09.015

    Article  Google Scholar 

  • Rossetti DF, Zani H, Cremon ÉH (2014) Fossil megafans evidenced by remote sensing in the Amazonian wetlands. Z Geomorphol 58:145–161. https://doi.org/10.1127/0372-8854/2013/0118

    Article  Google Scholar 

  • Roy M, Schimann H, Braga-Neto R et al (2016) Diversity and distribution of ectomycorrhizal fungi from Amazonian lowland white-sand forests in Brazil and French Guiana. Biotropica 48:90–100

    Google Scholar 

  • Silva SM, Peterson TA, Carneiro L, Burlamaqui TCT, Ribas CC, Sousa-Neves T et al (2019) A dynamic continental moisture gradient drove Amazonian bird diversification. Sci Adv 5:eaat5752

    PubMed  PubMed Central  Google Scholar 

  • Singer R, Aguiar IA (1986) Litter decomposing and ectomycorrhizal Basidiomycetes in an igapó forest. Plant Syst Evol 153:107–117

    Google Scholar 

  • Smith BT et al (2014) The drivers of tropical speciation. Nature 515:406–409

    CAS  PubMed  Google Scholar 

  • Sombroek WG (1966) Amazon soils. Entre for Agricultural Publications and Documentation, Wageningen, p 292

    Google Scholar 

  • Steyermark JA (1986) Speciation and endemism in the flora of the Venezuelan tepuis. In: Vuilleumier F, Monasterio M (eds) High altitude tropical biogeography. Oxford University Press, New York, pp 317–373

    Google Scholar 

  • Strona G, Galli P, Seveso D, Montano S, Fattorini S (2014) Nestedness for Dummies (NeD): a user friendly web interface for exploratory nestedness analysis. J Stat Softw 59:1–9

    Google Scholar 

  • Stropp J, Sleen PVD, Assunção PA, da Silva AL, ter Steege H (2011) Tree communities of white-sand and terra-firme forests of the upper Rio Negro. Acta Amazon 41:521–544

    Google Scholar 

  • Teeuw RM, Rhodes EJ (2004) Aeolian activity in northern Amazonia: optical dating of Late Pleistocene and Holocene palaeodunes. J Quat Sci 19:49–54. https://doi.org/10.1002/jqs.815

    Article  Google Scholar 

  • Terra-Araujo MH, de Faria AD, Vicentini A, Nylinder S, Swenson U (2015) Species tree phylogeny and biogeography of the Neotropical genus Pradosia (Sapotaceae, Chrysophylloideae). Mol Phylogenet Evol 87:1–13

    PubMed  Google Scholar 

  • Thom G, Amaral FR, Hickerson MJ, Aleixo A, Araujo-Silva LE, Ribas CC, Choueri E, Miyaki CY (2018) Phenotypic and Genetic Structure Support Gene Flow Generating Gene Tree Discordances in an Amazonian floodplain endemic species. Syst Biol 67:700–718

    CAS  PubMed  Google Scholar 

  • Vicentini A (2004) A vegetação ao longo de um gradiente edáfico no Parque Nacional do Jaú. In: Borges SH, Iwanaga S, Durigan CC, Pinheiro MR (eds) Janelas para a biodiversidade no Parque Nacional do Jaú: uma estratégia par ao estudo da biodiversidade na Amazônia. Fundação Vitória Amazônica/WWF/IBAMA, Manaus, pp 117–143

    Google Scholar 

  • Vicentini A (2007) Pagamea Aubl. (Rubiaceae), from species to processes, building the bridge. D. Phil. thesis, University of Missouri Saint Louis

    Google Scholar 

  • Vicentini A (2016) The evolutionary history of Pagamea (Rubiaceae), a white-sand specialist lineage in tropical South America. Biotropica 48:58–69

    Google Scholar 

  • Wang X, Edwards RL, Auler AS, Cheng H, Kong X, Wang Y, Cruz FW, Dorale JA, Chiang H-W (2017) Hydroclimate changes across the Amazon lowlands over the past 45,000 years. Nature 541:204–207

    CAS  PubMed  Google Scholar 

  • Webb CO (2000) Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Am Nat 156(2):145–155

    PubMed  Google Scholar 

  • Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Version 4.0.1

    Google Scholar 

  • Weir JT, Schluter D (2008) Calibrating the avian molecular clock. Mol Ecol 17:2321–2328.

    Google Scholar 

  • Werneck FP (2011) The diversification of eastern South American open vegetation biomes: historical biogeography and perspectives. Quat Sci Rev 30:1630–1648

    Google Scholar 

  • Wittmann F, Householder E, Piedade MT, de Assis RL, Schöngart J, Parolin P, Junk WJ (2013) Habitat specifity, endemism and the neotropical distribution of Amazonian white-water floodplain trees. Ecography 36:690–707

    Google Scholar 

  • Zani H, Rossetti DF (2012) Multitemporal Landsat data applied for deciphering a megafan in northern Amazonia. Int J Remote Sens 33:6060–6075. https://doi.org/10.1080/01431161.2012.677865

    Article  Google Scholar 

  • Zanne AE, Tank DC, Cornwell WK et al (2014) Three keys to the radiation of angiosperms into freezing environments. Nature 506:89

    CAS  PubMed  Google Scholar 

  • Zular A, Sawakuchi AO, d’Horta FM, Cruz FW, Chiessi CM, Demattê JAR, Ribas CC, Hartmann GA, Giannini PCF, Soares EAA (2019) The role of abrupt climate change in the formation of an open vegetation enclave in northern Amazonia. Glob Planet Chang 172:140–149

    Google Scholar 

Download references

Acknowledgements

Grants: FAPESP-FAPEAM (Edital 006/2009); “Dimensions US-Biota-São Paulo”, NSF (DEB 1241066)/NASA/FAPESP (grant #2012/50260-6); PEER/USAID (AID-OAA-A-11-00012); and Universal Amazonas (Edital FAPEAM 002/2018). Research fellowships: CNPq (308927/2016-8) to CCR. FAPEAM (Fixam Program, Edital 017/204) to SHB. SwB CAPES (11881-2013/5) to JMGC. Student fellowships from CNPq, CAPES and FAPEAM.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Electronic Supplementary Material S1

Supplementary information (DOCX 20 kb)

Electronic Supplementary Material S2

Species per ecosystem (CSV 81 kb)

Electronic Supplementary Material S3

Sister groups WSE birds (XLSX 13 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Capurucho, J.M.G. et al. (2020). Patterns and Processes of Diversification in Amazonian White Sand Ecosystems: Insights from Birds and Plants. In: Rull, V., Carnaval, A. (eds) Neotropical Diversification: Patterns and Processes. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-31167-4_11

Download citation

Publish with us

Policies and ethics