Skip to main content

The Nature and Origin of Decadal to Millennial Scale Climate Variability in the Southern Tropics of South America: The Holocene Record of Lago Umayo, Peru

  • Chapter
  • First Online:
Past Climate Variability in South America and Surrounding Regions

Part of the book series: Developments in Paleoenvironmental Research ((DPER,volume 14))

Abstract

This paper serves two purposes: to review current ideas about the nature and forcing of decadal to millennial scale precipitation variation in the southern tropics of South America during the late Quaternary and to present a new methodology for the reconstruction of precipitation as applied to a Holocene stable isotopic record of carbonate sediments in a tropical Andean lake, Lago Umayo, Peru. The basic thesis of the first part of the paper is that, although modern instrumental records suffice for deducing climate variability at decadal and shorter time scales, these records cannot adequately characterize the nature and forcing of lower-frequency climate variation. Understanding the nature of multi-decadal to millennial-scale climate variation and the mechanisms of large abrupt climate change is best derived from paleoclimatic time series. Tropical Atlantic sea-surface temperature variation is a significant control on tropical South American paleoclimate at these longer time scales. In the second part of the paper, an original method is presented for quantitatively reconstructing precipitation. This method utilizes the well-known relationship between the stable isotopic composition of precipitation and the amount of precipitation, a relationship that is highly significant in many tropical locales. Due to many simplifying assumptions, the reconstruction should be considered to be tentative.

A ∼12% increase in precipitation (∼570 to 650 mm a−1) at 4750 cal year BP is consistent with the 6% increase in summer insolation at this latitude over the same period. However, the increase in precipitation was neither unidirectional nor gradual. Instead, every 240 years on average, precipitation increased or decreased by at least ∼8% for periods lasting on average 100 years. The largest of these events had ∼15% positive or negative departures from the long-term mean precipitation. These southern tropical wet events apparently coincided with periods of low sea-surface temperatures in the high-latitude North Atlantic, supporting a hypothesis of a tropical North Atlantic sea-surface temperature control on tropical South American precipitation at decadal to millennial scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aceituno P, Montecinos A (1993) Circulation anomalies associated with dry and wet periods in the South American Altiplano. In: Fourth International Conference on Southern Hemisphere Meteorology and Oceanography, American Meteorological Society, Boston, MA

    Google Scholar 

  • Arz HW, Patzold J, Wefer G (1998) Correlated millennial-scale changes in surface hydrography and terrigenous sediment yield inferred from Last-Glacial marine deposits off Northeastern Brazil. Quat Res 50:157–166

    Article  Google Scholar 

  • Baker PA, Seltzer GO, Fritz SC et al (2001a) The history of South American tropical precipitation for the past 25,000 years. Science 291:640–643

    Article  Google Scholar 

  • Baker PA, Rigsby CA, Seltzer GO et al (2001b) Tropical climate changes at millennial and orbital timescales on the Bolivian Altiplano. Nature 409:698– 700

    Article  Google Scholar 

  • Baker PA, Fritz SC, Garland J, Ekdahl E (2005) Holocene hydrologic variation at Lake Titicaca, Bolivia/Peru, and its relationship to North Atlantic climate variation. J Quat Sci 20:655–662

    Article  Google Scholar 

  • Battarbee RW (1986) Diatom analysis. In: Berglund, B (ed) Handbook of Holocene palaeoecology and palaeohydrology. Wiley, New York, pp 527–570

    Google Scholar 

  • Berger A, Loutre MF (1991) Insolation values for the climate of the last 10 million years. Quat Sci Rev 10:297–317

    Article  Google Scholar 

  • Black DE, Peterson LC, Overpeck JT (1999) Eight centuries of North Atlantic ocean atmosphere variability. Science 286:1709–1713

    Article  Google Scholar 

  • Black DE, Thunell RC, Kaplan A et al (2004) A 2000-year record of Caribbean and tropical North Atlantic hydrographic variability. Paleoceanography 19:PA2022. doi:10.1029/2003PA000982

    Article  Google Scholar 

  • Bond G, Kromer B, Beer J et al (2001) Persistent solar influence on North Atlantic climate during the Holocene. Science 294:2130–2136

    Article  Google Scholar 

  • Bradley RS, Vuille M, Hardy D, Thompson LG (2003) Low latitude ice cores record Pacific sea surface temperatures. Geophys Res Lett 30:doi:10.1029/2002GL016546

    Google Scholar 

  • Broccoli AJ, Dahl KA, Stouffer RJ (2006) Response of the ITCZ to Northern Hemisphere cooling. Geophys Res Lett 33:L01702, doi:10.1029/2005GL024546

    Article  Google Scholar 

  • Carmouze JP (1992) The energy balance. In: Dejoux C, Iltis A (eds) Lake Titicaca, a Synthesis of Limnological Knowledge. Kluwer, Dordrecht

    Google Scholar 

  • Carton JA, Cao X, Giese BS, Silva AM (1996) Decadal and interannual SST variability in the tropical Atlantic Ocean. J Phys Oceanogr 26:1165–1175

    Article  Google Scholar 

  • Chang P, Ji L, Li H (1997) A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air-sea interactions. Nature 385:516–518

    Article  Google Scholar 

  • Chiang JCH, Bitz CM (2005) Influence of high latitude ice cover on the marine Intertropical Convergence Zone. Clim Dyn 25:477–496

    Article  Google Scholar 

  • Chiang JCH, Koutavas A (2004) Tropical flip-flop connections. Nature 432:684–685

    Article  Google Scholar 

  • Cross SL, Baker PA, Seltzer GO, Fritz SC, Dunbar RB (2000) A new estimate of the Holocene lowstand level of Lake Titicaca, central Andes, and implications for tropical palaeohydrology. Holocene 10:21–32

    Article  Google Scholar 

  • Cruz FWJ, Burns SJ, Karmann I et al (2005) Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil. Nature 434:63–66

    Article  Google Scholar 

  • Cruz FW, Burns SJ, Karmann I, Sharp WD, Vuille M (2006) Reconstruction of regional atmospheric circulation features during the late Pleistocene in subtropical Brazil from oxygen isotope composition of speleothems. Earth Planet Sci Lett 248:495–507

    Article  Google Scholar 

  • Cruz FW, Burns SJ, Jercinovic M et al (2007) Evidence of rainfall variations in Southern Brazil from trace element ratios (Mg/Ca and Sr/Ca) in a Late Pleistocene stalagmite. Geochimica et Cosmochimica Acta 71:2250–2263

    Article  Google Scholar 

  • Curtis S, Hastenrath S (1999) Trends of upper-air circulation and water vapour over equatorial South America and adjacent oceans. Int J Climatol 19:863–876

    Article  Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436– 468

    Article  Google Scholar 

  • Delclaux F, Coudrain A, Condom T (2007) Evaporation estimation on Lake Titicaca: A synthesis review and modeling. Hydrol Process 21:1664–1677

    Article  Google Scholar 

  • Ekdahl E, Fritz SC, Baker PA et al (2008) Holocene multi-decadal to millennial-scale hydrologic variability on the South American Altiplano. Holocene 18:867–876

    Article  Google Scholar 

  • Fritz SC, Baker PA, Seltzer GO et al (2007) Quaternary glaciation and hydrologic variation in the South American tropics as reconstructed from the Lake Titicaca drilling project. Quat Res 68:410–420

    Article  Google Scholar 

  • Garcia M, Raes D, Allen R, Herbas C (2004) Dynamics of reference evapotranspiration in the Bolivian highlands (Altiplano). Agric For Meteorol 125:67–82

    Article  Google Scholar 

  • Garreaud RD, Vuille M, Compagnucci R, Marengo J (2008) Present-day South American climate. Palaeogeogr Palaeoclimatol Palaeoecol in press. doi:10.1016/j.palaeo.2007.10.032

    Google Scholar 

  • Gat JR (1995) Stable isotopes and the water balance of fresh and saltwater lakes. In: Lerman A, Imboden DM, Gat JR (eds) Physics and chemistry of lakes. Springer-Verlag, Berlin

    Google Scholar 

  • Harris PP, Huntingford C, Cox PM (2008) Amazon Basin climate under global warming: The role of the sea surface temperature. Phil Trans R Soc B 363:1753–1759

    Article  Google Scholar 

  • Hastenrath S, Greischar L (1993) Circulation mechanisms related to Northeast Brazil rainfall anomalies. J Geophys Res Atmos 98(D5):5093–5102

    Article  Google Scholar 

  • Hastenrath S, Polzin D, Francou B (2004) Circulation variability reflected in ice core and lake records of the southern tropical Andes. Clim Change 64:361–375

    Article  Google Scholar 

  • Haug GH, Hughen, KA, Sigman DM et al (2001) Southward migration of the Intertropical Convergence Zone through the Holocene. Science 293:1304–1308

    Article  Google Scholar 

  • Haug GH, Gunther D, Peterson LC et al (2003) Climate and the collapse of Maya civilization. Science 299:1731–1734

    Article  Google Scholar 

  • Hoffmann G, Ramirez E, Taupin JD et al (2003) Coherent isotope history of Andean ice cores over the last century. Geophys Res Lett 30:doi:10.1029/2002GL014870

    Google Scholar 

  • Hurrell JW, van Loon H (1997) Decadal variations in climate associated with the North Atlantic Oscillation. Clim Change 36:301–326

    Article  Google Scholar 

  • INTECSA (1993) Estudio de Climatologia. Plan director global binacional de proteccion -prevencion de inundaciones y aprovechamiento de los recursos del Lago Titicaca, Rio Desaguadero, Lago Poopo y Lago Salar de Coipasa (Sistema T.D.P.S). INTECSA, AIC, CNR

    Google Scholar 

  • Jennerjahn TC, Ittekkot V, Arz HW et al (2002) Asynchronous terrestrial and marine signals of climate change during Heinrich events. Science 306:2236–2239

    Article  Google Scholar 

  • Liu J (2008) Interannual to decadal variability of precipitation in tropical South America and its relationship to the Tropical Atlantic and Pacific Oceans. Unpublished M.S. Thesis, Duke University

    Google Scholar 

  • Majoube M (1971) Fractionnement en oxygène-18 et en deutérium entre l'eau et sa vapeur. J Chem Phys 197:1423–1436

    Google Scholar 

  • Mayle FE, Power MJ (2008) Impact of a drier Early–Mid-Holocene climate upon Amazonian forests. Phil Trans R Soc B 363:1829–1838

    Article  Google Scholar 

  • McCormac FG, Hogg AG, Blackwell PG et al (2004) SHCal04 Southern Hemisphere calibration 0–1000 cal BP. Radiocarbon 46:1087–1092

    Google Scholar 

  • Melice JL, Roucou P (1998) Decadal time scale variability recorded in the Quelccaya summit ice core δ18O isotopic ratio series and its relation with the sea surface temperature. Clim Dyn 14:117–132

    Article  Google Scholar 

  • Mix AC, Morey AE, Pisias NG, Hostetler SW (1999) Foraminiferal faunal estimates of paleotemperature: Circumventing the noanalog problem yields cool ice age tropics. Paleoceanography 14:350–359

    Article  Google Scholar 

  • Moy CM, Seltzer GO, Rodbell DT, Anderson DM (2002) Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 420:162–165

    Article  Google Scholar 

  • Nobre P, Shukla J (1996) Variations of sea surface temperature, wind stress and rainfall over the tropical Atlantic and South America. J Clim 9:2464– 2479

    Article  Google Scholar 

  • O'Neil JR, Clayton RN, Mayeda TK (1969) Oxygen isotope fractionation between divalent metal carbonates. J Chem Phys 51:5547–5558

    Article  Google Scholar 

  • Peterson LC, Haug GH, Hughen KA, Rohl U (2000) Rapid changes in the hydrologic cycle of the tropical Atlantic during the Last Glacial. Science 290:1947–1951

    Article  Google Scholar 

  • Peterson LC, Haug GH (2006) Variability in the mean latitude of the Atlantic Intertropical Convergence Zone as recorded by riverine input of sediments to the Cariaco Basin (Venezuela). Palaeogeogr Palaeoclimatol Palaeoecol 234:97–113

    Article  Google Scholar 

  • Ramirez E, Hoffman G, Taupin JD et al (2003) A new Andean deep ice core from Nevado Illimani (6350 m), Bolivia. Earth Planet Sci Lett 212:337–350

    Article  Google Scholar 

  • Rodbell D, Seltzer GO, Anderson DM (1999) An 15,000-year record of El Niño-driven alluviation in southwestern Ecuador. Science 283:516–520

    Article  Google Scholar 

  • Rozanski K, Araguas-Araguas L, Gonfiantini R (1993) Isotopic patterns in modern global precipitation. In: Swart PK, Lohmann KC, MacKenzie J, Savin S (eds) Climate change in continental isotopic records. AGU, Washington, DC

    Google Scholar 

  • Seager R, Kushnir Y, Visbeck M et al (2000) Causes of Atlantic Ocean climate variability between 1958 and 1998. J Clim 13:2845–2862

    Article  Google Scholar 

  • Seager R, Battisti, DS (2007) Challenges to our understanding of the general circulation: Abrupt climate change. In: Schneider T, Sobel AH (eds) The global circulation of the atmosphere. Princeton University Press, Princeton

    Google Scholar 

  • Seltzer G, Rodbell D, Burns S (2000) Isotopic evidence for late Quaternary climatic change in tropical South America. Geology 28:35–38

    Article  Google Scholar 

  • Servant-Vildary S, Roux M (1990) Multivariate analysis of diatoms and water chemistry in Bolivian saline lakes. Hydrobiologia 197:267–290

    Article  Google Scholar 

  • Stuiver M, Reimer PJ (1993) Extended 14C data base and revised CALIB 14C age calibration program. Radiocarbon 35:215–230

    Google Scholar 

  • Sturm C, Hoffmann G, Langmann B (2007) Simulation of the stable water isotopes in precipitation over South America: Comparing regional to global circulation models. J Clim 20:3730–3750

    Article  Google Scholar 

  • Sutton RT, Hodson DLR (2003) Influence of the ocean on North Atlantic climate variability 1871–1999. J Clim 16:3296–3313

    Article  Google Scholar 

  • Sylvestre F, Servant-Vildary S, Roux M (2001) Diatom-based ionic concentration and salinity models from the south Bolivian Altiplano (15–23 degrees South). J Paleolimnol 25:279–295

    Article  Google Scholar 

  • Tapia PM, Fritz SC, Baker PA (2003) A late Quaternary diatom record of tropical climate history from Lake Titicaca (Peru and Bolivia). Palaeogeogr Palaeoclimatol Palaeoecol 194:139–164

    Article  Google Scholar 

  • Theissen KM, Dunbar RB, Rowe HD, Mucciarone DA (2008) Multidecadal- to century-scale arid episodes on the northern Altiplano during the middle Holocene. Palaeogeogr Palaeoclimatol Palaeoecol 257:361–376

    Article  Google Scholar 

  • Thompson LG, Mosley-Thompson E, Bolzan JF, Koci BR (1985) A 1500-year record of tropical precipitation in ice cores from the Quelccaya ice cap, Peru. Science 234:361–364

    Article  Google Scholar 

  • Thompson LG, Mosley-Thompson E, Davis ME et al (1995) Late Glacial stage and Holocene tropical ice core records from Huascaran, Peru. Science 269:46–50

    Article  Google Scholar 

  • Thompson LG, Mosley-Thompson E, Henderson KA (2000) Ice-core palaeoclimate records in tropical South America since the Last Glacial Maximum. J Quat Sci 15:377–394

    Article  Google Scholar 

  • Thompson LG, Mosley-Thompson E, Brecher HH et al (2006) Abrupt tropical climate change: Past and present. Proc Natl Acad Sci 103:10536–10543

    Article  Google Scholar 

  • Torrence C, Webster PJ (1999) Interdecadal changes in the ENSO-monsoon system. J Clim 12:2679–2690

    Article  Google Scholar 

  • Vellinga M, Wood RA (2002) Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Clim Change 54:251–267

    Article  Google Scholar 

  • Vimeux F, Gallaire R, Bony S et al (2005) What are the climate controls on δD in precipitation in the Zongo Valley (Bolivia): Implications for the Illimani ice core interpretation. Earth Planet Sci Lett 240:205–220

    Article  Google Scholar 

  • Vimeux F, Ginot P, Schwikowski M et al (2008) Climate variability during the last 1000 years inferred from Andean ice cores: A review of methodology and recent results. Palaeogeogr Palaeoclimatol Palaeoecol:doi:10.1016/j.palaeo.2008.03.054, in press

    Google Scholar 

  • Vogt HJ (1978) Isotopentrennun bei der Verdunstun von Wasser. Thesis, Institute of Environmental Physics, University of Heidelberg, 78 pp

    Google Scholar 

  • Vuille M, Bradley R, Werner M et al (2003a) Modeling δ18O in precipitation over the tropical Americas: 1. interannual variability and climatic controls. J Geophys Res 108:doi:10.1029/2001JD002038

    Google Scholar 

  • Vuille M, Bradley R, Healy R et al (2003b) Modeling δ18O in precipitation over the tropical Americas: 2. Simulation of the stable isotope signal in Andean ice cores. J Geophys Res 108:doi:10.1029/2001JD002039

    Google Scholar 

  • Wang X, Auler AS, Edwards RL et al (2004) Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies. Nature 432:740–743

    Article  Google Scholar 

  • Wang X, Auler AS, Edwards R et al (2006) Interhemispheric anti-phasing of rainfall during the last glacial period. Quat Sci Rev 25:3391–3403

    Article  Google Scholar 

  • Wang X, Auler AS, Edwards RL (2007) Millennial-scale precipitation changes in southern Brazil over the past 90,000 years. Geophys Res Lett 34:L23701, doi:10.1029/2007GL031149

    Article  Google Scholar 

  • Xie SP, Tanimoto Y (1998) A pan-Atlantic decadal climate oscillation. Geophys Res Lett 25:2185–2188

    Article  Google Scholar 

  • Xie SP, Carton JA (2004) Tropical Atlantic variability: Patterns, mechanisms, and impacts. In: Wang C, Xie SP, Carton JA (eds) Earth climate: The ocean-atmosphere interaction. Geophysical Monograph, 147, AGU, Washington, DC

    Google Scholar 

  • Yu L, Jin X, Weller RA (2006) Role of net surface heat flux in seasonal variations of sea surface temperature in the tropical Atlantic Ocean. J Clim 19:6153–6169

    Article  Google Scholar 

  • Zeng N, Yoon J, Marengo J, (2008) Causes and impacts of the 2005 Amazon drought. Environ Res Lett 3:doi:10.1088/1748–9326/3/1/014002

    Google Scholar 

  • Zhang R, Delworth TL (2005) Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J Clim 18:1853–1860

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Baker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Baker, P.A., Fritz, S.C., Burns, S.J., Ekdahl, E., Rigsby, C.A. (2009). The Nature and Origin of Decadal to Millennial Scale Climate Variability in the Southern Tropics of South America: The Holocene Record of Lago Umayo, Peru. In: Vimeux, F., Sylvestre, F., Khodri, M. (eds) Past Climate Variability in South America and Surrounding Regions. Developments in Paleoenvironmental Research, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2672-9_13

Download citation

Publish with us

Policies and ethics