Skip to main content

Modeling

  • Chapter
  • First Online:
The Food-Energy-Water Nexus

Abstract

Managing FEW systems requires modeling tools to understand the merits of different decisions, policies, and investments given potential future constraints and the wider social, environmental, and economic contexts in which these are made. This chapter reviews integrated modeling tools used to support the analysis of FEW systems; especially those used for integrated planning; and the identification and evaluation of trade-offs and synergies.

Integrated FEW system models include representations of Coupled Natural-Human Systems (e.g., the energy system, agriculture and land use, water supply and use, the economy, and the climate). Through this integration, these models allow for exploration of FEW system interactions, and the interactions between these systems and other key external forces such as climate change, socioeconomic and technological change, and policy interventions. There is a clear relationship between FEW system modeling and the metrics reflecting interactions.

While several modeling frameworks are described in this book, only a small number of models and projects have been actually implemented in practice. Ongoing research and applications of FEW system modeling consist of the development of principles, algorithms, data requirements, and model formulations for understanding and evaluating the potential of implementing FEW system nexus approaches within a systems perspective. Outputs and products of these efforts are quantitative tools that focus on FEW system planning in order to identify primary opportunities and constraints to FEW system development, indicating priorities for more detailed analysis as well as providing a characterization of alternative system configurations that meet integrated FEW objectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Food-Centric Approaches to FEWS Modeling

  • Adams, D., Alig, R., McCarl, B. A., Murray, B. C., Bair, L., Depro, B., Latta, G., Lee, H.-C., Schneider, U. A., & Callaway, J. (2005). FASOMGHG conceptual structure, and specification: Documentation. Unpublished paper, Texas A&M University, Department of Agricultural Economics, College Station, TX.

    Google Scholar 

  • Baker, D. N., Lambert, J. R., & McKinion, J. M. (1983). GOSSYM: A simulator of cotton crop growth and yield (134p). Technical Bulletin, South Carolina Agricultural Experiment Station.

    Google Scholar 

  • Baker, D. N., & Landivar, J. A. (1990). The simulation of plant development in GOSSYM. In T. Hodges (Ed.), Predicting crop phenology (pp. 153–170). Boston, MA: CRC Press.

    Google Scholar 

  • Beach, R. H., & McCarl, B. A. (2010). U.S. Agricultural and Forestry Impacts of the Energy Independence and Security Act: FASOM Results and Model Description (p. 178p). Research Triangle Park, NC: RTI International.

    Google Scholar 

  • Boote, K. J., Jones, J. W., Hoogenboom, G., & Pickering, N. B. (1998). The CROPGRO model for grain legumes. In G. Tsuji, G. Hoogenboom, & P. Thornton (Eds.), Understanding options for agricultural production (Vol. 7, pp. 99–128). Berlin: Springer.

    Chapter  Google Scholar 

  • Chen, L., Liang, X.-Z., DeWitt, D., Samel, A. N., & Wang, J. X. L. (2015). Simulation of seasonal U.S. precipitation and temperature by the nested CWRF-ECHAM system. Climate Dynamics, 46(3), 1–18. https://doi.org/10.1007/s00382-015-2619-9.

    Article  Google Scholar 

  • Hodges, H. F., Whisler, F. D., Bridges, S. M., Reddy, K. R., & McKinion, J. M. (1997). Simulation in crop management—GOSSYM/COMAX. In R. M. Peart & R. B. Curry (Eds.), Agricultural systems modeling and simulation (pp. 235–282). New York: Marcel Dekker Inc.

    Google Scholar 

  • Hoogenboom, G., Jones, J., & Boote, K. (1992). Modeling growth, development, and yield of grain legumes using SOYGRO, PNUTGRO, and BEANGRO: A review. Transactions of the ASAE (USA), 35(6), 2043–2056.

    Article  Google Scholar 

  • Jones, C. A., Kiniry, J. R., & Dyke, P. (1986). CERES-Maize: A simulation model of maize growth and development. College Station, TX: Texas A&M University Press.

    Google Scholar 

  • Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L., Wilkens, P. W., Singh, U., Gijsman, A. J., & Ritchie, J. T. (2003). The DSSAT cropping system model. European Journal of Agronomy, 18(3), 235–265.

    Article  Google Scholar 

  • Kiniry, J. R., Williams, J. R., Vanderlip, R. L., Atwood, J. D., Reicosky, D. C., Mulliken, J., Cox, W. J., Mascagni, H. J., Hollinger, S. E., & Wiebold, W. J. (1997). Evaluation of two maize models for nine U.S. locations. Agronomy Journal, 89(3), 421–426.

    Article  Google Scholar 

  • Larsen, S., Jaiswal, D., Bentsen, N. S., Wang, D., & Long, S. P. (2015). Comparing predicted yield and yield stability of willow and Miscanthus across Denmark. Global Change Biology Bioenergy. https://doi.org/10.1111/gcbb.12318.

  • Lee, H. (2002). The dynamic role for carbon sequestration by the U.S. agricultural and forest sectors in greenhouse gas emission mitigation. Unpublished Ph.D. Thesis, Texas A&M University.

    Google Scholar 

  • Liang, X. Z., Xu, M., Gao, W., Reddy, K. R., Kunkel, K., Schmoldt, D. L., & Samel, A. N. (2012a). Physical modeling of U.S. cotton yields and climate stresses during 1979 to 2005. Agronomy Journal, 104(3), 675–683.

    Article  Google Scholar 

  • Liang, X. Z., Xu, M., Gao, W., Reddy, K. R., Kunkel, K., Schmoldt, D. L., & Samel, A. N. (2012b). A distributed cotton growth model developed from GOSSYM and its parameter determination. Agronomy Journal, 104(3), 661–674.

    Article  Google Scholar 

  • Liang, X.-Z., Xu, M., Yuan, X., Ling, T., Choi, H. I., Zhang, F., Chen, L., Liu, S., Su, S., & Qiao, F. (2012c). Regional climate-weather research and forecasting model. Bulletin of the American Meteorological Society, 93(9), 1363–1387.

    Article  Google Scholar 

  • Liang, X.-Z., & Zhang, F. (2013). The cloud–aerosol–radiation (CAR) ensemble modeling system. Atmospheric Chemistry and Physics, 13(16), 8335–8364.

    Article  CAS  Google Scholar 

  • Liu, S., Wang, J. X. L., Liang, X.-Z., Morris, V., & Fine, S. S. (2015). A hybrid approach to improving the skills of seasonal climate outlook at the regional scale. Climate Dynamics, 46(1–2), 483–494. https://doi.org/10.1007/s00382-015-2594-1.

    Article  Google Scholar 

  • McKinion, J., Baker, D., Whisler, F., & Lambert, J. (1989). Application of the GOSSYM/COMAX system to cotton crop management. Agricultural Systems, 31(1), 55–65.

    Article  Google Scholar 

  • Miguez, F. E., Zhu, X. G., Humphries, S., Bollero, G. A., & Long, S. P. (2009). A semimechanistic model predicting the growth and production of the bioenergy crop Miscanthus × giganteus: Description, parameterization and validation. Global Change Biology Bioenergy, 1, 282–296.

    Article  Google Scholar 

  • Miguez, F. E., Maughan, M., Bollero, G. A., & Long, S. P. (2012). Modeling spatial and dynamic variation in growth, yield, and yield stability of the bioenergy crops Miscanthus × giganteus and Panicum virgatum across the conterminous United States. Global Change Biology Bioenergy, 4, 509–520.

    Article  Google Scholar 

  • Pang, X., Letey, J., & Wu, L. (1997). Yield and nitrogen uptake prediction by CERES-Maize model under semiarid conditions. Soil Science Society of America Journal, 61(1), 254–256.

    Article  CAS  Google Scholar 

  • Reddy, K. R., Hodges, H. F., & McKinion, J. M. (1997). Modeling temperature effects on cotton internode and leaf growth. Crop Science, 37(2), 503–509.

    Article  Google Scholar 

  • Reddy, K. R., Kakani, V. G., McKinion, J. M., & Baker, D. N. (2002). Applications of a cotton simulation model, GOSSYM, for crop management, economic and policy decisions. In L. R. Ahuja, L. Ma, & T. A. Howell (Eds.), Agricultural system models in field research and technology transfer. Boston, MA: CRC Press.

    Google Scholar 

  • Skamarock, W., Klemp, J., Dudhia, J., Gill, D., Barker, D., Duda, M. G., Huang, X.-Y., Wang, W., & Powers, J.G. (2008). A description of the advanced research WRF Version 3. NCAR Technical Note. NCAR/TN–475+ STR (113p).

    Google Scholar 

  • Tsvetsinskaya, E. A., Mearns, L. O., & Easterling, W. E. (2001). Investigating the effect of seasonal plant growth and development in three-dimensional atmospheric simulations. Part I: Simulation of surface fluxes over the growing season. Journal of Climate, 14(5), 692–709.

    Article  Google Scholar 

  • Wang, D., Jaiswal, D., Lebauer, D. S., Wertin, T. M., Bollero, G. A., Leakey, A. D. B., & Long, S. P. (2015). A physiological and biophysical model of coppice willow (Salix spp.) production yields for the contiguous USA in current and future climate scenarios. Plant, Cell and Environment, 38(9), 1850–1865. https://doi.org/10.1111/pce.12556.

    Article  Google Scholar 

  • Yuan, X., & Liang, X. Z. (2011). Improving cold season precipitation prediction by the nested CWRF-CFS system. Geophysical Research Letters, 38(2). https://doi.org/10.1029/2010GL046104.

Energy-Centric Approaches to FEWS Modeling

  • Dale, L., Karali, N., Millstein, D., Carnall, M., Vicuña, S., Borchers, N., Bustos, E., O’Hagan, J., Purkey, D., Heaps, C., Sieber, J., Collins, W., & Sohn, M. (2015). An integrated assessment of water-energy and climate change in Sacramento, California: How strong is the nexus? Climatic Change, 132, 223–235.

    Article  Google Scholar 

  • Hunt, P., Miller, J., Ducey, T., Lang, M., Szogi, A., & McCarty, G. (2014). Denitrification in soils of hydrologically restored wetlands relative to natural and converted wetlands in the Mid-Atlantic coastal plain of the USA. Ecological Engineering, 71, 438–447.

    Article  Google Scholar 

  • Loulou, R., Goldstein, G., & Noble, K. (2004). Documentation for the MARKAL Family of Models. ETSAP.

    Google Scholar 

  • Loulou, R., Remne, U., Kanudia, A., Lehtila, A., & Goldstein, G. (2005). Documentation for the TIMES Model—Part I (pp. 1–78). ETSAP.

    Google Scholar 

  • Mirchi, A., Madani, K., Watkins, D., & Ahmad, S. (2012). Synthesis of system dynamics tools for holistic conceptualization of water resources problems. Water Resources Management, 26, 2421–2442.

    Article  Google Scholar 

  • Rodriguez, D., Delgado, A., Bazilian, M., Ahjum, F., Cullis, J., Delaquil, P., Goldstein, G., Liden, R., Merven, B., Miralles-Wilhelm, F., Sohns, A., Stone, A., & Toman, M. (2017). Water Contrains South Africa’s Energy Future: A Case Study on Integrated Energy-Water Nexus Modeling and Analysis, International Journal of Engineering Science, 6(10), 1–25.

    Google Scholar 

  • Yates, D., & Miller, K. (2013). Integrated decision support for energy/water planning in California and the southwest. International Journal of Climate Change: Impacts and Responses, 4(1), 49–63.

    Google Scholar 

Water-Centric Approaches to FEWS Modeling

  • Ahmad, S., & Simonovic, S. (2004). Spatial system dynamics: New approach for simulation of water resources systems. Journal of Computing in Civil Engineering ASCE, 18(4), 331–340.

    Article  Google Scholar 

  • Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (1998). Large area hydrologic modeling and assessment Part I: Model development. Journal of the American Water Resources Association, 34(1), 73–89.

    Article  CAS  Google Scholar 

  • Comín, F. A., Sorando, R., Darwiche-Criado, N., García, M., & Masip, A. (2014). A protocol to prioritize wetland restoration and creation for water quality improvement in agricultural watersheds. Ecological Engineering, 66, 10–18.

    Article  Google Scholar 

  • DaloÄŸlu, I., Cho, K. H., & Scavia, D. (2012). Evaluating causes of trends in long-term dissolved reactive phosphorus loads to Lake Erie. Environmental Science & Technology, 46(19), 10660–10666.

    Article  CAS  Google Scholar 

  • Denver, J., Ator, S., Lang, M., Fisher, T., Gustafson, A., Fox, R., Clune, J., & McCarty, G. (2014). Nitrate fate and transport through current and former depressional wetlands in an agricultural landscape, Choptank Watershed, Maryland, United States. Journal of Soil and Water Conservation, 69(1), 1–16.

    Article  Google Scholar 

  • Ducey, T., Miller, J., Lang, M., Szogi, A., Hunt, P., Fenstermacher, D., Rabenhorst, M., & McCarty, G. (2015). Soil physicochemical conditions, denitrification rates, and abundance in North Carolina coastal plain restored wetlands. Journal of Environmental Quality, 44(3), 1011–1022.

    Article  CAS  Google Scholar 

  • Ficklin, D. L., Luo, Y., Stewart, I. T., & Maurer, E. P. (2012). Development and application of a hydroclimatological stream temperature model within the Soil and Water Assessment Tool. Water Resources Research, 48(1). https://doi.org/10.1029/2011WR011256.

  • Ficklin, D. L., Stewart, I. T., & Maurer, E. P. (2013). Effects of climate change on stream temperature, dissolved oxygen, and sediment concentration in the Sierra Nevada in California. Water Resources Research, 49(5), 2765–2782.

    Article  Google Scholar 

  • Garg, K. K., Bharati, L., Gaur, A., George, B., Acharya, S., Jella, K., & Narasimhan, B. (2012). Spatial mapping of agricultural water productivity using the swat model in Upper Bhima catchment, India. Irrigation and Drainage, 61(1), 60–79.

    Article  Google Scholar 

  • Gassman, P. W., Reyes, M. R., Green, C. H., & Arnold, J. G. (2007). The soil and water assessment tool: Historical development, applications, and future research directions. Transactions of the ASABE, 50(4), 1211–1250.

    Article  CAS  Google Scholar 

  • Gober, P., Wentz, E., Lant, T., Tschudi, M., & Kirkwood, C. (2011). WaterSim: A simulation model for urban water planning in Phoenix, Arizona, USA. Environment and Planning B: Urban Analytics and City Science, 38(2), 197–215.

    Article  Google Scholar 

  • Hejazi, M., Edmonds, J., Clarke, L., Kyle, P., Davies, E., Chaturvedi, V., Wise, M., Patel, P., Eom, J., Calvin, K., Moss, R., & Kim, S. (2014a). Long-term global water projections using six socioeconomic scenarios in an integrated assessment modeling framework. Technological Forecasting and Social Change, 81, 205–226. https://doi.org/10.1016/j.techfore.2013.05.006.

    Article  Google Scholar 

  • Hejazi, M. I., Edmonds, J., Clarke, L., Kyle, P., Davies, E., Chaturvedi, V., Wise, M., Patel, P., Eom, J., & Calvin, K. (2014b). Integrated assessment of global water scarcity over the 21st century under multiple climate change mitigation policies. Hydrology and Earth System Sciences, 18(8), 2859–2883. https://doi.org/10.5194/hess-18-2859-2014.

    Article  Google Scholar 

  • Hejazi, M. I., Voisin, N., Liu, L., Bramer, L., Fortin, D., Huang, M., Hathaway, J., Kyle, P., Leung, L. R., Li, H.-Y., Liu, Y., Patel, P., Pulsipher, T., Rice, J. S., Tesfa, T. K., Vernon, C. R., & Zhou, Y. (2015). 21st Century U.S. emissions mitigation increases water stress more than the climate change it is mitigating. Proceedings of the National Academy of Sciences, 112(34), 10635–10640.

    Article  CAS  Google Scholar 

  • Hively, W. D., Hapeman, C. J., McConnell, L. L., Fisher, T. R., Rice, C. P., McCarty, G. W., Sadeghi, A. M., Whitall, D. R., Downey, P. M., & de Guzmán, G. T. N. (2011). Relating nutrient and herbicide fate with landscape features and characteristics of 15 subwatersheds in the Choptank River watershed. Science of the Total Environment, 409(19), 3866–3878.

    Article  CAS  Google Scholar 

  • Jang, J.-H., Jung, K.-W., & Yoon, C. G. (2012). Modification of SWAT model for simulation of organic matter in Korean watersheds. Water Science & Technology, 66(11), 2355–2362.

    Article  CAS  Google Scholar 

  • Khoi, D. N., & Suetsugi, T. (2014). Impact of climate and land-use changes on the hydrological processes and sediment yield—A case study for the Be River Catchment, Vietnam. Hydrological Sciences Journal, 59(5), 1095–1108.

    Article  Google Scholar 

  • Lang, M., McCarty, G., Oesterling, R., & Yeo, I.-Y. (2013). Topographic metrics for improved mapping of forested wetlands. Wetlands, 33(1), 141–155.

    Article  Google Scholar 

  • Luo, Y., Ficklin, D. L., Liu, X., & Zhang, M. (2013). Assessment of climate change impacts on hydrology and water quality with a watershed modeling approach. Science of the Total Environment, 450, 72–82.

    Article  CAS  Google Scholar 

  • Michalak, A. M., Anderson, E. J., Beletsky, D., Boland, S., Bosch, N. S., Bridgeman, T. B., Chaffin, J. D., Cho, K., Confesor, R., & DaloÄŸlu, I. (2013). Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions. Proceedings of the National Academy of Sciences, 110(16), 6448–6452.

    Article  CAS  Google Scholar 

  • Miralles-Wilhelm, F., Clarke, L., Hejazi, M., Kim, S., Gustafson, K., Muñoz-Castillo, R., & Graham, N. (2017). Physical impacts of climate change on water resources. World Bank Discussion Paper.

    Google Scholar 

  • Neitsch, S. L., Arnold, J. G., Kiniry, J. R., & Williams, J. R. (2011). Soil and Water Assessment Tool theoretical documentation: Version 2009 (618p). Texas Water Resources Institute Technical Report 406. Texas Water Resources Institute.

    Google Scholar 

  • Palao, L. K. M., Dorado, M. M., Anit, K. P. A., & Lasco, R. D. (2013). Using the Soil and Water Assessment Tool (SWAT) to assess material transfer in the Layawan watershed, Mindanao, Philippines and its implications on payment for ecosystem services. Journal of Sustainable Development, 6(6), 73–88.

    Article  Google Scholar 

  • SEI (Stockholm Environment Institute). (2001). WEAP: Water evaluation and planning system—User guide. Boston, MA: SEI.

    Google Scholar 

  • Sieber, J., Yates, D., Purkey, D., & Huber Lee, A. (2004). WEAP: A demand, priority and preference driven water planning model: Part 1: Model characteristics. Water International. https://doi.org/10.1080/02508060508691893.

  • White, M., Santhi, C., Kannan, N., Arnold, J., Harmel, D., Norfleet, L., Allen, P., DiLuzio, M., Wang, X., & Atwood, J. (2014). Nutrient delivery from the Mississippi River to the Gulf of Mexico and effects of cropland conservation. Journal of Soil and Water Conservation, 69(1), 26–40.

    Article  Google Scholar 

  • Yepsen, M., Baldwin, A. H., Whigham, D. F., McFarland, E., LaForgia, M., & Lang, M. (2014). Agricultural wetland restorations on the USA Atlantic coastal plain achieve diverse native wetland plant communities but differ from natural wetlands. Agriculture, Ecosystems & Environment, 197, 11–20.

    Article  Google Scholar 

  • Zhanxue, Z., Broersma, K., & Mazumder, A. (2012). Impacts of land use, fertilizer and manure application on the stream nutrient loadings in the Salmon River watershed, south-central British Columbia, Canada. Journal of Environmental Protection, 3, 809–822.

    Article  CAS  Google Scholar 

Integrated FEWS Modeling Approaches

  • Blanc, E., Strzepek, K., Schlosser, A., Jacoby, H., Gueneau, A., Fant, C., Rausch, S., & Reilly, J. (2014). Modeling U.S. water resources under climate change. Earth’s Future, 2(4), 197–224. https://doi.org/10.1002/2013EF000214.

    Article  Google Scholar 

  • Chaturvedi, V., Hejazi, M., Edmonds, J., Clarke, L., Kyle, P., Davies, E., & Wise, M. (2015). Climate mitigation policy implications for global irrigation water demand. Mitigation and Adaptation Strategies for Global Change., 20(3), 389–407. https://doi.org/10.1007/s11027-013-9497-4.

    Article  Google Scholar 

  • Crona, B. I., & Parker, J. N. (2011). Network determinants of knowledge utilization preliminary lessons from a boundary organization. Science Communication, 33(4), 448–471.

    Article  Google Scholar 

  • Fawcett, A., Iyer, G. C., Clarke, L. E., Edmonds, J. A., Hultman, N. E., McJeon, H. C., Rogelj, J., Schuler, R., Alsalam, J., Asrar, G. R., Creason, J., Jeong, M., McFarland, J., Mundra, A., & Shi, W. (2015). Can Paris pledges avert severe climate change? Science, 350(6265), 1168–1169. https://doi.org/10.1126/science.aad5761.

    Article  CAS  Google Scholar 

  • Hibbard, K. A., & Janetos, A. C. (2013). The regional nature of global challenges: A need and strategy for integrated regional modeling. Climatic Change, 118(3–4), 565–577.

    Article  Google Scholar 

  • Kim, S. H., Hejazi, M. I., Liu, L., Calvin, K. V., Clarke, L. E., Edmonds, J., Kyle, P., Patel, P. L., & Wise, M. A. (2016). Balancing global water availability and use at basin scale in an integrated assessment model. Climatic Change. https://doi.org/10.1007/s10584-016-1604-6.

  • Kraucunas, I., et al. (2015). Investigating the nexus of climate, energy, water, and land at decision-relevant scales: The Platform for Regional Integrated Modeling and Analysis (PRIMA). Climatic Change, 129(3–4), 573–588.

    Article  Google Scholar 

  • Liu, L., Hejazi, M., Patel, P., Kyle, P., Davies, E., Zhou, Y., Clarke, L., & Edmonds, J. (2015a). Water demands for electricity generation in the U.S.: Modeling different scenarios for the water–energy nexus. Technological Forecasting and Social Change, 94, 318–334. https://doi.org/10.1016/j.techfore.2014.11.004.

    Article  Google Scholar 

  • Schlosser, A. P., Kicklighter, D., Dutkiewicz, S., Reilly, J., Wang, C., Felzer, B., Melillo, J. M., & Jacoby, H. D. (2009). Probabilistic forecast for twenty-first-century climate based on uncertainties in emissions (without policy) and climate parameters. Journal of Climate, 22(19), 5175–5204. https://doi.org/10.1175/2009JCLI2863.1.

    Article  Google Scholar 

  • Strachan, N., Fais, B., & Daly, H. (2016). Reinventing the energy modelling–policy interface. Nature Energy, 1, 16012.

    Article  Google Scholar 

  • Zhou, Y., Clarke, L., Eom, J., Kyle, P., Patel, P., Kim, S. H., Dirks, J., Jensen, E., Liu, Y., Rice, J., Schmidt, L., & Seiple, T. (2014). Modeling the effect of climate change on U.S. state-level buildings energy demands in an integrated assessment framework. Applied Energy, 113, 1077–1088. https://doi.org/10.1016/j.apenergy.2013.08.034.

    Article  Google Scholar 

Food-Energy (Bioenergy)

  • Anderson, C. J., Anex, R. P., Arritt, R. W., Gelder, B. K., Khanal, S., Herzmann, D. E., & Gassman, P. W. (2013). Regional climate impacts of a biofuels policy projection. Geophysical Research Letters, 40(6), 1217–1222.

    Article  Google Scholar 

  • Barton, B., & Clark, S. E. (2014). Water & climate risks facing U.S. corn production: How companies and investors can cultivate sustainability (p. 71pp). Austin, TX: CERES.

    Google Scholar 

  • Gelfand, I., Sahajpal, R., Zhang, X., Izaurralde, R. C., Gross, K. L., & Robertson, G. P. (2013). Sustainable bioenergy production from marginal lands in the U.S. Midwest. Nature, 493(7433), 514–517.

    Article  CAS  Google Scholar 

  • Hamilton, S. K., Hussain, M. Z., Bhardwaj, A. K., Basso, B., & Robertson, G. P. (2015a). Comparative water use by maize, perennial crops, restored prairie, and poplar trees in the U.S. Midwest. Environmental Research Letters, 10(6), 064015.

    Article  CAS  Google Scholar 

  • Johnston, C. A. (2014). Agricultural expansion: Land use shell game in the U.S. Northern Plains. Landscape Ecology, 29(1), 81–95.

    Article  Google Scholar 

  • Lark, T. J., Salmon, J. M., & Gibbs, H. K. (2015). Cropland expansion outpaces agricultural and biofuel policies in the United States. Environmental Research Letters, 10(4), 044003.

    Article  Google Scholar 

  • Le, P. V., Kumar, P., & Drewry, D. T. (2011). Implications for the hydrologic cycle under climate change due to the expansion of bioenergy crops in the Midwestern United States. Proceedings of the National Academy of Sciences of the United States of America, 108(37), 15085–15090.

    Article  CAS  Google Scholar 

  • Mladenoff, D. J., Sahajpal, R., Johnson, C. P., & Rothstein, D. E. (2016). Recent land use change to agriculture in the U.S. lake states: Impacts on cellulosic biomass potential and natural lands. PLoS One, 11(2), e0148566. https://doi.org/10.1371/journal.pone.0148566.

    Article  CAS  Google Scholar 

  • Nonhebel, S. (2005). Renewable energy and food supply: Will there be enough land? Renewable and Sustainable Energy Reviews, 9, 191–201.

    Article  Google Scholar 

  • Plourde, J. D., Pijanowski, B. C., & Pekin, B. K. (2013). Evidence for increased monoculture cropping in the Central United States. Agriculture, Ecosystems & Environment, 165(2013), 50–59.

    Article  Google Scholar 

  • Qin, Z., Zhuang, Q., & Cai, X. (2015). Bioenergy crop productivity and potential climate change mitigation from marginal lands in the United States: An ecosystem modeling perspective. GCB Bioenergy, 7, 1211–1221.

    Article  CAS  Google Scholar 

  • Robertson, G. P., Hamilton, S. K., Del Grosso, S. J., & Parton, W. J. (2011). The biogeochemistry of bioenergy landscapes: Carbon, nitrogen, and water considerations. Ecological Applications, 21, 1055–1067.

    Article  Google Scholar 

  • Tilman, D., Hill, J., & Lehman, C. (2006). Carbon-negative biofuels from low-input high-diversity grassland biomass. Science, 314, 1598–1600.

    Article  CAS  Google Scholar 

  • Werling, B. P., Dickson, T. L., Isaacs, R., Gaines, H., Gratton, C., Gross, K. L., Liere, H., Malmstrom, C. M., Meehan, T. D., Ruan, L., & Robertson, B. A. (2014). Perennial grasslands enhance biodiversity and multiple ecosystem services in bioenergy landscapes. Proceedings of the National Academy of Sciences of the United States of America, 111, 1652–1657.

    Article  CAS  Google Scholar 

Energy-Water

  • Environmental Protection Agency. (2013). National rivers and streams assessment, 2008–2009 results. Retrieved from http://www.epa.gov/national-aquatic-resource-surveys/nrsa.

  • Hamilton, S. H., ElSawah, S., Guillaume, J. H., Jakeman, A. J., & Pierce, S. A. (2015b). Integrated assessment and modelling: Overview and synthesis of salient dimensions. Environmental Modelling & Software, 64, 215–229.

    Article  Google Scholar 

  • Schornagel, J., Niele, F., Worrell, E., & Boggermann, M. (2012). Water accounting for (agro) industrial operations and its application to energy pathways. Resources, Conservation and Recycling., 61(2012), 1–15.

    Article  Google Scholar 

  • World Bank. (2013). Thirsty energy, water papers. Water Partnership Program.

    Google Scholar 

  • World Energy Council. (2010). Water for energy. London, UK: World Energy Council.

    Google Scholar 

  • World Water Assessment Program (WWAP). (2012). The United Nations World Water Development Report 4. Paris: UNESCO.

    Book  Google Scholar 

  • Yimam, Y. T., Ochsner, T. E., Kakani, V. G., & Warren, J. G. (2014). Soil water dynamics and evapotranspiration under annual and perennial bioenergy crops. Soil Science Society of America Journal, 78(5), 1584–1593.

    Article  CAS  Google Scholar 

Climate-FEWS

  • Alter, R. E., Fan, Y., Lintner, B. R., & Weaver, C. P. (2015). Observational evidence that Great Plains irrigation has enhanced summer precipitation intensity and totals in the Midwestern US. Journal of Hydrometeorology, 16(4), 1717–1735.

    Article  Google Scholar 

  • Boucher, O., Myhre, G., & Myhre, A. (2004). Direct human influence of irrigation on atmospheric water vapour and climate. Climate Dynamics, 22(6–7), 597–603.

    Article  Google Scholar 

  • DeAngelis, A., Dominguez, F., Fan, Y., Robock, A., Kustu, M. D., & Robinson, D. (2010). Evidence of enhanced precipitation due to irrigation over the Great Plains of the United States. Journal of Geophysical Research-Atmospheres, 115. https://doi.org/10.1029/2010JD013892.

  • Dunbar, J. A., Allen, P. M., & Bennett, S. J. (2010). Effect of multiyear drought on upland sediment yield and subsequent impacts on flood control reservoir storage. Water Resources Research, 46, W05526.

    Article  Google Scholar 

  • Field, C. B., Lobell, D. B., Peters, H. A., & Chiariello, N. R. (2007). Feedbacks of terrestrial ecosystems to climate change. Annual Review of Environment and Resources, 32, 1–29.

    Article  Google Scholar 

  • Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M., & Toulmin, C. (2010). Food security: The challenge of feeding 9 billion people. Science, 327(5967), 812–818.

    Article  CAS  Google Scholar 

  • Harding, K. J., & Snyder, P. K. (2012a). Modeling the atmospheric response to irrigation in the great plains. Part II: The precipitation of irrigated water and changes in precipitation recycling. Journal of Hydrometeorology, 13(6), 1687–1703.

    Article  Google Scholar 

  • Harding, K. J., & Snyder, P. K. (2012b). Modeling the atmospheric response to irrigation in the great plains. Part I: General impacts on precipitation and the energy budget. Journal of Hydrometeorology, 13(6), 1667–1686.

    Article  Google Scholar 

  • Hatfield, J., Takle, G., Grotjahn, R., Holden, P., Izaurralde, R. C., Mader, T., Marshall, E., & Liverman, D. (2014). Chapter 6: Agriculture. In J. M. Melillo, T. C. Richmond, & G. W. Yohe (Eds.), Climate change impacts in the United States: The third National Climate Assessment (pp. 150–174). Washington, DC: U.S. Global Change Research Program, 150–174.

    Google Scholar 

  • Im, E. S., Marcella, M. P., & Eltahir, E. A. B. (2014). Impact of potential large-scale irrigation on the West African monsoon and its dependence on location of irrigated area. Journal of Climate, 27(3), 994–1009.

    Article  Google Scholar 

  • IPCC. (2013). Climate change 2013: The physical science basis. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (p. 1535pp). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Karlen, D. L., Lal, R., Follett, R. F., Kimble, J. M., Hatfield, J. L., Miranowski, J. M., Cambardella, C. A., Manale, A., Anex, R. P., & Rice, C. W. (2009). Crop residues: The rest of the story. Environmental Science & Technology, 43(21), 8011–8015.

    Article  CAS  Google Scholar 

  • Kustu, M. D., Fan, Y., & Rodell, M. (2011). Possible link between irrigation in the U.S. High Plains and increased summer streamflow in the Midwest. Water Resources Research, 47(3). https://doi.org/10.1029/2010WR010046.

  • Lo, M. H., & Famiglietti, J. S. (2013). Irrigation in California’s Central Valley strengthens the southwestern U.S. water cycle. Geophysical Research Letters, 40(2), 301–306.

    Article  Google Scholar 

  • Lobell, D., Bala, G., Bonfils, C., & Duffy, P. (2006). Potential bias of model projected greenhouse warming in irrigated regions. Geophysical Research Letters, 33(13), 2–5.

    Article  Google Scholar 

  • Lobell, D., Bala, G., Mirin, A., Phillips, T., Maxwell, R., & Rotman, D. (2009). Regional differences in the influence of irrigation on climate. Journal of Climate, 22(8), 2248–2255.

    Article  Google Scholar 

  • Lobell, D. B., Roberts, M. J., Schlenker, W., Braun, N., Little, B. B., Rejesus, R. M., & Hammer, G. L. (2014). Greater sensitivity to drought accompanies maize yield increase in the U.S. Midwest. Science, 344(6183), 516–519.

    Article  CAS  Google Scholar 

  • McGuire, V. L. (2009). Water-level changes in the High Plains aquifer, predevelopment to 2007, 2005–06, and 2006–07 (9pp). U.S. Geological Survey Scientific Investigations Report 2009–5019. Retrieved from http://pubs.usgs.gov/sir/2009/5019/.

  • Melillo, J. M., Richmond, T. C., & Yohe, G. W. (Eds.). (2014). Climate Change Impacts in the United States: The Third National Climate Assessment (p. 841pp). Washington, DC: U.S. Global Change Research Program.

    Google Scholar 

  • Ort, D. R., & Long, S. P. (2014). Limits on yields in the corn belt. Science, 344, 483–484.

    Article  Google Scholar 

  • Osborne, T., Slingo, J., Lawrence, D., & Wheeler, T. (2009). Examining the interaction of growing crops with local climate using a coupled crop-climate model. Journal of Climate, 22(6), 1393–1411.

    Article  Google Scholar 

  • Ozdogan, M., Rodell, M., Beaudoing, H. K., & Toll, D. L. (2010). Simulating the effects of irrigation over the United States in a land surface model based on satellite-derived agricultural data. Journal of Hydrometeorology, 11(1), 171–184.

    Article  Google Scholar 

  • Porter, J. R., & Semenov, M. A. (2005). Crop responses to climatic variation. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1463), 2021–2035.

    Article  Google Scholar 

  • Pryor, S. C., Scavia, D., Downer, C., Gaden, M., Iverson, L., Nordstrom, R., Patz, J., & Robertson, G. P. (2014). Chapter 18: Midwest. In J. M. Melillo, T. C. Richmond, & G. W. Yohe (Eds.), Climate change impacts in the United States: The third National Climate Assessment (pp. 418–440). Washington, DC: U.S. Global Change Research Program.

    Google Scholar 

  • Qian, Y., Huang, M., Yang, B., & Berg, L. K. (2013). A modeling study of irrigation effects on surface fluxes and land–air–cloud interactions in the Southern Great Plains. Journal of Hydrometeorology, 14(3), 700–721.

    Article  Google Scholar 

  • Roberts, M., Long, S., Tieszen, L., & Beadle, C. (1993). Measurement of plant biomass and net primary production of herbaceous vegetation. In Photosynthesis and production in a changing environment (pp. 1–21). Berlin: Springer.

    Google Scholar 

  • Seager, R., Ting, M., Held, I., Kushnir, Y., Lu, H., Vecchi, G., Huang, H.-P., Harnik, N., Leetmaa, A., Lau, N.-C., Li, C., Velez, J., & Naik, N. (2007). Model projections of an imminent transition to a more arid climate in southern North America. Science, 316, 1181–1184.

    Article  CAS  Google Scholar 

  • Shafer, M., Ojima, D., Antle, J. M., Kluck, D., McPherson, R. A., Petersen, S., Scanlon, B., & Sherman, K. (2014a). Chapter 19: Great plains. In J. M. Melillo, T. C. Richmond, & G. W. Yohe (Eds.), Climate change impacts in the United States: The third National Climate Assessment (pp. 441–461). Washington, DC: U.S. Global Change Research Program.

    Google Scholar 

  • Shafer, M., Ojima, D., Antle, J. M., Kluck, D., McPherson, R. A., Petersen, S., Scanlon, B., & Sherman, K. (2014b). Chapter 19: Great plains. In J. M. Melillo, T. C. Richmond, & G. W. Yohe (Eds.), Climate change impacts in the United States: The third National Climate Assessment (pp. 441–461). Washington, DC: U.S. Global Change Research Program.

    Google Scholar 

  • Sollenberger, L. E., Srygley, R., Stöckle, C., Takle, E. S., Timlin, D., White, J. W., Winfree, R., Wright-Morton, L., & Ziska, L. H. (2010). Climate change and agriculture in the United States: Effects and adaptation (196pp). USDA, Technical Bulletin 1935.

    Google Scholar 

  • Sorooshian, S., AghaKouchak, A., & Li, J. (2014). Influence of irrigation on land hydrological processes over California. Journal of Geophysical Research: Atmospheres, 119(23), 13137–13152.

    Google Scholar 

  • Teuling, A. J., Van Loon, A. F., Seneviratne, S. I., Lehner, I., Aubinet, M., Heinesch, B., Bernhofer, C., Grunwald, T., Prasse, H., & Spank, U. (2013). Evapotranspiration amplifies European summer drought. Geophysical Research Letters, 40(10), 2071–2075.

    Article  Google Scholar 

  • Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 108(50), 20260–20264.

    Article  CAS  Google Scholar 

  • Tuinenburg, O. A., Hutjes, R. W. A., Stacke, T., Wiltshire, A., & Lucas-Picher, P. (2014). Effects of irrigation in India on the atmospheric water budget. Journal of Hydrometeorology, 15(3), 1028–1050.

    Article  Google Scholar 

  • Vose, R. S., Applequist, S., Bourassa, M. A., Pryor, S. C., Barthelmie, R. J., Blanton, B., Bromirski, P. D., Brooks, H. E., DeGaetano, A. T., Dole, R. M., & Easterling, D. R. (2014). Monitoring and understanding changes in extremes: Extratropical storms, winds, and waves. Bulletin of the American Meteorological Society, 95(3), 377–386.

    Article  Google Scholar 

  • Walthall, C. L., Hatfield, J., Backlund, P., Lengnick, L., Marshall, E., Walsh, M., Adkins, S., Aillery, M., Ainsworth, E. A., Ammann, C., Anderson, C. J., Bartomeus, I., Baumgard, L. H., Booker, F., Bradley, B., Blumenthal, D. M., Bunce, J., Burkey, K., Dabney, S. M., Delgado, J. A., Dukes, J., Funk, A., Garrett, K., Glenn, M., Grantz, D. A., Goodrich, D., Hu, S., Izaurralde, R.C., Jones, R. A. C., Kim, S.-H., Leaky, A. D. B., Lewers, K., Mader, T. L., McClung, A., Morgan, J., Muth, D. J., Nearing, M., Oosterhuis, D. M., Ort, D., Parmesan, C., Pettigrew, W. T., Polley, W., Rader, R., Rice, C., Rivington, M., Rosskopf, E., Salas, W. A., Sollenberger, L. E., Srygley, R., Stöckle, C., Takle, E. S., Timlin, D., White, J. W., Winfree, R., Wright-Morton, L., & Ziska, L. H. (2010). Climate change and agriculture in the United States: Effects and adaptation (196pp). USDA, Technical Bulletin 1935.

    Google Scholar 

  • Wei, J., Dirmeyer, P. A., Wisser, D., Bosilovich, M. G., & Mocko, D. M. (2013). Where does the irrigation water go? An estimate of the contribution of irrigation to precipitation using MERRA. Journal of Hydrometeorology, 14(1), 275–289.

    Article  CAS  Google Scholar 

  • Wuebbles, D. J., Meehl, G., Hayhoe, K., Karl, T. R., Kunkel, K., Santer, B., Wehner, M., Colle, B., Fischer, E. M., Fu, R., Goodman, A., Janssen, E., Kharin, V., Lee, H., Li, W., Long, L. N., Olsen, S., Seth, A., Sheffield, J., Tao, Z., & Sun, L. (2014). CMIP5 climate model analyses: Climate extremes in the United States. Bulletin of the American. Meteorological Society. https://doi.org/10.1175/BAMS-D-12-00172.1.

Integrated Assessment Models

  • Edmonds, J., & Reilly, J. (1983). A long-term global energy—Economic model of carbon dioxide release from fossil fuel use. Energy Economics, 5(2), 74–88. https://doi.org/10.1016/0140-9883(83)90014-2.

    Article  Google Scholar 

  • Clarke, L., Jiang, K., Akimoto, K., Babiker, M., Blanford, G., Fisher-Vanden, K., Hourcade, J.-C., Krey, V., Kriegler, E., Löschel, A., McCollum, D., Paltsev, S., Paltsev, S., Rose, Shukla, P. R., Tavoni, M., van der Zwaan, B. C. C., & van Vuuren, D. P. (2014). Assessing transformation pathways. In O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel, & J. C. Minx (Eds.), Climate change 2014: Mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Davies, E. G. R., Kyle, P., & Edmonds, J. A. (2013). An integrated assessment of global and regional water demands for electricity generation to 2095. Advances in Water Resources, 52, 296–313. https://doi.org/10.1016/j.advwatres.2012.11.020.

    Article  Google Scholar 

  • Edmonds, J., & Reilly, J. (1983b). Global energy and CO2 to the year 2050. The Energy Journal, 21–47.

    Google Scholar 

  • Kyle, P., Müller, C., Calvin, K., & Thomson, A. (2014). Meeting the radiative forcing targets of the representative concentration pathways in a world with agricultural climate impacts. Earth’s Future, 2(2), 83–98. https://doi.org/10.1002/2013EF000199.

    Article  Google Scholar 

  • Reilly, J., Stone, P. H., Forest, C. E., Webster, M. D., Jacoby, H. D., & Prinn, R. G. (2001). Uncertainty and climate change assessments. Science, 293, 430–433.

    Article  CAS  Google Scholar 

  • Reilly, J., Paltsev, S., Strzepek, K., Selin, N. E., Cai, Y., Nam, K.-M., Monier, E., Dutkiewicz, S., Scott, J., Webster, M., & Sokolov, A. (2013). Valuing climate impacts in integrated assessment models: The MIT IGSM. Climatic Change, 117(3), 561–573. https://doi.org/10.1007/s10584-012-0635-x.

    Article  Google Scholar 

  • Schlosser, C. A., Strzepek, K., Gao, X., Fant, C., Blanc, É., Paltsev, S., Jacoby, H., Reilly, J., & Gueneau, A. (2014). The future of global water stress: An integrated assessment. Earth’s Future, 2(8), 341–361. https://doi.org/10.1002/2014EF000238.

    Article  Google Scholar 

  • Scott, M. J., Daly, D. S., Hejazi, M. I., Kyle, G. P., Liu, L., McJeon, H. C., Mundra, A., Patel, P. L., Rice, J. S., & Voisin, N. (2016). Sensitivity of future U.S. Water shortages to socioeconomic and climate drivers: a case study in Georgia using an integrated human-earth system modeling framework, Climatic Change 136:233–246.

    Google Scholar 

  • Sokolov, A.P., Stone, P. H., Forest, C. E., Prinn, R., Sarofim, M. C., Webster, M., Paltsev, S., Schlosser, C. A., Kicklighter, D., Dutkiewicz, S. Reilly, J., Wang, C., Felzer, B., & Jacoby, H. D. (2009). Probabilistic Forecast for 21st Century Climate Based on Uncertainties in Emissions (without Policy) and Climate Parameters, Report No. 169, MIT Joint Program on the Science and Policy of Global Change, Feb 2009.

    Google Scholar 

  • Voisin, N., Liu, L., Hejazi, M., Tesfa, T., Li, H., Huang, M., Liu, Y., & Leung, L. R. (2013). One-way coupling of an integrated assessment model and a water resources model: Evaluation and implications of future changes over the U.S. Midwest. Hydrology and Earth System Sciences, 17(11), 4555–4575. https://doi.org/10.5194/hess-17-4555-2013.

    Article  Google Scholar 

  • Von Lampe, M., Willenbockel, D., Ahammad, H., Blanc, E., Cai, Y., Calvin, K., Fujimori, S., Hasegawa, T., Havlik, P., Heyhoe, E., Kyle, P., Lotze-Campen, H., Mason d’Croz, D., Nelson, G. C., Sands, R. D., Schmitz, C., Tabeau, A., Valin, H., van der Mensbrugghe, D., & van Meijl, H. (2014). Why do global long-term scenarios for agriculture differ? An overview of the AgMIP global economic model intercomparison. Agricultural Economics, 45(1), 3–20. https://doi.org/10.1111/agec.12086.

    Article  Google Scholar 

  • Webster, M. D., Babiker, M., Mayer, M., Reilly, J. M., Harnisch, J., Hyman, R., Sarofim, M. C., & Wang, C. (2002). Uncertainty in emissions projections for climate models. Atmospheric Environment, 36(22), 3659–3670. https://doi.org/10.1016/S1352-2310(02)00245-5.

    Article  CAS  Google Scholar 

  • Weyant, J. P., de la Chesnaye, F. C., & Blanford, G. J. (2006). Overview of EMF-21: Multigas mitigation and climate policy. The Energy Journal, 27, 1–32.

    Google Scholar 

  • Weyant, J. P. (2004). Special issue-EMF 19 Alternative technology strategies for climate change policy. Energy Economics, 26, 501–755.

    Article  Google Scholar 

  • Wigley, T. M. L., Richels, R., & Edmonds, J. A. (1996). Economic and environmental choices in the stabilization of atmospheric CO2 concentrations. Nature, 379(6562), 240–243. https://doi.org/10.1038/379240a0.

    Article  CAS  Google Scholar 

Further Reading

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando R. Miralles-Wilhelm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miralles-Wilhelm, F.R. (2020). Modeling. In: Saundry, P., Ruddell, B. (eds) The Food-Energy-Water Nexus. AESS Interdisciplinary Environmental Studies and Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-030-29914-9_15

Download citation

Publish with us

Policies and ethics