Skip to main content

Advertisement

Log in

Simulation of seasonal US precipitation and temperature by the nested CWRF-ECHAM system

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This study investigates the refined simulation skill that results when the regional Climate extension of the Weather Research and Forecasting (CWRF) model is nested in the ECMWF Hamburg version 4.5 (ECHAM) atmospheric general circulation model over the United States during 1980–2009, where observed sea surface temperatures are used in both models. Over the contiguous US, for each of the four seasons from winter to fall, CWRF reduces the root mean square error of the ECHAM seasonal mean surface air temperature simulation by 0.19, 0.82, 2.02 and 1.85 °C, and increases the equitable threat score of seasonal mean precipitation by 0.18, 0.11, 0.09 and 0.12. CWRF also simulates much more realistically daily precipitation frequency and heavy precipitation events, typically over the Central Great Plains, Cascade Mountains and Gulf Coast States. These CWRF skill enhancements are attributed to the increased spatial resolution and physics refinements in representing orographic, terrestrial hydrology, convection, and cloud-aerosol-radiation effects and their interactions. Empirical orthogonal function analysis of seasonal mean precipitation and surface air temperature interannual variability shows that, in general, CWRF substantially improves the spatial distribution of both quantities, while temporal evolution (i.e. interannual variability) of the first 3 primary patterns is highly correlated with that of the driving ECHAM (except for summer precipitation), and they both have low temporal correlations against observations. During winter, when large-scale forcing dominates, both models also have similar responses to strong ENSO signals where they successfully capture observed precipitation composite anomalies but substantially fail to reproduce surface air temperature anomalies. When driven by the ECMWF Reanalysis Interim, CWRF produces a very realistic interannual evolution of large-scale precipitation and surface air temperature patterns where the temporal correlations with observations are significant. These results indicate that CWRF can greatly improve mesoscale regional climate structures but it cannot change interannual variations of the large-scale patterns, which are determined by the driving lateral boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anthes RA (1983) Regional models of the atmosphere in middle latitudes. Mon Weather Rev 111:1306–1335

    Article  Google Scholar 

  • Choi HI (2006) 3-D volume averaged soil-moisture transport model: a scalable scheme for representing subgrid topographic control in land-atmosphere interactions. Ph.D. dissertation, University of Illinois at Urbana-Champaign

  • Choi HI, Liang X-Z (2010) Improved terrestrial hydrologic representation in mesoscale land surface models. J Hydrometeorol 11:797–809. doi:10.1175/2010JHM1221.1

    Article  Google Scholar 

  • Choi HI, Kumar P, Liang X-Z (2007) Three-dimensional volume-averaged soil moisture transport model with a scalable parameterization of subgrid topographic variability: VOLUME-AVERAGED SOIL MOISTURE TRANSPORT. Water Resour Res. doi:10.1029/2006WR005134

    Google Scholar 

  • Choi HI, Liang X-Z, Kumar P (2013) A conjunctive surface-subsurface flow representation for mesoscale land surface models. J Hydrometeorol 14:1421–1442. doi:10.1175/JHM-D-12-0168.1

    Article  Google Scholar 

  • Chou MD, Suarez MJ (1999) A solar radiation parameterization for atmospheric studies. Technical Report Series on Global Modeling and Data Assimilation, vol 15, NASA/Goddard Space Flight Center, 42 pp

  • Chou MD, Liang X-Z, Yan MM-H (2001) A thermal infrared radiation parameterization for atmospheric studies. Technical Report Series on Global Modeling and Data Assimilation, vol 19, NASA/Goddard Space Flight Center, 56 pp

  • Cocke S, LaRow TE (2000) Seasonal predictions using a regional spectral model embedded within a coupled ocean-atmosphere model. Mon Weather Rev 128:689–708

    Article  Google Scholar 

  • Cocke S, LaRow TE, Shin DW (2007) Seasonal rainfall predictions over the southeast United States using the Florida State University nested regional spectral model. J Geophys Res. doi:10.1029/2006JD007535

    Google Scholar 

  • Dai A (2006) Precipitation characteristics in eighteen coupled climate models. J Clim 19:4605–4630

    Article  Google Scholar 

  • Daly C, Halbleib M, Smith JI et al (2008) Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int J Climatol 28:2031–2064. doi:10.1002/joc.1688

    Article  Google Scholar 

  • Fennessy MJ, Shukla J (2000) Seasonal prediction over North America with a regional model nested in a global model. J Clim 13:2605–2627

    Article  Google Scholar 

  • Frei C (2003) Daily precipitation statistics in regional climate models: evaluation and intercomparison for the European Alps. J Geophys Res. doi:10.1029/2002JD002287

    Google Scholar 

  • Giorgi F, Marinucci MR, Bates GT, Canio GD (1993) Development of a second-generation regional climate model (RegCM2). Part II: convective processes and assimilation of lateral boundary conditions. Mon Weather Rev 121:2814–2832

    Article  Google Scholar 

  • Giorgi F, Christensen J, Hulme M et al (2001) Regional climate information-evaluation and projections. In: Houghton JT et al (eds) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge, pp 583–638

    Google Scholar 

  • Gutowski WJ Jr, Otieno FO, Arritt RW et al (2004) Diagnosis and attribution of a seasonal precipitation deficit in a US regional climate simulation. J Hydrometeorol 5:230–242

    Article  Google Scholar 

  • Holtslag AAM, Boville BA (1993) Local versus nonlocal boundary-layer diffusion in a global climate model. J Clim 6:1825–1842

    Article  Google Scholar 

  • Hong S-Y, Leetmaa A (1999) An evaluation of the NCEP RSM for regional climate modeling. J Clim 12:592–609

    Article  Google Scholar 

  • Kunkel KE, Liang X-Z (2005) GCM simulations of the climate in the central United States. J Clim 18:1016–1031

    Article  Google Scholar 

  • Leung LR, Qian Y, Bian X (2003) Hydroclimate of the western United States based on observations and regional climate simulation of 1981–2000. Part I: seasonal statistics. J Clim 16:1892–1911

    Article  Google Scholar 

  • Li S, Goddard L, DeWitt DG (2008) Predictive skill of AGCM seasonal climate forecasts subject to different SST prediction methodologies. J Clim 21:2169–2186. doi:10.1175/2007JCLI1660.1

    Article  Google Scholar 

  • Liang X-Z, Zhang F (2013) The cloud–aerosol–radiation (CAR) ensemble modeling system. Atmos Chem Phys 13:8335–8364. doi:10.5194/acp-13-8335-2013

    Article  Google Scholar 

  • Liang X-Z, Kunkel KE, Samel AN (2001) Development of a regional climate model for US Midwest applications. Part I: sensitivity to buffer zone treatment. J Clim 14:4363–4378

    Article  Google Scholar 

  • Liang X-Z, Li L, Dai A, Kunkel KE (2004a) Regional climate model simulation of summer precipitation diurnal cycle over the United States. Geophys Res Lett. doi:10.1029/2004GL021054

    Google Scholar 

  • Liang X-Z, Li L, Kunkel KE et al (2004b) Regional climate model simulation of US precipitation during 1982–2002. Part I: annual cycle. J Clim 17:3510–3529

    Article  Google Scholar 

  • Liang X-Z, Choi HI, Kunkel KE et al (2005a) Surface boundary conditions for mesoscale regional climate models. Earth Interact 9:1–28

    Article  Google Scholar 

  • Liang X-Z, Xu M, Gao W et al (2005b) Development of land surface albedo parameterization based on Moderate Resolution Imaging Spectroradiometer (MODIS) data. J Geophys Res. doi:10.1029/2004JD005579

    Google Scholar 

  • Liang X-Z, Pan J, Zhu J et al (2006) Regional climate model downscaling of the US summer climate and future change. J Geophys. doi:10.1029/2005JD006685

    Google Scholar 

  • Liang X-Z, Kunkel KE, Meehl GA et al (2008a) Regional climate models downscaling analysis of general circulation models present climate biases propagation into future change projections. Geophys Res Lett. doi:10.1029/2007GL032849

    Google Scholar 

  • Liang X-Z, Zhu J, Kunkel KE et al (2008b) Do CGCMs simulate the North American monsoon precipitation seasonal-interannual variability? J Clim 21:4424–4448. doi:10.1175/2008JCLI2174.1

    Article  Google Scholar 

  • Liang X-Z, Xu M, Yuan X et al (2012) Regional climate-weather research and forecasting model. Bull Am Meteorol Soc 93:1363–1387. doi:10.1175/BAMS-D-11-00180.1

    Article  Google Scholar 

  • Lin J-L, Mapes BE, Weickmann KM et al (2008) North American monsoon and convectively coupled equatorial waves simulated by IPCC AR4 coupled GCMs. J Clim 21:2919–2937. doi:10.1175/2007JCLI1815.1

    Article  Google Scholar 

  • Liu Y, Chan JCL, Chow KC, Ding Y (2006) Ten-year climatology of summer monsoon over South China and its surroundings simulated from a regional climate model. Int J Climatol 26:141–157. doi:10.1002/joc.1259

    Article  Google Scholar 

  • Liu S, Wang JXL, Liang X-Z et al (2014) A hybrid approach to improve the skills of seasonal climate outlook at the regional scale. Clim Dyn. doi:10.1007/s00382-015-2594-1

    Google Scholar 

  • Mearns LO, Arritt R, Biner S et al (2012) The North American regional climate change assessment program: overview of phase I results. Bull Am Meteorol Soc 93:1337–1362

    Article  Google Scholar 

  • Mesinger F, Black TL (1992) On the impact on forecast accuracy of the step-mountain (eta) vs. sigma coordinate. Meteorol Atmos Phys 50:47–60

    Article  Google Scholar 

  • Nobre P, Moura AD, Sun L (2001) Dynamical downscaling of seasonal climate prediction over Nordeste Brazil with ECHAM3 and NCEP’s regional spectral models at IRI. Bull Am Meteor Soc 82:2787–2796

    Article  Google Scholar 

  • Park S, Bretherton CS (2009) The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the Community Atmosphere Model. J Clim 22:3449–3469. doi:10.1175/2008JCLI2557.1

    Article  Google Scholar 

  • Qiao F, Liang X-Z (2014) Effects of cumulus parameterizations on predictions of summer flood in the Central United States. Clim Dyn. doi:10.1007/s00382-014-2301-7

    Google Scholar 

  • Reynolds RW, Smith TM (1994) Improved global sea surface temperature analyses using optimum interpolation. J Clim 7:929–948

    Article  Google Scholar 

  • Roeckner E, Arpe K, Bengtsson L, Christoph M (1996) The atmospheric general circulation model ECHAM4: model description and simulation of present-day climate. Max Planck Institute for Meteorology, Technical report 218, 90 pp

  • Skamarock WC, Klemp JB, Dudhia J et al (2008) A description of the advanced research WRF version 3. NCAR technical note NCAR/TN-475+STR, 113 pp

  • Smith TM, Reynolds RW (2003) Extended reconstruction of global sea surface temperatures based on COADS data (1854–1997). J Clim 16:1495–1510

    Article  Google Scholar 

  • Tao W-K, Simpson J, Baker D et al (2003) Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model. Meteorol Atmos Phys 82:97–137. doi:10.1007/s00703-001-0594-7

    Article  Google Scholar 

  • Uppala SM, Dee DP, Kobayashi S et al (2008) Towards a climate data assimilation system: status update of ERA-Interim. ECMWF Newsletter, no 115, ECMWF, Reading, UK, pp 12–18

  • Wang S-Y, Gillies RR, Takle ES, Gutowski WJ (2009) Evaluation of precipitation in the Intermountain Region as simulated by the NARCCAP regional climate models. Geophys Res Lett. doi:10.1029/2009GL037930

    Google Scholar 

  • Xu M, Liang X-Z, Samel AN, Gao W (2014) MODIS consistent vegetation parameter specifications and their impacts on regional climate simulations. J Clim 27:8578–8596. doi:10.1175/JCLI-D-14-00082.1

    Article  Google Scholar 

  • Yuan X, Liang X-Z (2011a) Improving cold season precipitation prediction by the nested CWRF-CFS system. Geophys Res Lett. doi:10.1029/2010GL046104

    Google Scholar 

  • Yuan X, Liang X-Z (2011b) Evaluation of a Conjunctive Surface–Subsurface Process Model (CSSP) over the contiguous United States at regional-local scales. J Hydrometeorol 12:579–599. doi:10.1175/2010JHM1302.1

    Article  Google Scholar 

  • Zhu J, Liang X-Z (2007) Regional climate model simulations of US precipitation and surface air temperature during 1982–2002: interannual variation. J Clim 20:218–232. doi:10.1175/JCLI4129.1

    Article  Google Scholar 

Download references

Acknowledgments

We thank Liqiang Sun for helping to provide the ECHAM simulation output and related post-processing code and documents, Tiejun Ling for helping to develop job scripts, Fengxue Qiao for compiling observed precipitation and surface air temperature data, and Min Xu for constructive discussions. We acknowledge the DOE/NERSC and NOAA/ZEUS supercomputing facilities. This research is supported by the NOAA Climate Prediction Program for the Americas (CPPA) Grants NA08OAR4310575 and NA08OAR4310875. The views expressed are those of the authors and do not necessarily reflect those of the sponsoring agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ligang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Liang, XZ., DeWitt, D. et al. Simulation of seasonal US precipitation and temperature by the nested CWRF-ECHAM system. Clim Dyn 46, 879–896 (2016). https://doi.org/10.1007/s00382-015-2619-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2619-9

Keywords

Navigation