Skip to main content

The Epithelial Barrier

  • Chapter
  • First Online:
Molecular Genetics of Inflammatory Bowel Disease

Abstract

The intestinal epithelium serves as the first line of defense against pathogens in the gut. Breakdown of the epithelial barrier is a hallmark of inflammatory bowel diseases, in which epithelial dysfunction leads to a fulminant immune response to luminal antigens. Mounting evidence suggests that impaired epithelial homeostasis due to genetic predisposition is causatively involved in IBD pathogenesis. In this chapter, we provide a contemporary review on IBD risk factors that may affect the intestinal epithelium and summarize major complementary observations from preclinical animal models of colitis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Variyam EP, Hoskins LC (1981) Mucin degradation in human colon ecosystems. degradation of hog gastric mucin by fecal extracts and fecal cultures. Gastroenterology 81(4):751–758

    Article  CAS  PubMed  Google Scholar 

  2. Peterson LW, Artis D (2014) Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol 14(3):141–153

    Article  CAS  PubMed  Google Scholar 

  3. Koch S, Nusrat A (2012) The life and death of epithelia during inflammation: lessons learned from the gut. Annu Rev Pathol 7:35–60

    Article  CAS  PubMed  Google Scholar 

  4. Barker N (2014) Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nat Rev Mol Cell Biol 15(1):19–33

    Article  CAS  PubMed  Google Scholar 

  5. Yan KS et al (2012) The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations. Proc Natl Acad Sci U S A 109(2):466–471

    Article  CAS  PubMed  Google Scholar 

  6. Koch S (2017) Extrinsic control of Wnt signaling in the intestine. Differentiation 97:1–8

    Article  CAS  PubMed  Google Scholar 

  7. Blander JM (2016) Death in the intestinal epithelium-basic biology and implications for inflammatory bowel disease. FEBS J 283(14):2720–2730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nunes T, Bernardazzi C, de Souza HS (2014) Cell death and inflammatory bowel diseases: apoptosis, necrosis, and autophagy in the intestinal epithelium. Biomed Res Int 2014:218493

    PubMed  PubMed Central  Google Scholar 

  9. Haber AL et al (2017) A single-cell survey of the small intestinal epithelium. Nature 551(7680):333–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Capaldo CT, Powell DN, Kalman D (2017) Layered defense: how mucus and tight junctions seal the intestinal barrier. J Mol Med (Berl) 95(9):927–934

    Article  CAS  Google Scholar 

  11. Van Itallie CM, Anderson JM (2014) Architecture of tight junctions and principles of molecular composition. Semin Cell Dev Biol 36:157–165

    Article  PubMed  CAS  Google Scholar 

  12. Kaser A, Zeissig S, Blumberg RS (2010) Inflammatory bowel disease. Annu Rev Immunol 28:573–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ek WE, D’Amato M, Halfvarson J (2014) The history of genetics in inflammatory bowel disease. Ann Gastroenterol 27(4):294–303

    PubMed  PubMed Central  Google Scholar 

  14. Halme L et al (2006) Family and twin studies in inflammatory bowel disease. World J Gastroenterol 12(23):3668–3672

    Article  PubMed  PubMed Central  Google Scholar 

  15. Munkholm P et al (1994) Intestinal permeability in patients with Crohn’s disease and ulcerative colitis and their first degree relatives. Gut 35(1):68–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Söderholm JD et al (1999) Different intestinal permeability patterns in relatives and spouses of patients with Crohn’s disease: an inherited defect in mucosal defence? Gut 44(1):96–100

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hollander D et al (1986) Increased intestinal permeability in patients with Crohn’s disease and their relatives: a possible etiologic factor. Ann Intern Med 105(6):883–885

    Article  CAS  PubMed  Google Scholar 

  18. Secondulfo M et al (2001) Intestinal permeability in Crohn’s disease patients and their first degree relatives. Dig Liver Dis 33(8):680–685

    Article  CAS  PubMed  Google Scholar 

  19. Teahon K et al (1992) Intestinal permeability in patients with Crohn’s disease and their first degree relatives. Gut 33(3):320–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Breslin NP et al (2001) Intestinal permeability is increased in a proportion of spouses of patients with Crohn’s disease. Am J Gastroenterol 96(10):2934–2938

    Article  CAS  PubMed  Google Scholar 

  21. Peeters M et al (1997) Clustering of increased small intestinal permeability in families with Crohn’s disease. Gastroenterology 113(3):802–807

    Article  CAS  PubMed  Google Scholar 

  22. Hugot JP et al (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411(6837):599–603

    Article  CAS  PubMed  Google Scholar 

  23. Ogura Y et al (2001) A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411(6837):603–606

    Article  CAS  PubMed  Google Scholar 

  24. Liu JZ, Anderson CA (2014) Genetic studies of Crohn’s disease: past, present and future. Best Pract Res Clin Gastroenterol 28(3):373–386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Hisamatsu T et al (2003) CARD15/NOD2 functions as an antibacterial factor in human intestinal epithelial cells. Gastroenterology 124(4):993–1000

    Article  CAS  PubMed  Google Scholar 

  26. Coskun M (2014) Intestinal epithelium in inflammatory bowel disease. Front Med (Lausanne) 1:24

    Google Scholar 

  27. de Lange KM, Barrett JC (2015) Understanding inflammatory bowel disease via immunogenetics. J Autoimmun 64:91–100

    Article  PubMed  CAS  Google Scholar 

  28. Van Limbergen J, Radford-Smith G, Satsangi J (2014) Advances in IBD genetics. Nat Rev Gastroenterol Hepatol 11(6):372–385

    Article  PubMed  CAS  Google Scholar 

  29. Khor B, Gardet A, Xavier RJ (2011) Genetics and pathogenesis of inflammatory bowel disease. Nature 474(7351):307–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McGovern DP, Kugathasan S, Cho JH (2015) Genetics of inflammatory bowel diseases. Gastroenterology 149(5):1163–1176 e2

    Article  CAS  PubMed  Google Scholar 

  31. Hampe J et al (2007) A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet 39(2):207–211

    Article  CAS  PubMed  Google Scholar 

  32. McCole DF (2014) IBD candidate genes and intestinal barrier regulation. Inflamm Bowel Dis 20(10):1829–1849

    Article  PubMed  Google Scholar 

  33. Garrison WD et al (2006) Hepatocyte nuclear factor 4alpha is essential for embryonic development of the mouse colon. Gastroenterology 130(4):1207–1220

    Article  CAS  PubMed  Google Scholar 

  34. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kokkonen TS, Karttunen TJ (2015) Endothelial Fas-ligand in inflammatory bowel diseases and in acute appendicitis. J Histochem Cytochem 63(12):931–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Denning TL et al (2002) Oxidative stress induces the expression of Fas and Fas ligand and apoptosis in murine intestinal epithelial cells. Free Radic Biol Med 33(12):1641–1650

    Article  CAS  PubMed  Google Scholar 

  37. Roulis M et al (2011) Intestinal epithelial cells as producers but not targets of chronic TNF suffice to cause murine Crohn-like pathology. Proc Natl Acad Sci U S A 108(13):5396–5401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Heller F et al (2005) Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology 129(2):550–564

    Article  CAS  PubMed  Google Scholar 

  39. Miyoshi H et al (2012) Wnt5a potentiates TGF-beta signaling to promote colonic crypt regeneration after tissue injury. Science 338(6103):108–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yamada Y et al (2013) Functional roles of TGF-beta1 in intestinal epithelial cells through Smad-dependent and non-Smad pathways. Dig Dis Sci 58(5):1207–1217

    Article  CAS  PubMed  Google Scholar 

  41. Jung B, Staudacher JJ, Beauchamp D (2017) Transforming growth factor beta superfamily signaling in development of colorectal cancer. Gastroenterology 152(1):36–52

    Article  CAS  PubMed  Google Scholar 

  42. Miyoshi H et al (2017) Prostaglandin E2 promotes intestinal repair through an adaptive cellular response of the epithelium. EMBO J 36(1):5–24

    Article  CAS  PubMed  Google Scholar 

  43. Glas J et al (2012) PTGER4 expression-modulating polymorphisms in the 5p13.1 region predispose to Crohn’s disease and affect NF-kappaB and XBP1 binding sites. PLoS One 7(12):e52873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Capaldo CT, Nusrat A (2015) Claudin switching: physiological plasticity of the tight junction. Semin Cell Dev Biol 42:22–29

    Article  CAS  PubMed  Google Scholar 

  45. Tamura A et al (2008) Megaintestine in claudin-15-deficient mice. Gastroenterology 134(2):523–534

    Article  CAS  PubMed  Google Scholar 

  46. Garcia-Hernandez V, Quiros M, Nusrat A (2017) Intestinal epithelial claudins: expression and regulation in homeostasis and inflammation. Ann N Y Acad Sci 1397(1):66–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ivanov AI, Parkos CA, Nusrat A (2010) Cytoskeletal regulation of epithelial barrier function during inflammation. Am J Pathol 177(2):512–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Luissint AC, Nusrat A, Parkos CA (2014) JAM-related proteins in mucosal homeostasis and inflammation. Semin Immunopathol 36(2):211–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Laukoetter MG et al (2007) JAM-A regulates permeability and inflammation in the intestine in vivo. J Exp Med 204(13):3067–3076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Khounlotham M et al (2012) Compromised intestinal epithelial barrier induces adaptive immune compensation that protects from colitis. Immunity 37(3):563–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jostins L et al (2012) Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491(7422):119–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wapenaar MC et al (2008) Associations with tight junction genes PARD3 and MAGI2 in Dutch patients point to a common barrier defect for coeliac disease and ulcerative colitis. Gut 57(4):463–467

    Article  CAS  PubMed  Google Scholar 

  53. Ghosh S, Panaccione R (2010) Anti-adhesion molecule therapy for inflammatory bowel disease. Ther Adv Gastroenterol 3(4):239–258

    Article  CAS  Google Scholar 

  54. Reinisch W et al (2018) Targeting endothelial ligands: ICAM-1/alicaforsen, MAdCAM-1. J Crohns Colitis 12(suppl_2):S669–S677

    Article  PubMed  Google Scholar 

  55. Mohanan V et al (2018) C1orf106 is a colitis risk gene that regulates stability of epithelial adherens junctions. Science 359(6380):1161–1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sampson JN et al (2015) Analysis of heritability and shared heritability based on genome-wide association studies for thirteen cancer types. J Natl Cancer Inst 107(12):djv279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Wang SL et al (2018) Impact of paneth cell autophagy on inflammatory bowel disease. Front Immunol 9:693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Patel KK, Stappenbeck TS (2013) Autophagy and intestinal homeostasis. Annu Rev Physiol 75:241–262

    Article  CAS  PubMed  Google Scholar 

  59. Cadwell K et al (2008) A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456(7219):259–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cadwell K et al (2010) Virus-plus-susceptibility gene interaction determines Crohn’s disease gene Atg16L1 phenotypes in intestine. Cell 141(7):1135–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cooney R et al (2010) NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat Med 16(1):90–97

    Article  CAS  PubMed  Google Scholar 

  62. Sorbara MT et al (2013) The protein ATG16L1 suppresses inflammatory cytokines induced by the intracellular sensors Nod1 and Nod2 in an autophagy-independent manner. Immunity 39(5):858–873

    Article  CAS  PubMed  Google Scholar 

  63. Murthy A et al (2014) A Crohn’s disease variant in Atg16l1 enhances its degradation by caspase 3. Nature 506(7489):456–462

    Article  CAS  PubMed  Google Scholar 

  64. MacMicking JD, Taylor GA, McKinney JD (2003) Immune control of tuberculosis by IFN-gamma-inducible LRG-47. Science 302(5645):654–659

    Article  CAS  PubMed  Google Scholar 

  65. McCarroll SA et al (2008) Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn’s disease. Nat Genet 40(9):1107–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Liu B et al (2013) Irgm1-deficient mice exhibit Paneth cell abnormalities and increased susceptibility to acute intestinal inflammation. Am J Physiol Gastrointest Liver Physiol 305(8):G573–G584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Adolph TE et al (2013) Paneth cells as a site of origin for intestinal inflammation. Nature 503(7475):272–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. VanDussen KL et al (2014) Genetic variants synthesize to produce paneth cell phenotypes that define subtypes of Crohn’s disease. Gastroenterology 146(1):200–209

    Article  CAS  PubMed  Google Scholar 

  69. Monaco C et al (2015) Anti-TNF therapy: past, present and future. Int Immunol 27(1):55–62

    Article  CAS  PubMed  Google Scholar 

  70. Capaldo CT, Nusrat A (2009) Cytokine regulation of tight junctions. Biochim Biophys Acta Biomembr 1788(4):864–871

    Article  CAS  Google Scholar 

  71. Yu D, Turner JR (2008) Stimulus-induced reorganization of tight junction structure: the role of membrane traffic. Biochim Biophys Acta 1778(3):709–716

    Article  CAS  PubMed  Google Scholar 

  72. Watson AJ, Hughes KR (2012) TNF-alpha-induced intestinal epithelial cell shedding: implications for intestinal barrier function. Ann N Y Acad Sci 1258:1–8

    Article  CAS  PubMed  Google Scholar 

  73. Gonsky R et al (2014) IFNG rs1861494 polymorphism is associated with IBD disease severity and functional changes in both IFNG methylation and protein secretion. Inflamm Bowel Dis 20(10):1794–1801

    Article  PubMed  Google Scholar 

  74. Padua D et al (2016) A long noncoding RNA signature for ulcerative colitis identifies IFNG-AS1 as an enhancer of inflammation. Am J Physiol Gastrointest Liver Physiol 311(3):G446–G457

    Article  PubMed  PubMed Central  Google Scholar 

  75. Nava P et al (2010) Interferon-gamma regulates intestinal epithelial homeostasis through converging beta-catenin signaling pathways. Immunity 32(3):392–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bernardo D et al (2018) Human intestinal pro-inflammatory CD11c(high)CCR2(+)CX3CR1(+) macrophages, but not their tolerogenic CD11c(−)CCR2(−)CX3CR1(−) counterparts, are expanded in inflammatory bowel disease. Mucosal Immunol 11(4):1114–1126

    Article  CAS  PubMed  Google Scholar 

  77. Connor SJ et al (2004) CCR2 expressing CD4+ T lymphocytes are preferentially recruited to the ileum in Crohn’s disease. Gut 53(9):1287–1294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cho JH (2008) The genetics and immunopathogenesis of inflammatory bowel disease. Nat Rev Immunol 8(6):458–466

    Article  CAS  PubMed  Google Scholar 

  79. Martini E et al (2017) Mend your fences: the epithelial barrier and its relationship with mucosal immunity in inflammatory bowel disease. Cell Mol Gastroenterol Hepatol 4(1):33–46

    Article  PubMed  PubMed Central  Google Scholar 

  80. Hanash AM et al (2012) Interleukin-22 protects intestinal stem cells from immune-mediated tissue damage and regulates sensitivity to graft versus host disease. Immunity 37(2):339–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nguyen PM, Putoczki TL, Ernst M (2015) STAT3-activating cytokines: a therapeutic opportunity for inflammatory bowel disease? J Interf Cytokine Res 35(5):340–350

    Article  CAS  Google Scholar 

  82. Aden K et al (2018) ATG16L1 orchestrates interleukin-22 signaling in the intestinal epithelium via cGAS-STING. J Exp Med 215(11):2868–2886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Shouval DS et al (2014) Interleukin 10 receptor signaling: master regulator of intestinal mucosal homeostasis in mice and humans. Adv Immunol 122:177–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Noguchi E et al (2009) A Crohn’s disease-associated NOD2 mutation suppresses transcription of human IL10 by inhibiting activity of the nuclear ribonucleoprotein hnRNP-A1. Nat Immunol 10(5):471–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kuhn R et al (1993) Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75(2):263–274

    Article  CAS  PubMed  Google Scholar 

  86. Vancamelbeke M et al (2017) Genetic and transcriptomic bases of intestinal epithelial barrier dysfunction in inflammatory bowel disease. Inflamm Bowel Dis 23(10):1718–1729

    Article  PubMed  Google Scholar 

  87. Li AC, Thompson RP (2003) Basement membrane components. J Clin Pathol 56(12):885–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang L et al (2003) Extracellular matrix protein 1 (ECM1) is over-expressed in malignant epithelial tumors. Cancer Lett 200(1):57–67

    Article  CAS  PubMed  Google Scholar 

  89. Van den Steen P et al (1998) Concepts and principles of O-linked glycosylation. Crit Rev Biochem Mol Biol 33(3):151–208

    Article  PubMed  Google Scholar 

  90. Das B et al (2010) Tissue distibution of murine Muc19/smgc gene products. J Histochem Cytochem 58(2):141–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Muhvic-Urek M, Tomac-Stojmenovic M, Mijandrusic-Sincic B (2016) Oral pathology in inflammatory bowel disease. World J Gastroenterol 22(25):5655–5667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Atreya R, Neurath MF (2015) IBD pathogenesis in 2014: molecular pathways controlling barrier function in IBD. Nat Rev Gastroenterol Hepatol 12(2):67–68

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Koch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Escudero-Hernández, C., Koch, S. (2019). The Epithelial Barrier. In: Hedin, C., Rioux, J., D'Amato, M. (eds) Molecular Genetics of Inflammatory Bowel Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-28703-0_15

Download citation

Publish with us

Policies and ethics