Skip to main content

Concentration Inequalities for Randomly Permuted Sums

  • Conference paper
  • First Online:
High Dimensional Probability VIII

Part of the book series: Progress in Probability ((PRPR,volume 74))

Abstract

Initially motivated by the study of the non-asymptotic properties of non-parametric tests based on permutation methods, concentration inequalities for uniformly permuted sums have been largely studied in the literature. Recently, Delyon et al. proved a new Bernstein-type concentration inequality based on martingale theory. This work presents a new proof of this inequality based on the fundamental inequalities for random permutations of Talagrand. The idea is to first obtain a rough inequality for the square root of the permuted sum, and then, iterate the previous analysis and plug this first inequality to obtain a general concentration of permuted sums around their median. Then, concentration inequalities around the mean are deduced. This method allows us to obtain the Bernstein-type inequality up to constants, and, in particular, to recovers the Gaussian behavior of such permuted sums under classical conditions encountered in the literature. Then, an application to the study of the second kind error rate of permutation tests of independence is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. M. Albert, Tests of independence by bootstrap and permutation: an asymptotic and non-asymptotic study. Application to Neurosciences. PhD thesis, Nice, 2015

    Google Scholar 

  2. M. Albert, Y. Bouret, M. Fromont, P. Reynaud-Bouret, Bootstrap and permutation tests of independence for point processes. Ann. Stat. 43(6), 2537–2564 (2015)

    Article  MathSciNet  Google Scholar 

  3. M. Albert, Y. Bouret, M. Fromont, P. Reynaud-Bouret, Surrogate data methods based on a shuffling of the trials for synchrony detection: the centering issue. Neural Comput. 28(11), 2352–2392 (2016)

    Article  MathSciNet  Google Scholar 

  4. R. Adamczak, D. Chafaï, P. Wolff, Circular law for random matrices with exchangeable entries (2014), arXiv preprint arXiv:1402.3660

    Google Scholar 

  5. Y. Baraud, Non-asymptotic minimax rates of testing in signal detection. Bernoulli 8(5), 577–606 (2002)

    MathSciNet  MATH  Google Scholar 

  6. B. Bercu, B. Delyon, E. Rio, Concentration Inequalities for Sums and Martingales (Springer, Cham, 2015)

    Book  Google Scholar 

  7. E. Bolthausen, An estimate of the remainder in a combinatorial central limit theorem. Probab. Theory Relat. Fields 66(3), 379–386 (1984)

    MathSciNet  MATH  Google Scholar 

  8. S. Boucheron, G. Lugosi, P. Massart, Concentration Inequalities: A Nonasymptotic Theory of Independence (Oxford University Press, Oxford, 2013)

    Book  Google Scholar 

  9. S. Chatterjee, Stein’s method for concentration inequalities. Probab. Theory Relat. Fields 138(1), 305–321 (2007)

    Article  MathSciNet  Google Scholar 

  10. M. Dwass, On the asymptotic normality of some statistics used in non-parametric tests. Ann. Math. Stat. 26, 334–339 (1955)

    Article  MathSciNet  Google Scholar 

  11. M. Fromont, B. Laurent, P. Reynaud-Bouret, Adaptive tests of homogeneity for a Poisson process. Ann. Inst. Henri Poincaré Probab. Stat. 47(1), 176–213 (2011)

    Article  MathSciNet  Google Scholar 

  12. M. Fromont, B. Laurent, P. Reynaud-Bouret, The two-sample problem for poisson processes: adaptive tests with a nonasymptotic wild bootstrap approach. Ann. Stat. 41(3), 1431–1461 (2013)

    Article  MathSciNet  Google Scholar 

  13. J. Hájek, Some extensions of the Wald-Wolfowitz-Noether theorem. Ann. Math. Stat. 32(2), 506–523 (1961)

    Article  MathSciNet  Google Scholar 

  14. S.T. Ho, L.H.Y. Chen, An L p bound for the remainder in a combinatorial central limit theorem. Ann. Probab. 6(2), 231–249 (1978)

    Article  MathSciNet  Google Scholar 

  15. W. Hoeffding, A combinatorial central limit theorem. Ann. Math. Stat. 22(4), 558–566 (1951)

    Article  MathSciNet  Google Scholar 

  16. W. Hoeffding, The large-sample power of tests based on permutation of the observations. Ann. Math. Stat. 23(2), 169–192 (1952)

    Article  MathSciNet  Google Scholar 

  17. K. Jogdeo, Asymptotic normality in nonparametric methods. Ann. Math. Stat. 39, 905–922 (1968)

    Article  MathSciNet  Google Scholar 

  18. M. Ledoux, The Concentration of Measure Phenomenon, vol. 89 (American Mathematical Society, Providence, 2005)

    Book  Google Scholar 

  19. P. Massart, J. Picard, Concentration Inequalities and Model Selection, vol. 1896 (Springer, Berlin, 2007)

    Google Scholar 

  20. C. McDiarmid, Concentration for independent permutations. Comb. Probab. Comput. 11(02), 163–178 (2002)

    Article  MathSciNet  Google Scholar 

  21. M. Motoo, On the Hoeffding’s combinatrial central limit theorem. Ann. Inst. Stat. Math. 8(1), 145–154 (1956)

    Article  MathSciNet  Google Scholar 

  22. G.E. Noether, On a theorem by Wald and Wolfowitz. Ann. Math. Stat. 20, 455–458 (1949)

    Article  Google Scholar 

  23. J.P. Romano, Bootstrap and randomization tests of some nonparametric hypotheses. Ann. Stat. 17(1), 141–159 (1989)

    Article  MathSciNet  Google Scholar 

  24. L. Sansonnet, C. Tuleau-Malot, A model of Poissonian interactions and detection of dependence. Stat. Comput. 25(2), 449–470 (2015)

    Article  MathSciNet  Google Scholar 

  25. W. Schneller, A short proof of Motoo’s combinatorial central limit theorem using stein’s method. Probab. Theory Relat. Fields 78(2), 249–252 (1988)

    Article  MathSciNet  Google Scholar 

  26. C.P. Shapiro, L. Hubert, Asymptotic normality of permutation statistics derived from weighted sums of bivariate functions. Ann. Stat. 7, 788–794 (1979)

    Article  MathSciNet  Google Scholar 

  27. M. Talagrand, Concentration of measure and isoperimetric inequalities in product spaces. Publ. Math. Inst. Hautes Etudes Sci. 81(1), 73–205 (1995)

    Article  MathSciNet  Google Scholar 

  28. A. Wald, J. Wolfowitz, Statistical tests based on permutations of the observations. Ann. Math. Stat. 15(4), 358–372 (1944)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is grateful to Jean-François Coeurjolly for his insightful discussions. This work was supported in part by the French Agence Nationale de la Recherche (ANR 2011 BS01 010 01 projet Calibration).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mélisande Albert .

Editor information

Editors and Affiliations

Appendix: A Non-asymptotic Control of the Second Kind Error Rates

Appendix: A Non-asymptotic Control of the Second Kind Error Rates

Consider the notation from Sect. 17.3. Since this section focuses on the study of the second kind error rate of the test, in all the sequel, the observation is assumed to satisfy the alternative \(({\mathcal {H}}_1)\). Let thus P be an alternative, that is P ≠ (P 1 ⊗ P 2), n ≥ 4 and \({\mathbb {X}}_n=(X_i,\dots ,X_n)\) be an i.i.d. sample from distribution P. Fix α and β be two fixed values in (0, 1). Consider T the test statistic introduced in (17.16), the (random) critical value \(q_{1-\alpha }({\mathbb {X}}_n)\) defined in (17.18), and the corresponding permutation test defined in (17.19) by

which precisely rejects independence when \(T({\mathbb {X}}_n) > q_{1-\alpha }({\mathbb {X}}_n)\). Notice that this test is exactly the upper-tailed test by permutation introduced in [2].

The aim of this section is to provide different conditions on the alternative P ensuring a control of the second kind error rate by a fixed value β > 0, that is \({\mathbb {P}\left (\Delta _\alpha ({\mathbb {X}}_n)=0\right )} \leq \beta .\) The following steps constitute the first steps of a general study of the separation rates for the previous independence test, and is worked through in the specific case of continuous real-valued random variables in [1, Chapter 4].

Recall the notation introduced in (17.17) for a better readability. For all real-valued measurable function g on \({\mathcal {X}}^2\), denote respectively

$$\displaystyle \begin{aligned} {\mathbb{E}_{P}\left[ g \right]} = {\mathbb{E}\left[ g(X_1^1,X_1^2) \right]}\quad \mbox{and}\quad {\mathbb{E}_{{\perp\perp}}\left[ g \right]} = {\mathbb{E}\left[ g(X_1^1,X_2^2) \right]}, \end{aligned}$$

the expectations of g(X) under the alternative P, that is if X ∼ P, and under the null hypothesis \(({\mathcal {H}}_0)\), that is if X ∼ (P 1 ⊗ P 2).

Assume the following moment assumption holds, that is

so that all variance and second-order moments exist. Then, the following statements hold.

  1. 1.

    By Chebychev’s inequality, one has \({\mathbb {P}\left (\Delta _\alpha ({\mathbb {X}}_n)=0\right )} \leq \beta \) as soon as Condition (17.20) is satisfied, that is

    $$\displaystyle \begin{aligned}{\mathbb{E}\left[ T({\mathbb{X}}_n) \right]} \geq q^\alpha_{1-\beta/2} + \sqrt{\frac{2}{\beta} {\operatorname{Var}\left( T({\mathbb{X}}_n) \right)}}.\end{aligned}$$
  2. 2.

    On the one hand,

    $$\displaystyle \begin{aligned} {\operatorname{Var}\left( T({\mathbb{X}}_n) \right)} \leq \frac{8}{n} {\left( {\mathbb{E}_{P}\left[ \varphi^2 \right]} + {\mathbb{E}_{{\perp\perp}}\left[ \varphi^2 \right]} \right)}, \end{aligned} $$
    (17.48)
  3. 3.

    On the other hand, in order to control the quantile \(q^\alpha _{1-\beta /2}\), let us first upper bound the conditional quantile, following Hoeffding’s approach based on the Cauchy-Schwarz inequality, by

    $$\displaystyle \begin{aligned} q_{1-\alpha}({\mathbb{X}}_n) \leq \sqrt{\frac{1-\alpha}{\alpha} {\operatorname{Var}\left( T{\left( {\mathbb{X}}_n^{{{\Pi}}} \right)}\middle| {\mathbb{X}}_n \right)}}. \end{aligned} $$
    (17.49)
  4. 4.

    Markov’s inequality allows us to deduce the following bound for the quantile:

    $$\displaystyle \begin{aligned} q^\alpha_{1-\beta/2} \leq 2\sqrt{\frac{1-\alpha}{\alpha}}\sqrt{\frac{2}{\beta}\frac{{\left( {\mathbb{E}_{{\perp\perp}}\left[ \varphi^2 \right]} + {\mathbb{E}_{P}\left[ \varphi^2 \right]} \right)}}{n}}. \end{aligned} $$
    (17.50)
  5. 5.

    Finally, combining (17.20), (17.48) and (17.50) ensures that \({\mathbb {P}\left (\Delta _\alpha ({\mathbb {X}}_n)=0\right )} \leq \beta \) as soon as Condition (17.21) is satisfied, that is

    $$\displaystyle \begin{aligned}{\mathbb{E}\left[ T({\mathbb{X}}_n) \right]} \geq \frac{4}{\sqrt{\alpha}}\sqrt{\frac{2}{\beta}\frac{{\mathbb{E}_{P}\left[ \varphi^2 \right]} + {\mathbb{E}_{{\perp\perp}}\left[ \varphi^2 \right]}}{n}}.\end{aligned}$$

This section is divided in five subsections, each one of them respectively proving a point stated above. The first one proves the sufficiency of Condition (17.20) in order to control the second kind error rate. The second, third and fourth ones provide respectively upper-bounds of the variance term, the critical value and the quantile \(q^\alpha _{1-\beta /2}\). Finally, the fifth one provides the sufficiency of Condition (17.21).

17.1.1 A First Condition Ensuing from Chebychev’s Inequality

In this section, we prove the sufficiency of a first simple condition, derived from Chebychev’s inequality in order to control the second error rate. Assume that (17.20) is satisfied, that is

$$\displaystyle \begin{aligned}{\mathbb{E}\left[ T({\mathbb{X}}_n) \right]} \geq q^\alpha_{1-\beta/2} + \sqrt{\frac{2}{\beta} {\operatorname{Var}\left( T({\mathbb{X}}_n) \right)}}.\end{aligned} $$

Then,

$$\displaystyle \begin{aligned} \begin{array}{rcl} {\mathbb{P}\left(\Delta_\alpha({\mathbb{X}}_n)=0\right)} &\displaystyle =&\displaystyle {\mathbb{P}\left(T({\mathbb{X}}_n) \leq q_{1-\alpha}({\mathbb{X}}_n)\right)} \end{array} \end{aligned} $$
(17.51)
$$\displaystyle \begin{aligned} \begin{array}{rcl} &\displaystyle =&\displaystyle {\mathbb{P}\left({\left\{ T({\mathbb{X}}_n) \leq q_{1-\alpha}({\mathbb{X}}_n) \right\}} \cap {\left\{ q_{1-\alpha}({\mathbb{X}}_n) \leq q^\alpha_{1-\beta/2} \right\}}\right)} \\ &\displaystyle &\displaystyle + \ {\mathbb{P}\left({\left\{ T({\mathbb{X}}_n) \leq q_{1-\alpha}({\mathbb{X}}_n) \right\}} \cap {\left\{ q_{1-\alpha}({\mathbb{X}}_n) > q^\alpha_{1-\beta/2} \right\}}\right)} \\ &\displaystyle \leq &\displaystyle {\mathbb{P}\left(T({\mathbb{X}}_n) \leq q^\alpha_{1-\beta/2}\right)} + {\mathbb{P}\left(q_{1-\alpha}({\mathbb{X}}_n) > q^\alpha_{1-\beta/2}\right)} \\ &\displaystyle \leq &\displaystyle {\mathbb{P}\left(T({\mathbb{X}}_n) \leq q^\alpha_{1-\beta/2}\right)} + \frac{\beta}{2}, {} \end{array} \end{aligned} $$
(17.52)

by definition of the quantile \(q^\alpha _{1-\beta /2}\). Yet, from (17.20) one obtains from Chebychev’s inequality that

$$\displaystyle \begin{aligned} \begin{array}{rcl} {\mathbb{P}\left(T({\mathbb{X}}_n) \leq q^\alpha_{1-\beta/2}\right)} &\displaystyle \leq &\displaystyle {\mathbb{P}\left(T({\mathbb{X}}_n) \leq {\mathbb{E}\left[ T({\mathbb{X}}_n) \right]} - \sqrt{\frac{2}{\beta} {\operatorname{Var}\left( T({\mathbb{X}}_n) \right)}}\right)} \\ &\displaystyle \leq &\displaystyle {\mathbb{P}\left({\left| T({\mathbb{X}}_n) - {\mathbb{E}\left[ T({\mathbb{X}}_n) \right]} \right|} \geq \sqrt{\frac{2}{\beta} {\operatorname{Var}\left( T({\mathbb{X}}_n) \right)}}\right)} \\ &\displaystyle \leq &\displaystyle \frac{\beta}{2}. {} \end{array} \end{aligned} $$
(17.53)

Finally, both (17.52) and (17.53) lead to the desired control \({\mathbb {P}\left (\Delta _\alpha ({\mathbb {X}}_n)=0\right )}\leq \beta \) which ends the proof.

17.1.2 Control of the Variance in the General Case

To upper bound the variance term, we apply Lemma 17.3.1 which directly implies that

$$\displaystyle \begin{aligned}{\operatorname{Var}\left( T({\mathbb{X}}_n) \right)} \leq \frac{2}{n} {\left( {\mathbb{E}_{P}\left[ \varphi^2 \right]} + 4 {\mathbb{E}_{{\perp\perp}}\left[ \varphi^2 \right]} \right)},\end{aligned} $$

which directly leads to (17.48).

17.1.3 Control of the Critical Value Based on Hoeffding’s Approach

This section is devoted to the proof the inequality (17.49), namely

The proof of this upper-bound follows Hoeffding’s approach in [16], and relies on a normalizing trick, and the Cauchy-Schwarz inequality. From now on, for a better readability, denote respectively \({\mathbb {E}^*\left [ \cdot \right ]}\) and \({\operatorname {Var}^*\left ( \cdot \right )}\) the conditional expectation and variance given the sample \({\mathbb {X}}_n\).

As in Hoeffding [16], the first step is to center and normalize the permuted test statistic. Yet, by construction the permuted test statistic is automatically centered, that is \({\mathbb {E}^*\left [ T{\left ( {\mathbb {X}}_n^{{{\Pi }}} \right )} \right ]} = 0\), as one can notice that

$$\displaystyle \begin{aligned}T{\left( {\mathbb{X}}_n^{{{\Pi}}} \right)}=\frac{1}{n-1}{\left( \sum_{i=1}^n \varphi{\left( X_i^1,X_{{{\Pi}}(i)}^2 \right)} - {\mathbb{E}^*\left[ \sum_{i=1}^n \varphi{\left( X_i^1,X_{{{\Pi}}(i)}^2 \right)} \right]} \right)}.\end{aligned} $$

Therefore, just consider the normalizing term

$$\displaystyle \begin{aligned}\nu(\mathbb{X}_n) = {\operatorname{Var}^*\left( T{\left( {\mathbb{X}}_n^{{{\Pi}}} \right)} \right)} = {\mathbb{E}^*\left[ T{\left( {\mathbb{X}}_n^{{{\Pi}}} \right)}^2 \right]} = \frac{1}{n!}\sum_{{{\tau}}\in{\mathfrak{S}_{n}}} {\left( T{\left( {\mathbb{X}}_n^{{{\tau}}} \right)} \right)}^2.\end{aligned} $$

Two cases appear: either \(\nu (\mathbb {X}_n)=0\) or not.

In the first case, the nullity of the conditional variance implies that all the permutations of the test statistic are equal. Hence, for all permutation τ of \({\left \{ 1,\dots ,n \right \}}\), one has \(T({\mathbb {X}}_n^{{{\tau }}}) = T({\mathbb {X}}_n)\). Since the centering term \({\mathbb {E}^*\left [ \sum _{i=1}^n \varphi {\left ( X_i^1,X_{{{\Pi }}(i)}^2 \right )} \right ]}=n^{-1}\sum _{i,j=1}^n\varphi (X_i^1,X_j^2)\) is permutation invariant, one obtains the equality of the permuted sums, that is

$$\displaystyle \begin{aligned}\sum_{i=1}^n \varphi{\left( X_i^1,X_{{{\tau}}(i)}^2 \right)} = \sum_{i=1}^n \varphi{\left( X_i^1,X_i^2 \right)},\end{aligned} $$

and this for all permutation τ. In particular, the centering term is also equal to \(\sum _{i=1}^n \varphi {\left ( X_i^1,X_i^2 \right )}\). Indeed, by invariance of the sum (applied in the third equality below),

Therefore, \(T({\mathbb {X}}_n)\) is equal to zero, and thus, so is \(q_{1-\alpha }({\mathbb {X}}_n)\). Finally, inequality (17.55) is satisfied since

$$\displaystyle \begin{aligned}q_{1-\alpha}({\mathbb{X}}_n) = 0 \leq 0 = \sqrt{\frac{1-\alpha}{\alpha} {\operatorname{Var}\left( T{\left( {\mathbb{X}}_n^{{{\Pi}}} \right)}\middle| {\mathbb{X}}_n \right)}}.\end{aligned}$$

Consider now the second case, and assume \(\nu (\mathbb {X}_n)>0\). Let us introduce the (centered and) normalized statistic

$$\displaystyle \begin{aligned}T'{\left( \mathbb{X}_n \right)} = \frac{1}{\sqrt{\nu(\mathbb{X}_n)}}{\left( T({\mathbb{X}}_n) \right)}.\end{aligned}$$

In particular, the new statistic \(T'{\left ( \mathbb {X}_n \right )}\) satisfies

$$\displaystyle \begin{aligned}{\mathbb{E}^*\left[ T'{\left( {\mathbb{X}}_n^{{{\Pi}}} \right)} \right]} = 0 \quad \mbox{and}\quad {\operatorname{Var}^*\left( T'{\left( {\mathbb{X}}_n^{{{\Pi}}} \right)} \right)}\leq 1.\end{aligned}$$

One may moreover notice that the normalizing term \(\nu ({\mathbb {X}}_n)\) is permutation invariant, that is, for all permutations τ and τ′ in \({\mathfrak {S}_{n}}\),

$$\displaystyle \begin{aligned}\nu{\left( \mathbb{X}_n^{{{\tau}}} \right)}=\nu{\left( \mathbb{X}_n \right)}=\nu{\left( \mathbb{X}_n^{{{\tau}}'} \right)}.\end{aligned}$$

In particular, since \(\nu (\mathbb {X}_n) >0\),

$$\displaystyle \begin{aligned}T{\left( {\mathbb{X}}_n^{{{\tau}}} \right)}\leq T{\left( {\mathbb{X}}_n^{{{\tau}}'} \right)}\quad \Leftrightarrow \quad T'{\left( {\mathbb{X}}_n^{{{\tau}}} \right)}\leq T'{\left( {\mathbb{X}}_n^{{{\tau}}'} \right)}.\end{aligned}$$

Therefore, as the test Δα depends only on the comparison of the \({\left \{ T{\left ( {\mathbb {X}}_n^{{{\tau }}} \right )} \right \}}_{{{\tau }}\in {\mathfrak {S}_{n}}}\), the test statistic T can be replaced by T′, and the new critical value becomes

$$\displaystyle \begin{aligned} q^{\prime}_{1-\alpha}({\mathbb{X}}_n) = T^{\prime (n!-\lfloor n!\alpha\rfloor)}{\left( \mathbb{X}_n \right)} = \frac{T^{(n!-\lfloor n!\alpha\rfloor)}{\left( \mathbb{X}_n \right)}}{\nu({\mathbb{X}}_n)}=\frac{q_{1-\alpha}({\mathbb{X}}_n)}{\nu({\mathbb{X}}_n)}. \end{aligned} $$
(17.54)

Moreover, following the proof of Theorem 2.1. of Hoeffding [16], one can show (as below) that

$$\displaystyle \begin{aligned} q^{\prime}_{1-\alpha}({\mathbb{X}}_n) \leq \sqrt{\frac{1-\alpha}{\alpha}}. \end{aligned} $$
(17.55)

Hence, combining (17.55) with (17.54) leads straightforwardly to (17.49).

Finally, remains the proof of (17.55). There are two cases:

First Case

If \(q^{\prime }_{1-\alpha }({\mathbb {X}}_n)\leq 0\), then (17.55) is satisfied.

Second Case

If \(q^{\prime }_{1-\alpha }({\mathbb {X}}_n) > 0\), then introduce \(Y=q^{\prime }_{1-\alpha }({\mathbb {X}}_n) - T'{\left ( {\mathbb {X}}_n^{{{\Pi }}} \right )}.\)

First, since by construction, \({\mathbb {E}^*\left [ T'{\left ( {\mathbb {X}}_n^{{{\Pi }}} \right )} \right ]}=0\), one directly obtains \({\mathbb {E}^*\left [ Y \right ]} = q^{\prime }_{1-\alpha }({\mathbb {X}}_n)\). Hence,

and by the Cauchy-Schwarz inequality,

Yet, on one hand,

$$\displaystyle \begin{aligned} \begin{array}{rcl} {\mathbb{E}^*\left[ Y^2 \right]} &\displaystyle =&\displaystyle {\mathbb{E}^*\left[ {\left( q^{\prime}_{1-\alpha}({\mathbb{X}}_n) - T'{\left( {\mathbb{X}}_n^{{{\Pi}}} \right)} \right)}^2 \right]} \\ &\displaystyle =&\displaystyle {\left( q^{\prime}_{1-\alpha}({\mathbb{X}}_n) \right)}^2 + {\mathbb{E}^*\left[ {\left( T'{\left( {\mathbb{X}}_n^{{{\Pi}}} \right)} \right)}^2 \right]} -2 q^{\prime}_{1-\alpha}({\mathbb{X}}_n){\mathbb{E}^*\left[ T'{\left( {\mathbb{X}}_n^{{{\Pi}}} \right)} \right]} \\ &\displaystyle =&\displaystyle {\left( q^{\prime}_{1-\alpha}({\mathbb{X}}_n) \right)}^2 + {\operatorname{Var}^*\left( T'{\left( {\mathbb{X}}_n^{{{\Pi}}} \right)} \right)} \\ &\displaystyle \leq &\displaystyle {\left( q^{\prime}_{1-\alpha}({\mathbb{X}}_n) \right)}^2 + 1, \end{array} \end{aligned} $$

since by the normalizing initial step, \({\operatorname {Var}^*\left ( T'{\left ( {\mathbb {X}}_n^{{{\Pi }}} \right )} \right )}\leq 1\).

And, on the other hand,

So finally,

$$\displaystyle \begin{aligned}{\left( q^{\prime}_{1-\alpha}({\mathbb{X}}_n) \right)}^2 \leq {\left( 1 - \alpha \right)}{\left( {\left( q^{\prime}_{1-\alpha}({\mathbb{X}}_n) \right)}^2 + 1 \right)},\end{aligned}$$

which is equivalent to \({\left ( q^{\prime }_{1-\alpha }({\mathbb {X}}_n) \right )}^2 \leq (1-\alpha )/\alpha ,\) and thus ends the proof of (17.55).

17.1.4 Control of the Quantile of the Critical Value

The control of the conditional quantile allows us to upper bound its own quantile \(q^\alpha _{1-\beta /2}\) as stated in (17.50), that is

$$\displaystyle \begin{aligned}q^\alpha_{1-\beta/2} \leq 2\sqrt{\frac{1-\alpha}{\alpha}}\sqrt{\frac{2}{\beta}\frac{{\left( {\mathbb{E}_{{\perp\perp}}\left[ \varphi^2 \right]} + {\mathbb{E}_{P}\left[ \varphi^2 \right]} \right)}}{n}}.\end{aligned} $$

Indeed, (17.49) ensures that

$$\displaystyle \begin{aligned}q_{1-\alpha}({\mathbb{X}}_n) \leq \sqrt{\frac{1-\alpha}{\alpha}} \sqrt{{\mathbb{E}\left[ T{\left( {\mathbb{X}}_n^{{{\Pi}}} \right)}^2\middle| {\mathbb{X}}_n \right]}},\end{aligned} $$

and in particular, the (1 − β∕2)-quantile of \(q_{1-\alpha }({\mathbb {X}}_n)\) satisfies

$$\displaystyle \begin{aligned} q^\alpha_{1-\beta/2} \leq \sqrt{\frac{1-\alpha}{\alpha}}\sqrt{\zeta_{1-\beta/2}},\end{aligned} $$
(17.56)

where ζ 1−β∕2 is the (1 − β∕2)-quantile of \({\mathbb {E}\left [ T{\left ( {\mathbb {X}}_n^{{{\Pi }}} \right )}^2\middle | {\mathbb {X}}_n \right ]}\). Yet, from Markov’s inequality, for all positive x,

$$\displaystyle \begin{aligned}{\mathbb{P}\left({\mathbb{E}\left[ T{\left( {\mathbb{X}}_n^{{{\Pi}}} \right)}^2\middle| {\mathbb{X}}_n \right]} \geq x\right)} \leq \frac{{\mathbb{E}\left[ T{\left( {\mathbb{X}}_n^{{{\Pi}}} \right)}^2 \right]}}{x}.\end{aligned} $$

In particular, the choice of \(x=2{\mathbb {E}\left [ T{\left ( {\mathbb {X}}_n^{{{\Pi }}} \right )}^2 \right ]}/\beta \) leads to the control of the quantile

$$\displaystyle \begin{aligned} \zeta_{1-\beta/2}\leq \frac{2{\mathbb{E}\left[ T{\left( {\mathbb{X}}_n^{{{\Pi}}} \right)}^2 \right]}}{\beta}.\end{aligned} $$
(17.57)

Moreover, noticing that one can write

the second-order moment in (17.57) can be rewritten

by independence between Π and \({\mathbb {X}}_n\), where

On the one hand, for all 1 ≤ i, j, k, l ≤ n, the Cauchy-Schwarz inequality always ensures

$$\displaystyle \begin{aligned} {\mathbb{E}\left[ \varphi(X_i^1,X_j^2) \varphi(X_k^1,X_l^2) \right]} \leq \sqrt{{\mathbb{E}\left[ \varphi^2(X_i^1,X_j^2) \right]} {\mathbb{E}\left[ \varphi^2(X_k^1,X_l^2) \right]}} \leq {\mathbb{E}_{{\perp\perp}}\left[ \varphi^2 \right]} + {\mathbb{E}_{P}\left[ \varphi^2 \right]}, \end{aligned} $$
(17.58)

since for all 1 ≤ i, j ≤ n, \({\mathbb {E}\left [ \varphi ^2(X_i^1,X_j^2) \right ]}\leq {\mathbb {E}_{{\perp \perp }}\left [ \varphi ^2 \right ]} + {\mathbb {E}_{P}\left [ \varphi ^2 \right ]}\).

On the other hand, remains to control the sum \((n-1)^{-2} \sum _{i,j=1}^n \sum _{k,l=1}^n E_{i,j,k,l}\). Three cases appear.

First Case

If i ≠ k and j ≠ l (occurring [n(n − 1)]2 times), then

$$\displaystyle \begin{aligned}E_{i,j,k,l} = \frac{1}{n(n-1)} - \frac{1}{n^2} = \frac{1}{n^2(n-1)}.\end{aligned}$$

Second Case

If [i ≠ k and j = l] or [i = k and j ≠ l], then

$$\displaystyle \begin{aligned} E_{i,j,k,l} = 0-1/n^2 \leq 0. \end{aligned}$$

Third Case

If i = k and j = l (occurring n(n − 1) times), then

$$\displaystyle \begin{aligned}E_{i,j,k,l} = \frac{1}{n} - \frac{1}{n^2} = \frac{n-1}{n^2}\leq \frac{1}{n}.\end{aligned}$$

Therefore,

$$\displaystyle \begin{aligned} \begin{array}{rcl} \frac{1}{(n-1)^2} \sum_{i,j=1}^n \sum_{k,l=1}^n E_{i,j,k,l} &\displaystyle \leq &\displaystyle \frac{1}{(n-1)^2}{\left( [n(n-1)]^2 \times\frac{1}{n^2(n-1)} + n(n-1) \times \frac{1}{n} \right)} \\ &\displaystyle \leq &\displaystyle \frac{2}{n-1} \\ &\displaystyle \leq &\displaystyle \frac{4}{n}. {} \end{array} \end{aligned} $$
(17.59)

Finally, both (17.58) and (17.59) imply that

$$\displaystyle \begin{aligned} {\mathbb{E}\left[ T{\left( {\mathbb{X}}_n^{{{\Pi}}} \right)}^2 \right]} \leq \frac{4}{n}{\left( {\mathbb{E}_{{\perp\perp}}\left[ \varphi^2 \right]} + {\mathbb{E}_{P}\left[ \varphi^2 \right]} \right)}, \end{aligned} $$
(17.60)

Therefore, combining (17.56), (17.57) and (17.60) ends the proof of (17.50).

17.1.5 A First Condition Ensuing from Hoeffding’s Approach

Back to the condition (17.20) derived from Chebychev’s inequality, both (17.48) and (17.50) imply that

$$\displaystyle \begin{aligned}q^\alpha_{1-\beta/2} + \sqrt{\frac{2}{\beta} {\operatorname{Var}\left( T({\mathbb{X}}_n) \right)}} \leq \sqrt{\frac{2}{\beta}\frac{{\left( {\mathbb{E}_{P}\left[ \varphi^2 \right]} + {\mathbb{E}_{{\perp\perp}}\left[ \varphi^2 \right]} \right)}}{n}} {\left( 2\sqrt{\frac{1-\alpha}{\alpha}}+ \sqrt{8} \right)},\end{aligned}$$

with \(2\sqrt {(1-\alpha )/\alpha }+ \sqrt {8}\leq 4/\sqrt {\alpha }\), since \(\sqrt {1-\alpha }+\sqrt {\alpha }\leq \sqrt {2}\). Finally, the right-hand side of condition (17.20) being upper bounded by

$$\displaystyle \begin{aligned}\frac{4}{\sqrt{\alpha}}\sqrt{\frac{2}{\beta}\frac{{\left( {\mathbb{E}_{P}\left[ \varphi^2 \right]} + {\mathbb{E}_{{\perp\perp}}\left[ \varphi^2 \right]} \right)}}{n}},\end{aligned}$$

which is exactly the right-hand side of (17.21), this ensures the sufficiency of condition 17.21 to control the second kind error rate by β.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Albert, M. (2019). Concentration Inequalities for Randomly Permuted Sums. In: Gozlan, N., Latała, R., Lounici, K., Madiman, M. (eds) High Dimensional Probability VIII. Progress in Probability, vol 74. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-26391-1_17

Download citation

Publish with us

Policies and ethics