Skip to main content

Cardiomyopathies

  • Chapter
  • First Online:
Cardiac Pathology

Abstract

The cardiomyopathies are a heterogeneous group of diseases centred on the myocardium. Most have an underlying genetic basis, although some may be secondary to other disorders. The main pathologies described in this chapter are dilated cardiomyopathy, hypertrophic cardiomyopathy, arrhythmogenic (right ventricular) cardiomyopathy, isolated left ventricular non-compaction and restrictive cardiomyopathy. The chapter provides macroscopic and microscopic descriptions of the various forms of cardiomyopathies and describes current concepts surrounding their diagnosis, pathogenesis and genetic background.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arbustini E, Narula N, Dec WG, et al. The MOGE(S) Classification for a phenotype–genotype nomenclature of cardiomyopathy. Endorsed by the World Heart Federation. J Am Col Cardiol. 2013;62:2046–72.

    Article  Google Scholar 

  2. McNally E, Golbus J, Puckelwatz M. Genetic mutations and mechanisms in dilated cardiomyopathy. J Clin Invest. 2013;123(1):19–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vikhorev PG, Smoktunowicz N, Munster AB, et al. Abnormal contractility in human heart myofibrils from patients with dilated cardiomyopathy due to mutations in TTN and contractile protein genes. Sci Rep. 2017;7(1):14829.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Ware JS, Li J, Mazaika E, et al. Shared genetic predisposition in peripartum and dilated cardiomyopathies. N Engl J Med. 2016;374(3):233–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Marian AJ, van Rooij E, Roberts R. Genetics and genomics of single-gene cardiovascular diseases: common hereditary cardiomyopathies as prototypes of single-gene disorders. J Am Coll Cardiol. 2016;68(25):2831–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Parks SB, Kushner JD, Nauman D, et al. Lamin A/C mutation analysis in a cohort of 324 unrelated patients with idiopathic or familial dilated cardiomyopathy. Am Heart J. 2008;156:161–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Van Berlo JH, De Voogt WG, Van Der Kooi AJ, et al. Meta-analysis of clinical characteristics of 299 carriers of LMNA gene mutations: do lamin A/C mutations portend high risk of sudden death? J Mol Med. 2005;83:79–83.

    Article  CAS  PubMed  Google Scholar 

  8. Bienengraeber M, Olson T, Selivanov V, et al. ABCC9 mutations identified in human dilated cardiomyopathy disrupt catalytic KATP channel gating. Nat Genet. 2004;36:382–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Taylor MR, Slavov D, Ku L, Di Lenarda A, et al. Prevalence of desmin mutations in dilated cardiomyopathy. Circulation. 2007;115:1244–51.

    Article  CAS  PubMed  Google Scholar 

  10. Goldfarb LG, Dalakas MC. Tragedy in a heartbeat: malfunctioning desmin causes skeletal and cardiac muscle disease. J Clin Invest. 2009;119(7):1806–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bione S, Dadamo P, Maestrini E, et al. A novel X-linked gene, G4.5., is responsible for Barth syndrome. Nat Genet. 1996;12:385–9.

    Article  CAS  PubMed  Google Scholar 

  12. Brauch KM, Karst ML, Herron KJ, et al. Mutations in ribonucleic acid binding protein gene cause familial dilated cardiomyopathy. J Am Coll Cardiol. 2009;54(10):930–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guo W, Schafer S, Greaser M, et al. RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing. Nat Med. 2012;18(5):766–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guo W, Zhu C, Yin Z, et al. Splicing factor RBM20 regulates transcriptional network of titin associated and calcium handling genes in the heart. Int J Biol Sci. 2018;14(4):369–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bollen IAE, Van Deel ED, Kuster DWD, Der Velden JV. Peripartum cardiomyopathy and dilated cardiomyopathy: different at heart. Front Physiol. 2014;5:531.

    PubMed  Google Scholar 

  16. Piano MR, Phillips SA. Alcoholic cardiomyopathy: pathophysiologic insights. Cardiovasc Toxicol. 2014;14(4):291–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Semsarian C, Ingles J, Maron MS, Maron BJ. New perspectives on the prevalence of hypertrophic cardiomyopathy. J Am Coll Cardiol. 2015;65(12):1249–54.

    Article  PubMed  Google Scholar 

  18. Young L, Smedira NG, Tower-Rader A, Lever H, Desai MY. Hypertrophic cardiomyopathy: a complex disease. Cleve Clin J Med. 2018;85(5):399–411.

    Article  PubMed  Google Scholar 

  19. Konno T, Chang S, Seidman JG, Seidman CE. Genetics of hypertrophic cardiomyopathy. Curr Opin Cardiol. 2010;25(3):1–8.

    Article  Google Scholar 

  20. Berrens-Gawlik V, Mearini G, Gedicke-Hornung C, et al. MYBPC3 in hypertrophic cardiomyopathy: from mutation identification to RNA-based correction. Pflugers Arch. 2014;466:215–23.

    Article  CAS  Google Scholar 

  21. Hartmannova H, Kubanek M, Sramko M, et al. Isolated X-linked hypertrophic cardiomyopathy caused by a novel mutation of the four-and-a-half LIM domain 1 gene. Circ Cardiovasc Genet. 2013;6(6):543–51.

    Article  CAS  PubMed  Google Scholar 

  22. Liang Y, Bradford WH, Zhang J, Sheikh F. Four and a half LIM domain protein signaling and cardiomyopathy. Biophys Rev. 2018;10(4):1073–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Roma-Rodrigues C, Fernandes AR. Genetics of hypertrophic cardiomyopathy: advances and pitfalls in diagnosis and therapy. Appl Clin Genet. 2014;7:195–208.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ackerman MJ, VanDriest SL, Ommen SR. Prevalence and age-dependence of malignant mutations in the beta-myosin heavy chain and troponin T genes in hypertrophic cardiomyopathy: a comprehensive outpatient perspective. J Am Coll Cardiol. 2002;39(12):2042–8.

    Article  CAS  PubMed  Google Scholar 

  25. Moolman JC, Corfield VA, Posen B, Ngumbela K. Sudden death due to troponin T mutations. J Am Coll Cardiol. 1997;29(3):549–55.

    Article  CAS  PubMed  Google Scholar 

  26. Parto VM, Antoncecchi V, Sozzi F, et al. Echocardiogenic diagnosis of the different phenotypes of hypertrophic cardiomyopathy. Cardiovasc Ultrasound. 2016;14(1):30.

    Article  Google Scholar 

  27. Mozaffarian D, Caldwell JH. Right ventricular involvement in hypertrophic cardiomyopathy: a case report and literature review. Clin Cardiol. 2001;24:2–8.

    Article  CAS  PubMed  Google Scholar 

  28. Raju H, Alberg C, Sagoo GS, et al. Inherited cardiomyopathies. BMJ. 2011;343:d6966.

    Article  PubMed  Google Scholar 

  29. Sen-Chowdhry S, Syrris P, Prasad SK, et al. Left-dominant arrhythmogenic cardiomyopathy: an under-recognized clinical entity. J Am Coll Cardiol. 2008;52:2175–87.

    Article  PubMed  Google Scholar 

  30. Christien KH, Bazoukis G, Liu T, et al. Arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) in clinical practice. J Arrhythm. 2017;34(1):11–22.

    Google Scholar 

  31. Marcus FI, McKenna WJ, Sherrill D, Basso C, Bauce B, Bluemke DA, et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the Task Force criteria. Eur Heart J. 2010;31:806–14.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sen‐Chowdhry S, Syrris P, Ward D, Asimaki A, Sevdalis E, Mckenna WJ. Clinical and genetic characterization of families with arrhythmogenic right ventricular dysplasia/cardiomyopathy provides novel insights into patterns of disease expression. Circulation. 2007;115:1710–20.

    Article  PubMed  Google Scholar 

  33. Bhonsale A, Groeneweg JA, James CA, et al. Impact of genotype on clinical course in arrhythmogenic right ventricular dysplasia/cardiomyopathy-associated mutation carriers. Eur Heart J. 2015;36(14):847–55.

    Article  CAS  PubMed  Google Scholar 

  34. Iyer VR, Chin AJ. Arrhythmogenic right ventricular cardiomyopathy/Dysplasia (ARVC/D). Am J Med Genet C Semin Med Genet. 2013;163C(3):185–97.

    Article  PubMed  Google Scholar 

  35. Merner ND, Hodgkinson KA, Haywood AF, et al. Arrhythmogenic right ventricular cardiomyopathy type 5 is a fully penetrant, lethal arrhythmic disorder caused by a missense mutation in the TMEM43 gene. Am J Hum Genet. 2008;82:809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rampazzo A, Nava A, Erne P, et al. A new locus for arrhythmogenic right ventricular cardiomyopathy (ARVD2) maps to chromosome 1q42-q43. Hum Mol Genet. 1995;4:2151–4.

    Article  CAS  PubMed  Google Scholar 

  37. Leask A, Abraham DJ. TGF-beta-signaling and the fibrotic response. FASEB J. 2004;18:816–27.

    Article  CAS  PubMed  Google Scholar 

  38. Thiene G, Nava A, Corrado D, et al. Right ventricular cardiomyopathy and sudden death in young people. N Engl J Med. 1988;318:129–33.

    Article  CAS  PubMed  Google Scholar 

  39. Marcus FI, Fontaine G, Guiraudon G, et al. Right ventricular dysplasia. A report of 24 adult cases. Circulation. 1982;65:384–99.

    Article  CAS  PubMed  Google Scholar 

  40. Corrado D, Basso C, Thiene G, et al. Spectrum of clinicopathologic manifestations of arrhythmogenic right ventricular cardiomyopathy/dysplasia: a multicenter study. J Am Coll Cardiol. 1997;30:1512–20.

    Article  CAS  PubMed  Google Scholar 

  41. Corrado D, Basso C, Thiene G. Arrhythmogenic right ventricular cardiomyopathy: diagnosis, prognosis and treatment. Heart. 2000;83:588–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gallo P, D’Amati G, Pellicia F. Pathologic evidence of extensive left ventricular involvement in arrhythmogenic right ventricular cardiomyopathy. Hum Pathol. 1992;23:948–52.

    Article  CAS  PubMed  Google Scholar 

  43. Pinamonti B, Sinagra GF, Salvi A, et al. Left ventricular involvement in right ventricular dysplasia. Am Heart J. 1992;123:711–24.

    Article  CAS  PubMed  Google Scholar 

  44. Miani D, Pimamonti B, Bussani R, et al. Right ventricular dysplasia: a clinical and pathological study of two families with left ventricular involvement. Br Heart J. 1993;69:151–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. D’Amati G, Leone O, di Gioa CR, et al. Arrhythmogenic right ventricular cardiomyopathy: clinicopathologic correlation based on a revised definition of pathologic patterns. Hum Pathol. 2001;32:1078–86.

    Article  PubMed  Google Scholar 

  46. Burke AP, Farb A, Tashko G, et al. Arrhythmogenic right ventricular cardiomyopathy and fatty replacement of the right ventricular myocardium: are they different diseases? Circulation. 1998;97:1571–80.

    Article  CAS  PubMed  Google Scholar 

  47. De Pasquale CG, Heddle WF. Left sided arrhythmogenic ventricular dysplasia in siblings. Heart. 2001;86:128–30.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Michalodimitrakis M, Papadomanolakis A, Stiakakis J, et al. Left side right ventricular cardiomyopathy. Med Sci Law. 2002;42:313–7.

    Article  CAS  PubMed  Google Scholar 

  49. Shirani J, Roberts WC. Subepicardial myocardial lesions. Am Heart J. 1993;125:1346–52.

    Article  CAS  PubMed  Google Scholar 

  50. Oechslin EN, Attenhofer Jost CH, Rojas JR, et al. Long-term follow-up of 34 adults with isolated left ventricular noncompaction: a distinct cardiomyopathy with poor prognosis. J Am Coll Cardiol. 2000;36:493–500.

    Article  CAS  PubMed  Google Scholar 

  51. Sedmera D, Pexieder T, Vuillemin M, et al. Developmental patterning of the myocardium. Anat Rec. 2000;258:319–37.

    Article  CAS  PubMed  Google Scholar 

  52. Ichida F. Left ventricular noncompaction. Circ J. 2009;73:19–26.

    Article  CAS  PubMed  Google Scholar 

  53. Milano A, Vermeer A, Lodder E, et al. HCN4 mutations in multiple families with bradycardia and left ventricular noncompaction cardiomyopathy. J Am Coll Cardiol. 2014;64(8):745–56.

    Article  CAS  PubMed  Google Scholar 

  54. Andrews RE, Fenton MJ, Ridout DA, Burch M. British Congenital Cardiac Association. New-onset heart failure due to heart muscle disease in childhood: a prospective study in the United Kingdom and Ireland. Circulation. 2008;117:79–84.

    Article  PubMed  Google Scholar 

  55. Stollberger C, Finsterer J, Blazek G. Left ventricular hypertrabeculation/noncompaction and association with additional cardiac abnormalities and neuromuscular disorders. Am J Cardiol. 2002;90:899–902.

    Article  PubMed  Google Scholar 

  56. Oeschlin EN, Attenhoffer Jost CH, Rojas JR, et al. Long-term follow-up of 34 adults with isolated left ventricular noncompaction: a distinct cardiomyopathy with poor prognosis. J Am Coll Cardiol. 2000;36:493–500.

    Article  Google Scholar 

  57. Stollberger C, Winkler-Dworak M, Blazek G, Finsterer J. Prognosis of left ventricular hypertrabeculation/noncompaction is dependent on cardiac and neuromuscular comorbidity. Int J Cardiol. 2007;121:189–93.

    Article  PubMed  Google Scholar 

  58. Grimaldi A, Mocumbi AO, Freers J. Tropical endomyocardial fibrosis natural history, challenges and perspectives. Circulation. 2016;133:2503–15.

    Article  CAS  PubMed  Google Scholar 

  59. Gallego-Delgado M, Delgado JF, Brossa-Loidi V, et al. Idiopathic restrictive cardiomyopathy is primarily a genetic disease. J Am Coll Cardiol. 2016;67(25):3021–3.

    Article  PubMed  Google Scholar 

  60. Kostareva A, Kiselev A, Gudkova A, et al. Genetic spectrum of idiopathic restrictive cardiomyopathy uncovered by next generation sequencing. PLoS One. 2016;11(9):e0163362. https://doi.org/10.1371/journal.pone.0163362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Halatchev IG, Zheng J, Ou J. Wild-type transthyretin cardiac amyloidosis (ATTRwt-CA), previously known as senile cardiac amyloidosis: clinical presentation, diagnosis, management and emerging therapies. J Thorac Dis. 2018;10(3):2034–45.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Patel KS, Hawkins PN. Cardiac amyloidosis: where are we today? J Intern Med. 2015;278:126–44.

    Article  CAS  PubMed  Google Scholar 

  63. Goette A, Röcken C. Atrial amyloidosis and atrial fibrillation: a gender-dependent “arrhythmogenic substrate”? Eur Heart J. 2004;25(14):1185–6.

    Article  PubMed  Google Scholar 

  64. Roberts WC, Waller BF. Cardiac amyloidosis causing cardiac dysfunction: analysis of 54 necropsy patients. Am J Cardiol. 1983;52:137–46.

    Article  CAS  PubMed  Google Scholar 

  65. Booth DR, Tan SY, Hawkins PN, et al. A novel variant of transthyretin, 59Thr-Lys, associated with autosomal dominant cardiac amyloidosis in an Italian family. Circulation. 1995;91:962–7.

    Article  CAS  PubMed  Google Scholar 

  66. Smith TJ, Kyle RA, Lie JT. Clinical significance of histopathologic patterns of cardiac amyloidosis. Mayo Clin Proc. 1984;59:547–55.

    Article  CAS  PubMed  Google Scholar 

  67. Kint JA. The enzyme defect in Fabry’s disease. Nature. 1970;227(5263):1173.

    Article  CAS  PubMed  Google Scholar 

  68. Linhart A, Palecek T, Bultas J, et al. New insights in cardiac structural changes in patients with Fabry’s disease. Am Heart J. 2000;139:1101–8.

    Article  CAS  PubMed  Google Scholar 

  69. Germain DP. Fabry disease. Orphanet J Rare Dis. 2010;5:30.

    Article  PubMed  PubMed Central  Google Scholar 

  70. D’souza RS, Levandowski C, Slavov D, et al. Danon disease: clinical features, evaluation and management. Circ Heart Fail. 2014;7:843–9.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Hirschhorn R, Reuser A. Glycogen storage disease type II: acid alpha-glucosidase (acid maltase) deficiency. In: Scriver C, Beaudet A, Sly W, Valle D, editors. The metabolic and molecular bases of inherited disease, vol. 3. New York, NY: McGraw-Hill; 2001. p. 3389–420.

    Google Scholar 

  72. Gujja P, Rosing DR, Tripodi DJ, Shizukuda Y. Iron overload cardiomyopathy, better understanding of an increasing disorder. J Am Coll Cardiol. 2011;56(13):1001–12.

    Article  CAS  Google Scholar 

  73. Alpert MA. Obesity cardiomyopathy: pathophysiology and evolution of the clinical syndrome. Am J Med Sci. 2001;321(4):225–36.

    Article  CAS  PubMed  Google Scholar 

  74. Peterson LR, Waggoner AD, Schechtman KB, Meyer T, Gropler RJ, Barzilai B, Davila-Roman VG. Alterations in left ventricular structure and function in young healthy obese women: assessment by echocardiography and tissue Doppler imaging. J Am Coll Cardiol. 2004;43(8):1399–404. The end result is congestive cardiac failure.

    Article  PubMed  Google Scholar 

  75. Kim MJ, Shin MS. Practical management of peripartum cardiomyopathy. Korean J Intern Med. 2017;32(3):393–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sliwa K, Fett J, Elkayam U. Peripartum cardiomyopathy. Lancet. 2006;368:687–93.

    Article  PubMed  Google Scholar 

  77. Newman LS, Rose CS, Maier LA. Sarcoidosis. N Engl J Med. 1997;336:1224–34.

    Article  CAS  PubMed  Google Scholar 

  78. Baughman RP, Teirstein AS, Judson MA, et al. Case Control Etiologic Study of Sarcoidosis (ACCESS) Research Group. Clinical characteristics of patients in a case control study of sarcoidosis. Am J Respir Crit Care Med. 2001;164:1885–9.

    Article  CAS  PubMed  Google Scholar 

  79. Iwai K, Sekiguti M, Hosoda Y, et al. Racial difference in cardiac sarcoidosis incidence observed at autopsy. Sarcoidosis. 1994;11:26–31.

    CAS  PubMed  Google Scholar 

  80. Kim JS, Judson MA, Donnino R, et al. Cardiac sarcoidosis. Am Heart J. 2009;157:9–21.

    Article  CAS  PubMed  Google Scholar 

  81. Sekhri V, Sanal S, Delorenzo LJ, et al. Cardiac sarcoidosis: a comprehensive review. Arch Med Sci. 2011;7:546–54.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Uemura A, Morimoto S, Hiramitsu S, et al. Histologic diagnostic rate of cardiac sarcoidosis evaluation of endomyocardial biopsies. Am Heart J. 1999;138:299–302.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Grateful thanks are expressed to Mr. B. Wagner, Senior Electron Microscopist, Sheffield Teaching Hospitals for his expertise and photography of ultrastructural histology in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kim Suvarna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bunning, C.R., Suvarna, S.K. (2019). Cardiomyopathies. In: Suvarna, S. (eds) Cardiac Pathology. Springer, Cham. https://doi.org/10.1007/978-3-030-24560-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24560-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24559-7

  • Online ISBN: 978-3-030-24560-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics