Skip to main content

Noninvasive Respiratory Support in Pediatric Acute Respiratory Distress Syndrome

  • Chapter
  • First Online:
Pediatric Acute Respiratory Distress Syndrome

Abstract

Invasive mechanical ventilation (IMV) is the predominant mode of respiratory support for children with acute respiratory failure and PARDS, but potential risks including ventilator-associated lung injury, nosocomial infections, airway complications, and need for potentially harmful neurosedatives and muscle relaxants make consideration of alternative, noninvasive modes of respiratory support especially important. The use of noninvasive ventilation (NIV) in pediatric acute respiratory failure has significantly increased over the last two decades. Children successfully managed with NIV have shorter lengths of stay, shorter duration of ventilatory support, and decreased mortality compared to children treated with invasive ventilation. Noninvasive respiratory support is provided using either positive pressure or negative pressure ventilation. Noninvasive positive pressure ventilation (NPPV) is commonly provided using an interface that delivers continuous positive airway pressure (CPAP) or bilevel intermittent positive airway pressure (BiPAP). Negative pressure ventilation (NPV) refers to the application of a constant or biphasic negative pressure above the chest wall using a cuirass. In both instances, air flows into the lungs, resulting in lung recruitment and improvement of gas exchange. Careful patient selection is paramount for the success of NIV in children. Team approach and familiarity with different modalities of NIV is critical. In this chapter, we describe the different modalities of NIV used to support children with acute respiratory failure and PARDS and the most pertinent evidence supporting their efficacy, advantage, disadvantages, and outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schouten LR, Veltkamp F, Bos AP, van Woensel JB, Neto AS, Schultz MJ, et al. Incidence and mortality of acute respiratory distress syndrome in children: a systematic review and meta-analysis. Crit Care Med. 2016;44(4):819–29.

    PubMed  Google Scholar 

  2. Khemani RG, Smith L, Lopez-Fernandez YM, Kwok J, Morzov R, Klein MJ, Yehya N, Willson D, Kneyber MC, Lillie J, Fernandez A. Paediatric acute respiratory distress syndrome incidence and epidemiology (PARDIE): an international, observational study. Lancet Respir Med. 2019;7(2):115–28.

    Google Scholar 

  3. Santschi M, Jouvet P, Leclerc F, Gauvin F, Newth CJ, Carroll CL, et al. Acute lung injury in children: therapeutic practice and feasibility of international clinical trials. Pediatr Crit Care Med. 2010;11(6):681–9.

    Article  PubMed  Google Scholar 

  4. Fanning JJ, Lee KJ, Bragg DS, Gedeit RG. US attitudes and perceived practice for noninvasive ventilation in pediatric acute respiratory failure. Pediatr Crit Care Med. 2011;12(5):e187–e94.

    Article  PubMed  Google Scholar 

  5. Morris JV, Kapetanstrataki M, Parslow RC, Davis PJ, Ramnarayan P. Patterns of use of heated humidified high-flow nasal cannula therapy in PICUs in the United Kingdom and Republic of Ireland. Pediatr Crit Care Med. 2019;20(3):223–32.

    Article  PubMed  Google Scholar 

  6. Morris JV, Ramnarayan P, Parslow RC, Fleming SJ. Outcomes for children receiving noninvasive ventilation as the first-line mode of mechanical ventilation at intensive care admission: a propensity score-matched cohort study. Crit Care Med. 2017;45(6):1045.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jat KR, Mathew JL. Continuous positive airway pressure (CPAP) for acute bronchiolitis in children. Cochrane Database Syst Rev. 2015;1:CD010473. https://doi.org/10.1002/14651858.CD010473.pub2.

    Article  PubMed  Google Scholar 

  8. Beggs S, Wong ZH, Kaul S, Ogden KJ, Walters JA. High-flow nasal cannula therapy for infants with bronchiolitis. Cochrane Database Syst Rev. 2014;1:CD009609. https://doi.org/10.1002/14651858.CD009609.pub2.

    Article  Google Scholar 

  9. Korang SK, Feinberg J, Wetterslev J, Jakobsen JC. Non-invasive positive pressure ventilation for acute asthma in children. Cochrane Database Syst Rev. 2016;9:CD012067. https://doi.org/10.1002/14651858.CD012067.pub2.

    Article  PubMed  Google Scholar 

  10. Vital FM, Ladeira MT, Atallah AN. Non-invasive positive pressure ventilation (CPAP or bilevel NPPV) for cardiogenic pulmonary oedema. Cochrane Database Syst Rev. 2013;5:CD005351.

    Google Scholar 

  11. Osadnik CR, Tee VS, Carson-Chahhoud KV, Picot J, Wedzicha JA, Smith BJ. Non-invasive ventilation for the management of acute hypercapnic respiratory failure due to exacerbation of chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2017;7:CD004104.

    PubMed  Google Scholar 

  12. Antonelli M, Conti G, Esquinas A, Montini L, Maggiore SM, Bello G, et al. A multiple-center survey on the use in clinical practice of noninvasive ventilation as a first-line intervention for acute respiratory distress syndrome. Crit Care Med. 2007;35(1):18–25.

    Article  PubMed  Google Scholar 

  13. Frat J-P, Thille AW, Mercat A, Girault C, Ragot S, Perbet S, et al. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med. 2015;372(23):2185–96.

    Article  CAS  PubMed  Google Scholar 

  14. Bellani G, Laffey JG, Pham T, Madotto F, Fan E, Brochard L, et al. Noninvasive ventilation of patients with acute respiratory distress syndrome. Insights from the LUNG SAFE study. Am J Respir Crit Care Med. 2017;195(1):67–77.

    Article  PubMed  Google Scholar 

  15. Agarwal R, Reddy C, Aggarwal AN, Gupta D. Is there a role for noninvasive ventilation in acute respiratory distress syndrome? A meta-analysis. Respir Med. 2006;100(12):2235–8.

    Article  PubMed  Google Scholar 

  16. Agarwal R, Aggarwal AN, Gupta D. Role of noninvasive ventilation in acute lung injury/acute respiratory distress syndrome: a proportion meta-analysis. Respir Care. 2010;55(12):1653–60.

    PubMed  Google Scholar 

  17. Slain KN, Rotta AT, Martinez-Schlurmann N, Stormorken AG, Shein SL. Outcomes of children with critical bronchiolitis meeting at risk for pediatric acute respiratory distress syndrome criteria. Pediatr Crit Care Med. 2019;20(2):e70–6.

    Article  PubMed  Google Scholar 

  18. Essouri S, Carroll C. Noninvasive support and ventilation for pediatric acute respiratory distress syndrome: proceedings from the pediatric acute lung injury consensus conference. Pediatr Crit Care Med. 2015;16(5_suppl):S102–S10.

    Article  PubMed  Google Scholar 

  19. Drinker P, Shaw LA. An apparatus for the prolonged administration of artificial respiration: I. a design for adults and children. J Clin Invest. 1929;7(2):229–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shaw LA, Drinker P. An apparatus for the prolonged administration of artificial respiration: II. A design for small children and infants with an appliance for the administration of oxygen and carbon dioxide. J Clin Invest. 1929;8(1):33–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lassen H. A preliminary report on the 1952 poliomyelitis epidemic in Copenhagen with special reference to the treatment of acute respiratory insufficiency. Lancet. 1953;1:37–41.

    Article  CAS  PubMed  Google Scholar 

  22. Hassinger AB, Breuer RK, Nutty K, Ma CX, Al Ibrahim OS. Negative-pressure ventilation in pediatric acute respiratory failure. Respir Care. 2017;62(12):1540–9.

    Article  PubMed  Google Scholar 

  23. Turnham H, Agbeko R, Furness J, Pappachan J, Sutcliffe A, Ramnarayan P. Non-invasive respiratory support for infants with bronchiolitis: a national survey of practice. BMC Pediatr. 2017;17(1):20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schmid F, Olbertz DM, Ballmann M. The use of high-flow nasal cannula (HFNC) as respiratory support in neonatal and pediatric intensive care units in Germany–a nationwide survey. Respir Med. 2017;131:210–4.

    Article  PubMed  Google Scholar 

  25. Collier ZJ, Ramaiah V, Glick JC, Gottlieb LJ. A 6-year case-control study of the presentation and clinical sequelae for noninflicted, negligent, and inflicted pediatric burns. J Burn Care Res. 2017;38(1):e101–e24.

    Article  PubMed  Google Scholar 

  26. Group PALICC. Pediatric acute respiratory distress syndrome: consensus recommendations from the pediatric acute lung injury consensus conference. Pediatr Crit Care Med. 2015;16(5):428.

    Article  Google Scholar 

  27. Messika J, Ahmed KB, Gaudry S, Miguel-Montanes R, Rafat C, Sztrymf B, et al. Use of high-flow nasal cannula oxygen therapy in subjects with ARDS: a 1-year observational study. Respir Care. 2015;60(2):162–9.

    Article  PubMed  Google Scholar 

  28. Wolfler A, Calderini E, Iannella E, Conti G, Biban P, Dolcini A, et al. Evolution of noninvasive mechanical ventilation use: a cohort study among Italian PICUs. Pediatr Crit Care Med. 2015;16(5):418–27.

    Article  PubMed  Google Scholar 

  29. Essouri S, Chevret L, Durand P, Haas V, Fauroux B, Devictor D. Noninvasive positive pressure ventilation: five years of experience in a pediatric intensive care unit. Pediatr Crit Care Med. 2006;7(4):329–34.

    Article  PubMed  Google Scholar 

  30. Luo F, Annane D, Orlikowski D, He L, Yang M, Zhou M, et al. Invasive versus non-invasive ventilation for acute respiratory failure in neuromuscular disease and chest wall disorders. Cochrane Database Syst Rev. 2017;12:CD008380.

    PubMed  Google Scholar 

  31. Sapru A, Flori H, Quasney MW, Dahmer MK, Group PALICC. Pathobiology of acute respiratory distress syndrome. Pediatr Crit Care Med. 2015;16(5 Suppl 1):S6–22.

    Article  PubMed  Google Scholar 

  32. Kepreotes E, Whitehead B, Attia J, Oldmeadow C, Collison A, Searles A, et al. High-flow warm humidified oxygen versus standard low-flow nasal cannula oxygen for moderate bronchiolitis (HFWHO RCT): an open, phase 4, randomised controlled trial. Lancet. 2017;389(10072):930–9.

    Article  PubMed  Google Scholar 

  33. Franklin D, Babl FE, Schlapbach LJ, Oakley E, Craig S, Neutze J, et al. A randomized trial of high-flow oxygen therapy in infants with bronchiolitis. N Engl J Med. 2018;378(12):1121–31.

    Article  CAS  PubMed  Google Scholar 

  34. Milési C, Essouri S, Pouyau R, Liet J-M, Afanetti M, Portefaix A, et al. High flow nasal cannula (HFNC) versus nasal continuous positive airway pressure (nCPAP) for the initial respiratory management of acute viral bronchiolitis in young infants: a multicenter randomized controlled trial (TRAMONTANE study). Intensive Care Med. 2017;43(2):209–16.

    Article  PubMed  Google Scholar 

  35. Ward JJ. High-flow oxygen administration by nasal cannula for adult and perinatal patients. Respir Care. 2013;58(1):98–122.

    Article  PubMed  Google Scholar 

  36. Dysart K, Miller TL, Wolfson MR, Shaffer TH. Research in high flow therapy: mechanisms of action. Respir Med. 2009;103(10):1400–5.

    Article  PubMed  Google Scholar 

  37. Hasani A, Chapman T, McCool D, Smith R, Dilworth J, Agnew J. Domiciliary humidification improves lung mucociliary clearance in patients with bronchiectasis. Chron Respir Dis. 2008;5(2):81–6.

    Article  CAS  PubMed  Google Scholar 

  38. Lockhat D, Langleben D, Zidulka A. Hemodynamic differences between continual positive and two types of negative pressure ventilation. Am Rev Respir Dis. 1992;146(3):677–80.

    Article  CAS  PubMed  Google Scholar 

  39. Teague WG. Noninvasive ventilation in the pediatric intensive care unit for children with acute respiratory failure. Pediatr Pulmonol. 2003;35(6):418–26.

    Article  PubMed  Google Scholar 

  40. Cheifetz IM. Year in review 2015: pediatric ARDS. Respir Care. 2016;61(7):980–5.

    Article  PubMed  Google Scholar 

  41. Basnet S, Mander G, Andoh J, Klaska H, Verhulst S, Koirala J. Safety, efficacy, and tolerability of early initiation of noninvasive positive pressure ventilation in pediatric patients admitted with status asthmaticus: a pilot study. Pediatr Crit Care Med. 2012;13(4):393–8.

    Article  PubMed  Google Scholar 

  42. Ganu SS, Gautam A, Wilkins B, Egan J. Increase in use of non-invasive ventilation for infants with severe bronchiolitis is associated with decline in intubation rates over a decade. Intensive Care Med. 2012;38(7):1177–83.

    Article  PubMed  Google Scholar 

  43. Emeriaud G, Essouri S, Tucci M. Noninvasive ventilation in the PICU: one step closer. Crit Care Med. 2017;45(6):1103–4.

    Article  PubMed  Google Scholar 

  44. Fortenberry JD, Del Toro J, Jefferson LS, Evey L, Haase D. Management of pediatric acute hypoxemic respiratory insufficiency with bilevel positive pressure (BiPAP) nasal mask ventilation. Chest. 1995;108(4):1059–64.

    Article  CAS  PubMed  Google Scholar 

  45. Murray PG, Stewart MJ. Use of nasal continuous positive airway pressure during retrieval of neonates with acute respiratory distress. Pediatrics. 2008;121(4):e754–e8.

    Article  PubMed  Google Scholar 

  46. Cummings JJ, Polin RA. Noninvasive respiratory support. Pediatrics. 2016;137(1):e20153758.

    Article  Google Scholar 

  47. Soong WJ, Hwang B, Tang RB. Continuous positive airway pressure by nasal prongs in bronchiolitis. Pediatr Pulmonol. 1993;16(3):163–6.

    Article  CAS  PubMed  Google Scholar 

  48. Yanez LJ, Yunge M, Emilfork M, Lapadula M, Alcantara A, Fernandez C, et al. A prospective, randomized, controlled trial of noninvasive ventilation in pediatric acute respiratory failure. Pediatr Crit Care Med. 2008;9(5):484–9.

    Article  PubMed  Google Scholar 

  49. Muñoz-Bonet JI, Flor-Macián EM, Roselló PM, Llopis MC, Lizondo A, López-Prats JL, et al. Noninvasive ventilation in pediatric acute respiratory failure by means of a conventional volumetric ventilator. World J Pediatr. 2010;6(4):323–30.

    Article  PubMed  Google Scholar 

  50. Munoz-Bonet JI, Flor-Macian EM, Brines J, Rosello-Millet PM, Llopis MC, Lopez-Prats JL, et al. Predictive factors for the outcome of noninvasive ventilation in pediatric acute respiratory failure. Pediatr Crit Care Med. 2010;11(6):675–80.

    Article  PubMed  Google Scholar 

  51. Wilson ME, Majzoub AM, Dobler CC, Curtis JR, Nayfeh T, Thorsteinsdottir B, et al. Noninvasive ventilation in patients with do-not-intubate and comfort-measures-only orders: a systematic review and meta-analysis. Crit Care Med. 2018;46(8):1209–16.

    Article  PubMed  Google Scholar 

  52. Tamburro RF, Barfield RC, Shaffer ML, Rajasekaran S, Woodard P, Morrison RR, et al. Changes in outcomes (1996–2004) for pediatric oncology and hematopoietic stem cell transplant patients requiring invasive mechanical ventilation. Pediatr Crit Care Med. 2008;9(3):270–7.

    Article  PubMed  Google Scholar 

  53. Piastra M, Fognani G, Franceschi A, The OBOT, Oncology IINFICIP. Pediatric Intensive Care Unit admission criteria for haemato-oncological patients: a basis for clinical guidelines implementation. Pediatric Rep. 2011;3(2):e13.

    Article  Google Scholar 

  54. Piastra M, De Luca D, Pietrini D, Pulitanò S, D’Arrigo S, Mancino A, et al. Noninvasive pressure-support ventilation in immunocompromised children with ARDS: a feasibility study. Intensive Care Med. 2009;35(8):1420–7.

    Article  PubMed  Google Scholar 

  55. Antonelli M, Conti G, Bufi M, Costa MG, Lappa A, Rocco M, et al. Noninvasive ventilation for treatment of acute respiratory failure in patients undergoing solid organ transplantation: a randomized trial. JAMA. 2000;283(2):235–41.

    Article  CAS  PubMed  Google Scholar 

  56. Murase K, Chihara Y, Takahashi K, Okamoto S, Segawa H, Fukuda K, et al. Use of noninvasive ventilation for pediatric patients after liver transplantation: decrease in the need for reintubation. Liver Transpl. 2012;18(10):1217–25.

    Article  PubMed  Google Scholar 

  57. Bello G, De Pascale G, Antonelli M. Noninvasive ventilation for the immunocompromised patient: always appropriate? Curr Opin Crit Care. 2012;18(1):54–60.

    Article  PubMed  Google Scholar 

  58. Lemiale V, Mokart D, Resche-Rigon M, Pène F, Mayaux J, Faucher E, et al. Effect of noninvasive ventilation vs oxygen therapy on mortality among immunocompromised patients with acute respiratory failure: a randomized clinical trial. JAMA. 2015;314(16):1711–9.

    Article  CAS  PubMed  Google Scholar 

  59. Fuchs H, Schoss J, Mendler M, Lindner W, Hopfner R, Schulz A, et al. The cause of acute respiratory failure predicts the outcome of noninvasive ventilation in immunocompromised children. Klin Padiatr. 2015;227(06/07):322–8.

    Article  CAS  PubMed  Google Scholar 

  60. Pancera CF, Hayashi M, Fregnani JH, Negri EM, Deheinzelin D, de Camargo B. Noninvasive ventilation in immunocompromised pediatric patients: eight years of experience in a pediatric oncology intensive care unit. J Pediatr Hematol Oncol. 2008;30(7):533–8.

    Article  PubMed  Google Scholar 

  61. Morley SL. Non-invasive ventilation in paediatric critical care. Paediatr Respir Rev. 2016;20:24–31.

    PubMed  Google Scholar 

  62. Najaf-Zadeh A, Leclerc F. Noninvasive positive pressure ventilation for acute respiratory failure in children: a concise review. Ann Intensive Care. 2011;1(1):15.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Mayordomo-Colunga J, Medina A, Rey C, Concha A, Menéndez S, Los Arcos M, et al. Non invasive ventilation after extubation in paediatric patients: a preliminary study. BMC Pediatr. 2010;10(1):29.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wilkinson D, Andersen C, O’Donnell CP, De Paoli AG, Manley BJ. High flow nasal cannula for respiratory support in preterm infants. Cochrane Database Syst Rev. 2016;2:CD006405.

    PubMed  Google Scholar 

  65. Weiler T, Kamerkar A, Hotz J, Ross PA, Newth CJL, Khemani RG. The relationship between high flow nasal cannula flow rate and effort of breathing in children. J Pediatr. 2017;189:66–71.e3.

    Article  PubMed  Google Scholar 

  66. Milési C, Pierre AF, Deho A, Pouyau R, Liet JM, Guillot C, et al. A multicenter randomized controlled trial of a 3-L/kg/min versus 2-L/kg/min high-flow nasal cannula flow rate in young infants with severe viral bronchiolitis (TRAMONTANE 2). Intensive Care Med. 2018;44(11):1870–8.

    Article  PubMed  CAS  Google Scholar 

  67. Milési C, Matecki S, Jaber S, Mura T, Jacquot A, Pidoux O, et al. 6 cmH2O continuous positive airway pressure versus conventional oxygen therapy in severe viral bronchiolitis: a randomized trial. Pediatr Pulmonol. 2013;48(1):45–51.

    Article  PubMed  Google Scholar 

  68. Thia LP, McKenzie SA, Blyth TP, Minasian CC, Kozlowska WJ, Carr SB. Randomised controlled trial of nasal continuous positive airways pressure (CPAP) in bronchiolitis. Arch Dis Child. 2008;93(1):45–7.

    Article  PubMed  Google Scholar 

  69. Wilson PT, Morris MC, Biagas KV, Otupiri E, Moresky RT. A randomized clinical trial evaluating nasal continuous positive airway pressure for acute respiratory distress in a developing country. J Pediatr. 2013;162(5):988–92.

    Article  PubMed  Google Scholar 

  70. Lal SN, Kaur J, Anthwal P, Goyal K, Bahl P, Puliyel JM. Nasal continuous positive airway pressure in bronchiolitis: a randomized controlled trial. Indian Pediatr. 2018;55(1):27–30.

    Article  PubMed  Google Scholar 

  71. Milési C, Ferragu F, Jaber S, Rideau A, Combes C, Matecki S, et al. Continuous positive airway pressure ventilation with helmet in infants under 1 year. Intensive Care Med. 2010;36(9):1592–6.

    Article  PubMed  Google Scholar 

  72. Abadesso C, Nunes P, Silvestre C, Matias E, Loureiro H, Almeida H. Non-invasive ventilation in acute respiratory failure in children. Pediatric Rep. 2012;4(2):e16.

    Article  Google Scholar 

  73. Mayordomo-Colunga J, Medina A, Rey C, Díaz JJ, Concha A, Los Arcos M, et al. Predictive factors of non invasive ventilation failure in critically ill children: a prospective epidemiological study. Intensive Care Med. 2009;35(3):527–36.

    Article  PubMed  Google Scholar 

  74. James CS, Hallewell CP, James DP, Wade A, Mok QQ. Predicting the success of non-invasive ventilation in preventing intubation and re-intubation in the paediatric intensive care unit. Intensive Care Med. 2011;37(12):1994–2001.

    Article  PubMed  Google Scholar 

  75. Khemani RG, Smith L, Lopez-Fernandez YM, Kwok J, Morzov R, Klein MJ, et al. Paediatric acute respiratory distress syndrome incidence and epidemiology (PARDIE): an international, observational study. Lancet Respir Med. 2019;7(2):115–28.

    Article  PubMed  Google Scholar 

  76. Beck J, Emeriaud G, Liu Y, Sinderby C. Neurally-adjusted ventilatory assist (NAVA) in children: a systematic review. Minerva Anestesiol. 2016;82(8):874–83.

    PubMed  Google Scholar 

  77. Baudin F, Pouyau R, Cour-Andlauer F, Berthiller J, Robert D, Javouhey E. Neurally adjusted ventilator assist (NAVA) reduces asynchrony during non-invasive ventilation for severe bronchiolitis. Pediatr Pulmonol. 2015;50(12):1320–7.

    Article  PubMed  Google Scholar 

  78. Kallio M, Koskela U, Peltoniemi O, Kontiokari T, Pokka T, Suo-Palosaari M, et al. Neurally adjusted ventilatory assist (NAVA) in preterm newborn infants with respiratory distress syndrome—a randomized controlled trial. Eur J Pediatr. 2016;175(9):1175–83.

    Article  PubMed  Google Scholar 

  79. Kallio M, Peltoniemi O, Anttila E, Pokka T, Kontiokari T. Neurally adjusted ventilatory assist (NAVA) in pediatric intensive care—a randomized controlled trial. Pediatr Pulmonol. 2015;50(1):55–62.

    Article  PubMed  Google Scholar 

  80. Bordessoule A, Emeriaud G, Morneau S, Jouvet P, Beck J. Neurally adjusted ventilatory assist improves patient–ventilator interaction in infants as compared with conventional ventilation. Pediatr Res. 2012;72(2):194.

    Article  PubMed  Google Scholar 

  81. Ducharme-Crevier L, Beck J, Essouri S, Jouvet P, Emeriaud G. Neurally adjusted ventilatory assist (NAVA) allows patient-ventilator synchrony during pediatric noninvasive ventilation: a crossover physiological study. Crit Care. 2015;19(1):44.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Piquilloud L, Tassaux D, Bialais E, Lambermont B, Sottiaux T, Roeseler J, et al. Neurally adjusted ventilatory assist (NAVA) improves patient–ventilator interaction during non-invasive ventilation delivered by face mask. Intensive Care Med. 2012;38(10):1624–31.

    Article  PubMed  Google Scholar 

  83. Ramet J, De Dooy J. Patient-ventilator asynchrony during noninvasive pressure support ventilation and neurally adjusted ventilatory assist in infants and children. Pediatr Crit Care Med. 2013;14(7):728–9.

    Article  PubMed  Google Scholar 

  84. Vignaux L, Grazioli S, Piquilloud L, Bochaton N, Karam O, Levy-Jamet Y, et al. Patient–ventilator asynchrony during noninvasive pressure support ventilation and neurally adjusted ventilatory assist in infants and children. Pediatr Crit Care Med. 2013;14(8):e357–e64.

    Article  PubMed  Google Scholar 

  85. Shah PS, Ohlsson A, Shah JP. Continuous negative extrathoracic pressure or continuous positive airway pressure compared to conventional ventilation for acute hypoxaemic respiratory failure in children. Cochrane Database Syst Rev. 2013;11 https://doi.org/10.1002/14651858.CD003699.pub4.

  86. Hartmann H, Jawad M, Noyes J, Samuels M, Southall D. Negative extrathoracic pressure ventilation in central hypoventilation syndrome. Arch Dis Child. 1994;70(5):418–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Grasso F, Engelberts D, Helm E, Frndova H, Jarvis S, Talakoub O, et al. Negative-pressure ventilation: better oxygenation and less lung injury. Am J Respir Crit Care Med. 2008;177(4):412–8.

    Article  PubMed  Google Scholar 

  88. Hashimoto S, Toida C, Shime N, Itoi T. Continuous negative extrathoracic pressure in children after congenital heart surgery. Crit Care Resusc. 2006;8(4):297.

    PubMed  Google Scholar 

  89. Deshpande SR, Kirshbom PM, Maher KO. Negative pressure ventilation as a therapy for post-operative complications in a patient with single ventricle physiology. Heart Lung Circ. 2011;20(12):763–5.

    Article  PubMed  Google Scholar 

  90. Deep A, De Munter C, Desai A. Negative pressure ventilation in pediatric critical care setting. Indian J Pediatr. 2007;74(5):483–8.

    Article  PubMed  Google Scholar 

  91. Al-Balkhi A, Klonin H, Marinaki K, Southall D, Thomas D, Jones P, et al. Review of treatment of bronchiolitis related apnoea in two centres. Arch Dis Child. 2005;90(3):288–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Borelli M, Benini A, Denkewitz T, Acciaro C, Foti G, Pesenti A. Effects of continuous negative extrathoracic pressure versus positive end-expiratory pressure in acute lung injury patients. Crit Care Med. 1998;26(6):1025–31.

    Article  CAS  PubMed  Google Scholar 

  93. Klonin H, Bowman B, Peters M, Raffeeq P, Durward A, Bohn DJ, et al. Negative pressure ventilation via chest cuirass to decrease ventilator-associated complications in infants with acute respiratory failure: a case series. Respir Care. 2000;45(5):486–90.

    CAS  PubMed  Google Scholar 

  94. Schallom M, Cracchiolo L, Falker A, Foster J, Hager J, Morehouse T, et al. Pressure ulcer incidence in patients wearing nasal-oral versus full-face noninvasive ventilation masks. Am J Crit Care. 2015;24(4):349–56.

    Article  PubMed  Google Scholar 

  95. Fedor KL. Noninvasive respiratory support in infants and children. Respir Care. 2017;62(6):699–717.

    Article  PubMed  Google Scholar 

  96. Mayordomo-Colunga J, Medina A, Rey C, Concha A, Menéndez S, Arcos ML, et al. Non-invasive ventilation in pediatric status asthmaticus: a prospective observational study. Pediatr Pulmonol. 2011;46(10):949–55.

    Article  PubMed  Google Scholar 

  97. Codazzi D, Nacoti M, Passoni M, Bonanomi E, Sperti LR, Fumagalli R. Continuous positive airway pressure with modified helmet for treatment of hypoxemic acute respiratory failure in infants and a preschool population: a feasibility study. Pediatr Crit Care Med. 2006;7(5):455–60.

    Article  PubMed  Google Scholar 

  98. Tobias JD. Dexmedetomidine: applications in pediatric critical care and pediatric anesthesiology. Pediatr Crit Care Med. 2007;8(2):115–31.

    Article  PubMed  Google Scholar 

  99. Wong J, Steil GM, Curtis M, Papas A, Zurakowski D, Mason KP. Cardiovascular effects of dexmedetomidine sedation in children. Anesth Analg. 2012;114(1):193–9.

    Article  CAS  PubMed  Google Scholar 

  100. Weber MD, Thammasitboon S, Rosen DA. Acute discontinuation syndrome from dexmedetomidine after protracted use in a pediatric patient. Paediatr Anaesth. 2008;18(1):87–8.

    Article  PubMed  Google Scholar 

  101. Kukoyi A, Coker S, Lewis L, Nierenberg D. Two cases of acute dexmedetomidine withdrawal syndrome following prolonged infusion in the intensive care unit: report of cases and review of the literature. Hum Exp Toxicol. 2013;32(1):107–10.

    Article  PubMed  Google Scholar 

  102. Shutes BL, Gee SW, Sargel CL, Fink KA, Tobias JD. Dexmedetomidine as single continuous sedative during noninvasive ventilation: typical usage, hemodynamic effects, and withdrawal. Pediatr Crit Care Med. 2018;19(4):287–97.

    Article  PubMed  Google Scholar 

  103. Mosier JM, Sakles JC, Whitmore SP, Hypes CD, Hallett DK, Hawbaker KE, et al. Failed noninvasive positive-pressure ventilation is associated with an increased risk of intubation-related complications. Ann Intensive Care. 2015;5:4.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Demoule A, Girou E, Richard JC, Taille S, Brochard L. Benefits and risks of success or failure of noninvasive ventilation. Intensive Care Med. 2006;32(11):1756–65.

    Article  PubMed  Google Scholar 

  105. Wing R, James C, Maranda LS, Armsby CC. Use of high-flow nasal cannula support in the emergency department reduces the need for intubation in pediatric acute respiratory insufficiency. Pediatr Emerg Care. 2012;28(11):1117–23.

    Article  PubMed  Google Scholar 

  106. Schibler A, Pham TM, Dunster KR, Foster K, Barlow A, Gibbons K, et al. Reduced intubation rates for infants after introduction of high-flow nasal prong oxygen delivery. Intensive Care Med. 2011;37(5):847–52.

    Article  CAS  PubMed  Google Scholar 

  107. Essouri S, Baudin F, Chevret L, Vincent M, Emeriaud G, Jouvet P. Variability of care in infants with severe bronchiolitis: less-invasive respiratory management leads to similar outcomes. J Pediatr. 2017;188:156–62.e1.

    Article  PubMed  Google Scholar 

  108. Kelly GS, Simon HK, Sturm JJ. High-flow nasal cannula use in children with respiratory distress in the emergency department: predicting the need for subsequent intubation. Pediatr Emerg Care. 2013;29(8):888–92.

    Article  PubMed  Google Scholar 

  109. Abboud PA, Roth PJ, Skiles CL, Stolfi A, Rowin ME. Predictors of failure in infants with viral bronchiolitis treated with high-flow, high-humidity nasal cannula therapy∗. Pediatr Crit Care Med. 2012;13(6):e343–9.

    Article  PubMed  Google Scholar 

  110. Shah PS, Ohlsson A, Shah JP. Continuous negative extrathoracic pressure or continuous positive airway pressure for acute hypoxemic respiratory failure in children. Cochrane Database Syst Rev. 2008;1:CD003699.

    Google Scholar 

  111. Piastra M, De Luca D, Marzano L, Stival E, Genovese O, Pietrini D, et al. The number of failing organs predicts non-invasive ventilation failure in children with ALI/ARDS. Intensive Care Med. 2011;37(9):1510–6.

    Article  PubMed  Google Scholar 

  112. Bernet V, Hug MI, Frey B. Predictive factors for the success of noninvasive mask ventilation in infants and children with acute respiratory failure. Pediatr Crit Care Med. 2005;6(6):660–4.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Alibrahim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alibrahim, O., Slain, K. (2020). Noninvasive Respiratory Support in Pediatric Acute Respiratory Distress Syndrome. In: Shein, S., Rotta, A. (eds) Pediatric Acute Respiratory Distress Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-030-21840-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21840-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21839-3

  • Online ISBN: 978-3-030-21840-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics