Skip to main content

Nonconventional Mechanical Ventilation for Pediatric Acute Respiratory Distress Syndrome: High-Frequency Oscillatory Ventilation and Airway Pressure Release Ventilation

  • Chapter
  • First Online:
Pediatric Acute Respiratory Distress Syndrome

Abstract

Pediatric acute respiratory distress syndrome (PARDS) is a manifestation of severe, life-threatening lung injury. Pressure-limited modes of ventilation are mainly used in these critically ill children. High-frequency oscillatory ventilation (HFOV) and airway pressure release ventilation (APRV) are, at least theoretically, justifiable modes to be used in the context of lung protective ventilation because they target the two major determinants of ventilator-induced lung injury. However, these theoretical benefits have so far not been translated into improved outcomes in children with moderate-to-severe PARDS. This can most likely be explained by a lack of understanding in which patient at what time these modes should be considered and what optimal settings should be targeted for. This means that no practice recommendations can be supported by rigorous evidence, although experts have recommended considering HFOV when conventional ventilation fails using an open-lung strategy. Much needed randomized controlled trials are eagerly awaited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Khemani RG, Smith LS, Zimmerman JJ, Erickson S. Pediatric acute lung injury consensus conference G. Pediatric acute respiratory distress syndrome: definition, incidence, and epidemiology: proceedings from the pediatric acute lung injury consensus conference. Pediatr Crit Care Med. 2015;16:S23–40. https://doi.org/10.1097/PCC.0000000000000432.

    Article  PubMed  Google Scholar 

  2. Khemani RG, et al. Paediatric acute respiratory distress syndrome incidence and epidemiology (PARDIE): an international, observational study. Lancet Respir Med. 2018;18:30344–8. https://doi.org/10.1016/S2213-2600.

    Article  Google Scholar 

  3. Schouten LR, Veltkamp F, Bos AP, van Woensel JB, Serpa Neto A, Schultz MJ, Wosten-van Asperen RM. Incidence and mortality of acute respiratory distress syndrome in children: a systematic review and meta-analysis. Crit Care Med. 2016;44:819–29. https://doi.org/10.1097/CCM.0000000000001388.

    Article  PubMed  Google Scholar 

  4. Tremblay LN, Slutsky AS. Ventilator-induced lung injury: from the bench to the bedside. Intensive Care Med. 2006;32:24–33. https://doi.org/10.1007/s00134-005-2817-8.

    Article  PubMed  Google Scholar 

  5. Pinhu L, Whitehead T, Evans T, Griffiths M. Ventilator-associated lung injury. Lancet. 2003;361:332–40. https://doi.org/10.1016/S0140-6736(03)12329-X.

    Article  PubMed  Google Scholar 

  6. Ranieri VM, Giunta F, Suter PM, Slutsky AS. Mechanical ventilation as a mediator of multisystem organ failure in acute respiratory distress syndrome. JAMA. 2000;284:43–4.

    Article  CAS  Google Scholar 

  7. Slutsky AS, Ranieri VM. Ventilator-Induced Lung Injury. N Engl J Med. 2013;369:2126–36.

    Article  CAS  Google Scholar 

  8. Network A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The acute respiratory distress syndrome network. N Engl J Med. 2000;342:1301–8.

    Article  Google Scholar 

  9. Briel M, et al. Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA. 2010;303:865–73. https://doi.org/10.1001/jama.2010.218.

    Article  CAS  PubMed  Google Scholar 

  10. Terragni PP, et al. Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2007;175:160–6. https://doi.org/10.1164/rccm.200607-915OC.

    Article  CAS  PubMed  Google Scholar 

  11. Kneyber MC, Zhang H, Slutsky AS. Ventilator-induced lung injury. Similarity and differences between children and adults. Am J Respir Crit Care Med. 2014;190:258–65. https://doi.org/10.1164/rccm.201401-0168CP.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kneyber MC, Rimensberger PC. The need for and feasibility of a pediatric ventilation trial: reflections on a survey among pediatric intensivists. Pediatr Crit Care Med. 2012;13:632. https://doi.org/10.1097/PCC.0b013e31824fbc37.

    Article  PubMed  Google Scholar 

  13. Santschi M, et al. Acute lung injury in children: therapeutic practice and feasibility of international clinical trials. Pediatr Crit Care Med. 2010;11:681–9.

    Article  Google Scholar 

  14. Gattinoni L, Pesenti A. The concept of “baby lung”. Intensive Care Med. 2005;31:776–84. https://doi.org/10.1007/s00134-005-2627-z.

    Article  PubMed  Google Scholar 

  15. de Jager P, Burgerhof JG, van Heerde M, Albers MJ, Markhorst DG, Kneyber MC. Tidal volume and mortality in mechanically ventilated children: a systematic review and meta-analysis of observational studies∗. Crit Care Med. 2014;42:2461–72. https://doi.org/10.1097/CCM.0000000000000546.

    Article  PubMed  Google Scholar 

  16. Erickson S, Schibler A, Numa A, Nuthall G, Yung M, Pascoe E, Wilkins B. Acute lung injury in pediatric intensive care in Australia and New Zealand: a prospective, multicenter, observational study. Pediatr Crit Care Med. 2007;8:317–23.

    PubMed  Google Scholar 

  17. Khemani RG, Conti D, Alonzo TA, Bart RD III, Newth CJ. Effect of tidal volume in children with acute hypoxemic respiratory failure. Intensive Care Med. 2009;35:1428.

    Article  Google Scholar 

  18. Bryan AC. The oscillations of HFO. Am J Respir Crit Care Med. 2001;163:816–7. https://doi.org/10.1164/ajrccm.163.4.16341.

    Article  CAS  PubMed  Google Scholar 

  19. Gerstmann DR, Fouke JM, Winter DC, Taylor AF, deLemos RA. Proximal, tracheal, and alveolar pressures during high-frequency oscillatory ventilation in a normal rabbit model. Pediatr Res. 1990;28:367–73.

    Article  CAS  Google Scholar 

  20. Froese AB. High-frequency oscillatory ventilation for adult respiratory distress syndrome: let’s get it right this time! Crit Care Med. 1997;25:906–8.

    Article  CAS  Google Scholar 

  21. Ng J, Ferguson ND. High-frequency oscillatory ventilation: still a role? Curr Opin Crit Care. 2017;23:175. https://doi.org/10.1097/MCC.0000000000000387.

    Article  PubMed  Google Scholar 

  22. Imai Y, Slutsky AS. High-frequency oscillatory ventilation and ventilator-induced lung injury. Crit Care Med. 2005;33:S129–34.

    Article  Google Scholar 

  23. Tsuzaki K, Hales CA, Strieder DJ, Venegas JG. Regional lung mechanics and gas transport in lungs with inhomogeneous compliance. J Appl Physiol. 1993;75:206–16.

    Article  CAS  Google Scholar 

  24. Rotta AT, Gunnarsson B, Fuhrman BP, HErnan LJ, Steinhorn DM. Comparison of lung protective ventilation strategies in a rabbit model of acute lung injury. Crit Care Med. 2001;29(11):2176–84.

    Article  CAS  Google Scholar 

  25. Pillow JJ. High-frequency oscillatory ventilation: mechanisms of gas exchange and lung mechanics. Crit Care Med. 2005;33:S135–41.

    Article  Google Scholar 

  26. Arnold JH, Hanson JH, Toro-Figuero LO, Gutierrez J, Berens RJ, Anglin DL. Prospective, randomized comparison of high-frequency oscillatory ventilation and conventional mechanical ventilation in pediatric respiratory failure. Crit Care Med. 1994;22:1530–9.

    Article  CAS  Google Scholar 

  27. Samransamruajkit R, Prapphal N, Deelodegenavong J, Poovorawan Y. Plasma soluble intercellular adhesion molecule-1 (sICAM-1) in pediatric ARDS during high frequency oscillatory ventilation: a predictor of mortality. Asian Pac J Allergy Immunol. 2005;23:181–8.

    CAS  PubMed  Google Scholar 

  28. Samransamruajkit R, Rassameehirun C, Pongsanon K, Huntrakul S, Deerojanawong J, Sritippayawan S, Prapphal N. A comparison of clinical efficacy between high frequency oscillatory ventilation and conventional ventilation with lung volume recruitment in pediatric acute respiratory distress syndrome: a randomized controlled trial. Indian journal of critical care medicine : peer-reviewed, official publication of Indian Society of. Crit Care Med. 2016;20:72–7. https://doi.org/10.4103/0972-5229.175940.

    Article  Google Scholar 

  29. Gupta P, et al. Comparison of high-frequency oscillatory ventilation and conventional mechanical ventilation in pediatric respiratory failure. JAMA Pediatr. 2014;168:243. https://doi.org/10.1001/jamapediatrics.2013.4463.

    Article  PubMed  Google Scholar 

  30. Jain SV, et al. The 30-year evolution of airway pressure release ventilation (APRV). Intensive Care Med Exp. 2016;4:11. https://doi.org/10.1186/s40635-016-0085-2.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bateman ST, et al. Early high-frequency oscillatory ventilation in pediatric acute respiratory failure. A propensity score analysis. Am J Respir Crit Care Med. 2016;193:495–503. https://doi.org/10.1164/rccm.201507-1381OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kneyber MC, van Heerde M, Markhorst DG. It is too early to declare early or late rescue high-frequency oscillatory ventilation dead. JAMA Pediatr. 2014;168:861. https://doi.org/10.1001/jamapediatrics.2014.961.

    Article  PubMed  Google Scholar 

  33. Rimensberger PC, Bachman TE. It is too early to declare early or late rescue high-frequency oscillatory ventilation dead. JAMA Pediatr. 2014;168:862–3. https://doi.org/10.1001/jamapediatrics.2014.940.

    Article  PubMed  Google Scholar 

  34. Essouri S, Emeriaud G, Jouvet P. It is too early to declare early or late rescue high-frequency oscillatory ventilation dead. JAMA Pediatr. 2014;168:861–2. https://doi.org/10.1001/jamapediatrics.2014.937.

    Article  PubMed  Google Scholar 

  35. Derdak S, et al. High-frequency oscillatory ventilation for acute respiratory distress syndrome in adults: a randomized, controlled trial. Am J Respir Crit Care Med. 2002;166:801–8. https://doi.org/10.1164/rccm.2108052.

    Article  PubMed  Google Scholar 

  36. Bollen CW, et al. High frequency oscillatory ventilation compared with conventional mechanical ventilation in adult respiratory distress syndrome: a randomized controlled trial [ISRCTN24242669]. Crit Care. 2005;9:R430–9. https://doi.org/10.1186/cc3737.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Shah SB, Findlay GP, Jackson SK, Smithies MN. Prospective study comparing HFOV versus CMV in patients with ARDS. Intensive Care Med. 2004;30:S84.

    Article  Google Scholar 

  38. Sud S, Sud M, Friedrich JO, Meade MO, Ferguson ND, Wunsch H, Adhikari NK. High frequency oscillation in patients with acute lung injury and acute respiratory distress syndrome (ARDS): systematic review and meta-analysis. BMJ. 2010;340:c2327.

    Article  Google Scholar 

  39. Young D, et al. High-frequency oscillation for acute respiratory distress syndrome. N Engl J Med. 2013;368:806–13. https://doi.org/10.1056/NEJMoa1215716.

    Article  CAS  PubMed  Google Scholar 

  40. Ferguson ND, et al. High-frequency oscillation in early acute respiratory distress syndrome. N Engl J Med. 2013;368:795–805. https://doi.org/10.1056/NEJMoa1215554.

    Article  CAS  PubMed  Google Scholar 

  41. Gu XL, Wu GN, Yao YW, Shi DH, Song Y. Is high-frequency oscillatory ventilation more effective and safer than conventional protective ventilation in adult acute respiratory distress syndrome patients? A meta-analysis of randomized controlled trials. Crit Care. 2014;18:R111. https://doi.org/10.1186/cc13900.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Malhotra A, Drazen JM. High-frequency oscillatory ventilation on shaky ground. N Engl J Med. 2013;368:863–5. https://doi.org/10.1056/NEJMe1300103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kneyber MC, Markhorst DG. Do we really know how to use high-frequency oscillatory ventilation in critically ill children? Am J Respir Crit Care Med. 2016;193:1067–8. https://doi.org/10.1164/rccm.201512-2418LE.

    Article  PubMed  Google Scholar 

  44. Kneyber MC, Markhorst DG. Any trial can (almost) kill a good technique. Intensive Care Med. 2016;42:1092–3. https://doi.org/10.1007/s00134-016-4215-9.

    Article  PubMed  Google Scholar 

  45. Fedora M, Klimovic M, Seda M, Dominik P, Nekvasil R. Effect of early intervention of high-frequency oscillatory ventilation on the outcome in pediatric acute respiratory distress syndrome. Bratisl Lek Listy. 2000;101:8–13.

    CAS  PubMed  Google Scholar 

  46. Meade MO, et al. Severity of hypoxemia and effect of high-frequency oscillatory ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017;196:727–33. https://doi.org/10.1164/rccm.201609-1938OC.

    Article  PubMed  Google Scholar 

  47. Suzuki H, Papazoglou K, Bryan AC. Relationship between PaO2 and lung volume during high frequency oscillatory ventilation. Acta Paediatr Jpn. 1992;34:494–500.

    Article  CAS  Google Scholar 

  48. Kneyber MC, van Heerde M, Markhorst DG. Reflections on pediatric high-frequency oscillatory ventilation from a physiologic perspective. Respir Care. 2012;57:1496–504. https://doi.org/10.4187/respcare.01571.

    Article  PubMed  Google Scholar 

  49. Samransamruajkit R, et al. Potent inflammatory cytokine response following lung volume recruitment maneuvers with HFOV in pediatric acute respiratory distress syndrome. Asian Pac J Allergy Immunol. 2012;30:197–203.

    CAS  PubMed  Google Scholar 

  50. Pellicano A, Tingay DG, Mills JF, Fasulakis S, Morley CJ, Dargaville PA. Comparison of four methods of lung volume recruitment during high frequency oscillatory ventilation. Intensive Care Med. 2009;35:1990–8.

    Article  Google Scholar 

  51. de Jager P, et al. Feasibility of an alternative, physiologic, individualized open-lung approach to high-frequency oscillatory ventilation in children. Ann Intensive Care. 2019;9:9. https://doi.org/10.1186/s13613-019-0492-0.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Markhorst DG, van Genderingen HR, van Vught AJ. Static pressure-volume curve characteristics are moderate estimators of optimal airway pressures in a mathematical model of (primary/pulmonary) acute respiratory distress syndrome. Intensive Care Med. 2004;30:2086–93. https://doi.org/10.1007/s00134-004-2446-7.

    Article  PubMed  Google Scholar 

  53. Tingay DG, Mills JF, Morley CJ, Pellicano A, Dargaville PA. The deflation limb of the pressure-volume relationship in infants during high-frequency ventilation. Am J Respir Crit Care Med. 2006;173:414–20.

    Article  Google Scholar 

  54. Goddon S, Fujino Y, Hromi JM, Kacmarek RM. Optimal mean airway pressure during high-frequency oscillation: predicted by the pressure-volume curve. Anesthesiology. 2001;94:862–9.

    Article  CAS  Google Scholar 

  55. Pillow JJ, Sly PD, Hantos Z, Bates JH. Dependence of intrapulmonary pressure amplitudes on respiratory mechanics during high-frequency oscillatory ventilation in preterm lambs. Pediatr Res. 2002;52:538–44.

    Article  Google Scholar 

  56. van Genderingen HR, Versprille A, Leenhoven T, Markhorst DG, van Vught AJ, Heethaar RM. Reduction of oscillatory pressure along the endotracheal tube is indicative for maximal respiratory compliance during high-frequency oscillatory ventilation: a mathematical model study. Pediatr Pulmonol. 2001;31:458–63.

    Article  Google Scholar 

  57. Slutsky AS, et al. Effects of frequency, tidal volume, and lung volume on CO2 elimination in dogs by high frequency (2–30 Hz), low tidal volume ventilation. J Clin Invest. 1981;68:1475–84.

    Article  CAS  Google Scholar 

  58. Scalfaro P, Pillow JJ, Sly PD, Cotting J. Reliable tidal volume estimates at the airway opening with an infant monitor during high-frequency oscillatory ventilation. Crit Care Med. 2001;29:1925–30.

    Article  CAS  Google Scholar 

  59. Hamel DS, Katz AL, Craig DM, Davies JD, Cheifetz IM. Carbon dioxide elimination and gas displacement vary with piston position during high-frequency oscillatory ventilation. Respir Care. 2005;50:361–6.

    PubMed  Google Scholar 

  60. Gavriely N, Solway J, Loring SH, Butler JP, Slutsky AS, Drazen JM. Pressure-flow relationships of endotracheal tubes during high-frequency ventilation. J Appl Physiol. 1985;59:3–11.

    Article  CAS  Google Scholar 

  61. Niederer PF, Leuthold R, Bush EH, Spahn DR, Schmid ER. High-frequency ventilation: oscillatory dynamics. Crit Care Med. 1994;22:S58–65.

    Article  CAS  Google Scholar 

  62. Hirao O, Iguchi N, Uchiyama A, Mashimo T, Nishimura M, Fujino Y. Influence of endotracheal tube bore on tidal volume during high frequency oscillatory ventilation: a model lung study. Med Sci Monit. 2009;15:MT1–4.

    PubMed  Google Scholar 

  63. Wong R, Deakers T, Hotz J, Khemani RG, Ross PA, Newth CJ. Volume and pressure delivery during pediatric high-frequency oscillatory ventilation. Pediatr Crit Care Med. 2017;18:e189–94. https://doi.org/10.1097/PCC.0000000000001089.

    Article  PubMed  Google Scholar 

  64. Bauer K, Brucker C. The role of ventilation frequency in airway reopening. J Biomech. 2009;42:1108–13.

    Article  CAS  Google Scholar 

  65. Venegas JG, Fredberg JJ. Understanding the pressure cost of ventilation: why does high-frequency ventilation work? Crit Care Med. 1994;22:S49–57.

    Article  CAS  Google Scholar 

  66. Van de Kieft M, Dorsey D, Morison D, Bravo L, Venticinque S, Derdak S. High-frequency oscillatory ventilation: lessons learned from mechanical test lung models. Crit Care Med. 2005;33:S142–7.

    Article  Google Scholar 

  67. Downs JB, Stock MC. Airway pressure release ventilation: a new concept in ventilatory support. Crit Care Med. 1987;15:459–61.

    Article  CAS  Google Scholar 

  68. Chatburn RL, Primiano FP Jr. A new system for understanding modes of mechanical ventilation. Respir Care. 2001;46:604–21.

    CAS  PubMed  Google Scholar 

  69. Lalgudi Ganesan S, Jayashree M, Chandra Singhi S, Bansal A. Airway pressure release ventilation in pediatric acute respiratory distress syndrome. A randomized controlled trial. Am J Respir Crit Care Med. 2018;198:1199–207. https://doi.org/10.1164/rccm.201705-0989OC.

    Article  PubMed  Google Scholar 

  70. Habashi NM. Other approaches to open-lung ventilation: airway pressure release ventilation. Crit Care Med. 2005;33:S228–40.

    Article  Google Scholar 

  71. Froese AB, Bryan AC. Effects of anesthesia and paralysis on diaphragmatic mechanics in man. Anesthesiology. 1974;41:242–55.

    Article  CAS  Google Scholar 

  72. Wrigge H, Zinserling J, Neumann P, Defosse J, Magnusson A, Putensen C, Hedenstierna G. Spontaneous breathing improves lung aeration in oleic acid-induced lung injury. Anesthesiology. 2003;99:376–84.

    Article  Google Scholar 

  73. Putensen C, Mutz NJ, Putensen-Himmer G, Zinserling J. Spontaneous breathing during ventilatory support improves ventilation-perfusion distributions in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 1999;159:1241–8.

    Article  CAS  Google Scholar 

  74. Xia J, Sun B, He H, Zhang H, Wang C, Zhan Q. Effect of spontaneous breathing on ventilator-induced lung injury in mechanically ventilated healthy rabbits: a randomized, controlled, experimental study. Crit Care. 2011;15:R244. https://doi.org/10.1186/cc10502.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Putensen C, Hering R, Muders T, Wrigge H. Assisted breathing is better in acute respiratory failure. Curr Opin Crit Care. 2005;11:63–8.

    Article  Google Scholar 

  76. Putensen C, Muders T, Varelmann D, Wrigge H. The impact of spontaneous breathing during mechanical ventilation. Curr Opin Crit Care. 2006;12:13–8.

    Article  Google Scholar 

  77. Curley MA, et al. Effect of prone positioning on clinical outcomes in children with acute lung injury: a randomized controlled trial. JAMA. 2005;294:229–37.

    Article  CAS  Google Scholar 

  78. Curley MA, et al. Clinical trial design--effect of prone positioning on clinical outcomes in infants and children with acute respiratory distress syndrome. J Crit Care. 2006;21:23–32; discussion 32–27. https://doi.org/10.1016/j.jcrc.2005.12.004.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Putensen C, Zech S, Wrigge H, Zinserling J, Stuber F, Von Spiegel T, Mutz N. Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med. 2001;164:43–9. https://doi.org/10.1164/ajrccm.164.1.2001078.

    Article  CAS  PubMed  Google Scholar 

  80. Varpula T, Jousela I, Niemi R, Takkunen O, Pettila V. Combined effects of prone positioning and airway pressure release ventilation on gas exchange in patients with acute lung injury. Acta Anaesthesiol Scand. 2003;47:516–24.

    Article  CAS  Google Scholar 

  81. Gonzalez M, et al. Airway pressure release ventilation versus assist-control ventilation: a comparative propensity score and international cohort study. Intensive Care Med. 2010;36:817–27. https://doi.org/10.1007/s00134-010-1837-1.

    Article  PubMed  Google Scholar 

  82. Maxwell RA, et al. A randomized prospective trial of airway pressure release ventilation and low tidal volume ventilation in adult trauma patients with acute respiratory failure. J Trauma. 2010;69:501–10; discussion 511. https://doi.org/10.1097/TA.0b013e3181e75961.

    Article  PubMed  Google Scholar 

  83. Maung AA, et al. Compared to conventional ventilation, airway pressure release ventilation may increase ventilator days in trauma patients. J Trauma Acute Care Surg. 2012;73:507–10.

    Article  Google Scholar 

  84. Yoshida T, Fujino Y, Amato MB, Kavanagh BP. Fifty Years of Research in ARDS. Spontaneous Breathing during Mechanical Ventilation. Risks, Mechanisms, and Management. Am J Respir Crit Care Med. 2017;195:985–92. https://doi.org/10.1164/rccm.201604-0748CP.

    Article  PubMed  Google Scholar 

  85. de Jager P, Burgerhof JGM, Koopman AA, Markhorst DG, Kneyber MCJ. Lung volume optimization maneuver responses in pediatric high frequency oscillatory ventilation. Am J Respir Crit Care Med. 2019;199:1034. https://doi.org/10.1164/rccm.201809-1769LE.

    Article  PubMed  Google Scholar 

  86. Kneyber MCJ, et al. Recommendations for mechanical ventilation of critically ill children from the Paediatric Mechanical Ventilation Consensus Conference (PEMVECC). Intensive Care Med. 2017;43:1764–80. https://doi.org/10.1007/s00134-017-4920-z.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Rimensberger PC, Cheifetz IM, Pediatric Acute Lung Injury Consensus Conference G. Ventilatory support in children with pediatric acute respiratory distress syndrome: proceedings from the pediatric acute lung injury consensus conference. Pediatr Crit Care Med. 2015;16:S51–60. https://doi.org/10.1097/PCC.0000000000000433.

    Article  PubMed  Google Scholar 

  88. Richard JC, et al. Potentially harmful effects of inspiratory synchronization during pressure preset ventilation. Intensive Care Med. 2013;39:2003–10. https://doi.org/10.1007/s00134-013-3032-7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin C. J. Kneyber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Jager, P., Blokpoel, R.G.T., Kneyber, M.C.J. (2020). Nonconventional Mechanical Ventilation for Pediatric Acute Respiratory Distress Syndrome: High-Frequency Oscillatory Ventilation and Airway Pressure Release Ventilation. In: Shein, S., Rotta, A. (eds) Pediatric Acute Respiratory Distress Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-030-21840-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21840-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21839-3

  • Online ISBN: 978-3-030-21840-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics