Skip to main content

Evaluating Ising Processing Units with Integer Programming

  • Conference paper
  • First Online:
Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR 2019)

Abstract

The recent emergence of novel computational devices, such as adiabatic quantum computers, CMOS annealers, and optical parametric oscillators, present new opportunities for hybrid-optimization algorithms that are hardware accelerated by these devices. In this work, we propose the idea of an Ising processing unit as a computational abstraction for reasoning about these emerging devices. The challenges involved in using and benchmarking these devices are presented and commercial mixed integer programming solvers are proposed as a valuable tool for the validation of these disparate hardware platforms. The proposed validation methodology is demonstrated on a D-Wave 2X adiabatic quantum computer, one example of an Ising processing unit. The computational results demonstrate that the D-Wave hardware consistently produces high-quality solutions and suggests that as IPU technology matures it could become a valuable co-processor in hybrid-optimization algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For MIP solvers, the runtime includes the computation of the optimally certificate.

  2. 2.

    The source code is available at https://github.com/lanl-ansi/ under the repository names bqpjson, dwig and bqpsolvers.

References

  1. Johnson, M.W., et al.: Quantum annealing with manufactured spins. Nature 473(7346), 194–198 (2011)

    Article  Google Scholar 

  2. International Business Machines Corporation: IBM building first universal quantum computers for business and science (2017). https://www-03.ibm.com/press/us/en/pressrelease/51740.wss. Accessed 28 Apr 2017

  3. Mohseni, M., et al.: Commercialize quantum technologies in five years. Nature 543, 171–174 (2017)

    Article  Google Scholar 

  4. Chmielewski, M., et al.: Cloud-based trapped-ion quantum computing. In: APS Meeting Abstracts (2018)

    Google Scholar 

  5. Yamaoka, M., Yoshimura, C., Hayashi, M., Okuyama, T., Aoki, H., Mizuno, H.: 24.3 20k-spin Ising chip for combinational optimization problem with CMOS annealing. In: 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, pp. 1–3, February 2015

    Google Scholar 

  6. Yoshimura, C., Yamaoka, M., Aoki, H., Mizuno, H.: Spatial computing architecture using randomness of memory cell stability under voltage control. In: 2013 European Conference on Circuit Theory and Design (ECCTD), pp. 1–4, September 2013

    Google Scholar 

  7. Fujitsu: Digital annealer, May 2018. http://www.fujitsu.com/global/digitalannealer/. Accessed 26 Feb 2019

  8. Modha, D.S.: Introducing a brain-inspired computer (2017). http://www.research.ibm.com/articles/brain-chip.shtml. Accessed 28 Apr 2017

  9. Davies, M., et al.: Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38(1), 82–99 (2018)

    Article  Google Scholar 

  10. Schuman, C.D., et al.: A survey of neuromorphic computing and neural networks in hardware (2017). arXiv preprint: arXiv:1705.06963

  11. Caravelli, F.: Asymptotic behavior of memristive circuits and combinatorial optimization (2017)

    Google Scholar 

  12. Traversa, F.L., Di Ventra, M.: MemComputing integer linear programming (2018)

    Google Scholar 

  13. McMahon, P.L., et al.: A fully-programmable 100-spin coherent Ising machine with all-to-all connections. Science 354, 614–617 (2016). https://doi.org/10.1126/science.aah5178

    Article  MathSciNet  Google Scholar 

  14. Inagaki, T., et al.: A coherent Ising machine for 2000-node optimization problems. Science 354(6312), 603–606 (2016)

    Article  Google Scholar 

  15. Kielpinski, D., et al.: Information processing with large-scale optical integrated circuits. In: 2016 IEEE International Conference on Rebooting Computing (ICRC), pp. 1–4, October 2016

    Google Scholar 

  16. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  17. Brush, S.G.: History of the lenz-ising model. Rev. Mod. Phys. 39, 883–893 (1967)

    Article  Google Scholar 

  18. D-Wave Systems Inc.: Customers (2017). https://www.dwavesys.com/our-company/customers. Accessed 28 Apr 2017

  19. Haribara, Y., Utsunomiya, S., Yamamoto, Y.: A coherent Ising machine for MAX-CUT problems: performance evaluation against semidefinite programming and simulated annealing. In: Yamamoto, Y., Semba, K. (eds.) Principles and Methods of Quantum Information Technologies. LNP, vol. 911, pp. 251–262. Springer, Tokyo (2016). https://doi.org/10.1007/978-4-431-55756-2_12

    Chapter  Google Scholar 

  20. Lucas, A.: Ising formulations of many NP problems. Frontiers Phys. 2, 5 (2014)

    Article  Google Scholar 

  21. Bian, Z., Chudak, F., Israel, R.B., Lackey, B., Macready, W.G., Roy, A.: Mapping constrained optimization problems to quantum annealing with application to fault diagnosis. Frontiers ICT 3, 14 (2016)

    Article  Google Scholar 

  22. Bian, Z., Chudak, F., Israel, R., Lackey, B., Macready, W.G., Roy, A.: Discrete optimization using quantum annealing on sparse Ising models. Frontiers Phys. 2, 56 (2014)

    Article  Google Scholar 

  23. Rieffel, E.G., Venturelli, D., O’Gorman, B., Do, M.B., Prystay, E.M., Smelyanskiy, V.N.: A case study in programming a quantum annealer for hard operational planning problems. Quantum Inf. Process. 14(1), 1–36 (2015)

    Article  Google Scholar 

  24. Venturelli, D., Marchand, D.J.J., Rojo, G.: Quantum annealing implementation of job-shop scheduling (2015)

    Google Scholar 

  25. de Givry, S., Larrosa, J., Meseguer, P., Schiex, T.: Solving Max-SAT as weighted CSP. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 363–376. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45193-8_25

    Chapter  Google Scholar 

  26. Morgado, A., Heras, F., Liffiton, M., Planes, J., Marques-Silva, J.: Iterative and core-guided maxsat solving: a survey and assessment. Constraints 18(4), 478–534 (2013)

    Article  MathSciNet  Google Scholar 

  27. McGeoch, C.C., Wang, C.: Experimental evaluation of an adiabiatic quantum system for combinatorial optimization. In: Proceedings of the ACM International Conference on Computing Frontiers, CF 2013, pp. 23:1–23:11. ACM (2013)

    Google Scholar 

  28. Nieuwenhuis, R.: The IntSat method for integer linear programming. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 574–589. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10428-7_42

    Chapter  Google Scholar 

  29. Zdeborova, L., Krzakala, F.: Statistical physics of inference: thresholds and algorithms. Adv. Phys. 65(5), 453–552 (2016)

    Article  Google Scholar 

  30. Bian, Z., Chudak, F., Macready, W.G., Rose, G.: The Ising model: teaching an old problem new tricks (2010). https://www.dwavesys.com/sites/default/files/weightedmaxsat_v2.pdf. Accessed 28 Apr 2017

  31. Benedetti, M., Realpe-Gómez, J., Biswas, R., Perdomo-Ortiz, A.: Estimation of effective temperatures in quantum annealers for sampling applications: a case study with possible applications in deep learning. Phys. Rev. A 94, 022308 (2016)

    Article  Google Scholar 

  32. Boixo, S., et al.: Evidence for quantum annealing with more than one hundred qubits. Nat. Phys. 10(3), 218–224 (2014)

    Article  Google Scholar 

  33. Denchev, V.S., et al.: What is the computational value of finite-range tunneling? Phys. Rev. X 6, 031015 (2016)

    Google Scholar 

  34. King, J., Yarkoni, S., Nevisi, M.M., Hilton, J.P., McGeoch, C.C.: Benchmarking a quantum annealing processor with the time-to-target metric (2015). arXiv preprint: arXiv:1508.05087

  35. Boothby, T., King, A.D., Roy, A.: Fast clique minor generation in chimera qubit connectivity graphs. Quantum Inf. Process. 15(1), 495–508 (2016)

    Article  MathSciNet  Google Scholar 

  36. Cai, J., Macready, W.G., Roy, A.: A practical heuristic for finding graph minors (2014)

    Google Scholar 

  37. Klymko, C., Sullivan, B.D., Humble, T.S.: Adiabatic quantum programming: minor embedding with hard faults. Quantum Inf. Process. 13(3), 709–729 (2014)

    Article  MathSciNet  Google Scholar 

  38. Koch, T., et al.: MIPLIB 2010: mixed integer programming library version 5. Math. Program. Comput. 3(2), 103–163 (2011)

    Article  MathSciNet  Google Scholar 

  39. Gent, I.P., Walsh, T.: CSPLib: a benchmark library for constraints. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 480–481. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-540-48085-3_36

    Chapter  Google Scholar 

  40. Hoos, H.H., Stutzle, T.: SATLIB: An online resource for research on SAT (2000)

    Google Scholar 

  41. Coffrin, C., Nagarajan, H., Bent, R.: Challenges and successes of solving binary quadratic programming benchmarks on the DW2X QPU. Technical report, Los Alamos National Laboratory (LANL) (2016)

    Google Scholar 

  42. Hen, I., Job, J., Albash, T., Rønnow, T.F., Troyer, M., Lidar, D.A.: Probing for quantum speedup in spin-glass problems with planted solutions. Phys. Rev. A 92, 042325 (2015)

    Article  Google Scholar 

  43. King, J., et al.: Quantum annealing amid local ruggedness and global frustration (2017)

    Google Scholar 

  44. Mandrà, S., Zhu, Z., Wang, W., Perdomo-Ortiz, A., Katzgraber, H.G.: Strengths and weaknesses of weak-strong cluster problems: a detailed overview of state-of-the-art classical heuristics versus quantum approaches. Phys. Rev. A 94, 022337 (2016)

    Article  Google Scholar 

  45. Mandrà, S., Katzgraber, H.G., Thomas, C.: The pitfalls of planar spin-glass benchmarks: raising the bar for quantum annealers (again) (2017)

    Google Scholar 

  46. Aaronson, S.: D-wave: Truth finally starts to emerge, May 2013. http://www.scottaaronson.com/blog/?p=1400. Accessed 28 Apr 2017

  47. Aaronson, S.: Insert d-wave post here, March 2017. http://www.scottaaronson.com/blog/?p=3192. Accessed 28 Apr 2017

  48. King, A.D., Lanting, T., Harris, R.: Performance of a quantum annealer on range-limited constraint satisfaction problems (2015). arXiv preprint: arXiv:1502.02098

  49. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  50. Hamze, F., de Freitas, N.: From fields to trees. In: Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence, UAI 2004, Arlington, Virginia, United States, pp. 243–250. AUAI Press (2004)

    Google Scholar 

  51. Selby, A.: Efficient subgraph-based sampling of Ising-type models with frustration (2014)

    Google Scholar 

  52. Selby, A.: Qubo-chimera (2013). https://github.com/alex1770/QUBO-Chimera

  53. Puget, J.F.: D-wave vs cplex comparison. Part 2: Qubo (2013). https://www.ibm.com/developerworks/community/blogs/jfp/entry/d_wave_vs_cplex_comparison_part_2_qubo. Accessed 28 Nov 2018

  54. Dash, S.: A note on qubo instances defined on chimera graphs (2013). arXiv preprint: arXiv:1306.1202

  55. Billionnet, A., Elloumi, S.: Using a mixed integer quadratic programming solver for the unconstrained quadratic 0-1 problem. Math. Program. 109(1), 55–68 (2007)

    Article  MathSciNet  Google Scholar 

  56. Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adiabatic evolution (2018)

    Google Scholar 

  57. Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model. Phys. Rev. E 58, 5355–5363 (1998)

    Article  Google Scholar 

  58. Farhi, E., Goldstone, J., Gutmann, S., Lapan, J., Lundgren, A., Preda, D.: A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292(5516), 472–475 (2001)

    Article  MathSciNet  Google Scholar 

  59. Nightingale, M.P., Umrigar, C.J. (eds.): Quantum Monte Carlo Methods in Physics and Chemistry. Nato Science Series C, vol. 525. Springer, Netherlands (1998)

    MATH  Google Scholar 

  60. Parekh, O., Wendt, J., Shulenburger, L., Landahl, A., Moussa, J., Aidun, J.: Benchmarking adiabatic quantum optimization for complex network analysis (2015)

    Google Scholar 

  61. IBM ILOG CPLEX Optimizer. https://www.ibm.com/analytics/cplex-optimizer. Accessed 2010

  62. Gurobi Optimization, Inc.: Gurobi optimizer reference manual (2014). http://www.gurobi.com

  63. D-Wave Systems Inc.: The D-wave 2X quantum computer technology overview (2015). https://www.dwavesys.com/sites/default/files/D-Wave%202X%20Tech%20Collateral_0915F.pdf. Accessed 28 Apr 2017

  64. Vuffray, M., Misra, S., Lokhov, A., Chertkov, M.: Interaction screening: efficient and sample-optimal learning of Ising models. In: Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 29, pp. 2595–2603. Curran Associates, Inc. (2016)

    Google Scholar 

  65. Lokhov, A.Y., Vuffray, M., Misra, S., Chertkov, M.: Optimal structure and parameter learning of Ising models (2016)

    Google Scholar 

  66. Mitchell, D., Selman, B., Levesque, H.: Hard and easy distributions of sat problems. In: Proceedings of the Tenth National Conference on Artificial Intelligence, AAAI 1992, pp. 459–465. AAAI Press (1992)

    Google Scholar 

  67. Balyo, T., Heule, M.J.H., Jarvisalo, M.: Sat competition 2016: recent developments. In: Proceedings of the Thirty-First National Conference on Artificial Intelligence, AAAI 2017, pp. 5061–5063. AAAI Press (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carleton Coffrin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Coffrin, C., Nagarajan, H., Bent, R. (2019). Evaluating Ising Processing Units with Integer Programming. In: Rousseau, LM., Stergiou, K. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2019. Lecture Notes in Computer Science(), vol 11494. Springer, Cham. https://doi.org/10.1007/978-3-030-19212-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19212-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19211-2

  • Online ISBN: 978-3-030-19212-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics