Skip to main content

Biology and Etiology of Muscle-Tendon Injuries

  • Chapter
  • First Online:
Muscle Injury in the Athlete

Abstract

The detrimental event on a muscular level founds one of the most recurring traumatic insults in sporting environment. The entity of the lesion can go from simple sprain, often associated with the breakage of small vessels, with appearance of pain and swelling, to complete muscular tear. The consequences for the athlete, which appear linked with the entity of the lesion, are always unpleasant and involve suspension, more or less long, of sporting activity, not to mention suitable therapy. In this chapter, we will try to clear up the different physiological aspects, which normally characterize the traumatic event, and to describe, even if only summarize, the mechanism of muscular repair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Dystrophin: the dystrophin is a protein and an important part of a protein complex that connects the cytoskeleton of a muscle fiber to the surrounding extracellular matrix through the cell membrane. Its deficiency is one of the causes of muscular dystrophy. It was identified in 1987 by Louis M. Kunkel, after the discovery, in 1986, of the mutated gene that causes Duchenne muscular dystrophy (DMD). Normal tissue contains small amounts of dystrophin (about 0.002% of the total amount of muscle proteins), but its absence leads to both DMD and fibrosis, a condition of muscle stiffness. A different mutation of the same gene results in a defective dystrophin, leading to Becker’s muscular dystrophy (BMD). The dystrophin is, at today, the longest known gene.

  2. 2.

    In Duchenne muscular dystrophy, due to spontaneous mutations of the Xp21 gene, the research of dystrophin with immuno-histochemical methods demonstrates the absence of protein in all muscle fibers, or its presence in up to 3% of the fibers.

  3. 3.

    Plasmalemma: membrane that externally delimits the protoplast, that is the protoplasmic body of a cell (cell membrane).

  4. 4.

    These experimental studies have been conducted thanks to the use of a specific dye called “ruthenium red.” Ruthenium red inhibits Ca++ ATPase in sarcolemma, sarcoplasmic reticulum, and mitochondria, causing rapid and dramatic damage to muscle ultrastructure.

  5. 5.

    Acetylcholinesterase is an enzyme belonging to the class of hydrolases that catalyzes the following reaction: acetylcholine + H2O → choline + acetate. The enzyme is normally present in the mammalian organism localized in the post-synaptic membrane of cholinergic junctions. Its function is to hydrolyze acetylcholine by cleaving it into choline and acetic acid. The activity of this enzyme can be modified both by drugs and natural toxins. For example, in the diagnosis of myasthenia gravis, the patient is inoculated a drug, the pyridostigmine, which with its inhibition of the enzyme brings a slight strengthening of the motor faculties confirming the hypothesis of the supposed diagnosis.

  6. 6.

    Leukotrienes: leukotrienes are lipid molecules belonging to the immune system that contribute to inflammatory processes in asthma and bronchitis, their antagonists are used in the treatment of these diseases. They are eicosanoids, derivatives of arachidonic acid due to the action of the enzyme 5-lipoxygenase. Their production is usually accompanied by that of histamine, which is also greatly involved in cases of inflammation and asthma.

  7. 7.

    Tromboxane or tromboxane: thromboxane is a molecule of a lipid nature, derived from arachidonic acid in the cyclooxygenase pathway. In its active form, it is characterized by an endometoxide in the penta-atomic ring typical of prostaglandins, modified. The tromboxane (TXA2) has a marked aggregating platelet activity and a constricting vessel activity. Receptor antagonists and inhibitors of thromboxane synthesis are therefore indicated in the treatment of cardiovascular diseases.

  8. 8.

    Arachidonic acid is a poly-unsaturated fatty acid, meaning that it has more carbon-carbon bonds in its molecule. The arachidonic acid present in the human body is introduced with the diet or derives from linoleic acid (essential fatty acid). Inside the cells is bound to membrane phospholipids (phosphatidylinositol, phosphatidylcholine, phosphatidylethanolamine).

  9. 9.

    Lisophospholipids: molecules produced by the hydrolysis of phospholipids by phospholipases which therefore have only one fatty acid.

References

  • Abbot BC, Aubert XM. Changes of energy in a muscle during very slow stretches. Proc R Soc B. 1951;139:104–17.

    Article  Google Scholar 

  • Aldridge R, Cady EB, Jones DA, Obletter G. Muscle pain after exercise is linked with an inorganic phosphate increase as shown by 31P NMR. Biosci Rep. 1986;6(7):663–7.

    Article  CAS  PubMed  Google Scholar 

  • Arieli D, Nahmany G, Casap N, Ad-El D, Samuni Y. The effect of a nitroxide antioxidant on ischemia-reperfusion injury in the rat in vivo hind limb model. Free Radic Res. 2008;42(2):114–23.

    Article  CAS  PubMed  Google Scholar 

  • Arkhipenko IV, Pisarev VA, Kagan VE. Modification of an enzymic system of Ca2+ transport in sarcoplasmic reticulum membranes during lipid peroxidation. Induction and regulation systems of lipid peroxidation in skeletal and heart muscles. Biokhimiia. 1983;48(8):1261–70.

    CAS  PubMed  Google Scholar 

  • Armstrong RB. Mechanisms of exercise-induced delayed onset muscular soreness: a brief review. Med Sci Sports Exerc. 1984;16:529–38.

    CAS  PubMed  Google Scholar 

  • Armstrong RB. Initial events in exercise-induced muscular injury. Med Sci Sports Exerc. 1990;22:429–35.

    Article  CAS  PubMed  Google Scholar 

  • Armstrong RB. Initial events in exercise induced muscular injury. Med Sci Sports Exerc. 1991;22:429–37.

    Google Scholar 

  • Armstrong RB, Laughlin MH, Rome L, Taylor CR. Metabolism of rats running up and down an incline. J Appl Physiol. 1983a;55:518–21.

    Article  CAS  PubMed  Google Scholar 

  • Armstrong RB, Ogilvie RW, Schwane JA. Eccentric exercise-induced injury to rat skeletal muscle. J Appl Physiol. 1983b;54:80–93.

    Article  CAS  PubMed  Google Scholar 

  • Armstrong RB, Warren GL, Warren JA. Mechanisms of exercise-induced muscle fibre injury. Sports Med. 1991a;12(3):184–207.

    Article  CAS  PubMed  Google Scholar 

  • Armstrong RB, Warren GL, Warren A. Mechanism of exercise induced fiber injury. Sports Med. 1991b;12:184–207.

    Article  CAS  PubMed  Google Scholar 

  • Arroyo CM, Kramer JH, Dickens BF, Weglicki WB. Identification of free radicals in myocardial ischemia/reperfusion by spin trapping with nitrone DMPO. FEBS Lett. 1987;221:101–4.

    Article  CAS  PubMed  Google Scholar 

  • Asmussen E. Observations on experimental muscular soreness. Acta Rheumatol Scand. 1956;2:109–16.

    Article  CAS  PubMed  Google Scholar 

  • Bao ZZ, Lakonishok M, Kaufman S, Horwitz AF. α7β1 integrin is a component of the myotendinous junction on skeletal muscle. J Cell Sci. 1993;106:579–90.

    CAS  PubMed  Google Scholar 

  • Baracos VE, Wilson EJ, Goldberg AL. Effects of temperature on protein turnover in isolated rat skeletal muscle. Am J Phys. 1984;246(1 Pt 1):C125–30.

    Article  CAS  Google Scholar 

  • Bhattacharya SK, Crawford AJ, Thakar H, Johnson PL. Path genetic roles of intracellular calcium and magnesium in membrane-mediated progressive muscle degeneration. In Duchenne muscular dystrophy. In: Fiskum G, editor. Cell calcium metabolism. New York: Plenum Press; 1989. p. 513–25.

    Chapter  Google Scholar 

  • Bonde-Petersen F, Knuttgen HG, Henriksson J. Muscle metabolism during exercise with concentric and eccentric contractions. J Appl Physiol. 1972;33:792–5.

    Article  CAS  PubMed  Google Scholar 

  • Boobis AR, Murray S, Hampden CE, Davies DS. Genetic polymorphism in drug oxidation: in vitro studies of human debrisoquine 4-hydroxylase and bufuralol 1′-hydroxylase activities. Biochem Pharmacol. 1985;34(1):65–71.

    Article  CAS  PubMed  Google Scholar 

  • Brand MD, Lehninger AL. Superstoichiometric Ca2+ uptake supported by hydrolysis of endogenous ATP in rat liver mitochondria. J Biol Chem. 1975;250(19):7958–60.

    CAS  PubMed  Google Scholar 

  • Braughler JM, Burton PS, Chase RL, Pregenzer JF, Jacobsen EJ, Van Doornik FJ, Tustin JM, Ayer DE, Bundy GL. Novel membrane localized iron chelators as inhibitors of iron-dependent lipid peroxidation. Biochem Pharmacol. 1988;37(20):3853–60.

    Article  CAS  PubMed  Google Scholar 

  • Brewer BJ. Instructional Lecture American Academy of Orthopaedic Surgeons. 1960;17:354–358.

    Google Scholar 

  • Brooks SV, Zerba E, Faulkner JA. Injury to muscle fibres after single stretches of passive and maximally stimulated muscles in mice. J Physiol. 1995;488(Pt 2):459–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks SV, Vasilaki A, Larkin LM, McArdle A, Jackson MJ. Repeated bouts of aerobic exercise lead to reductions in skeletal muscle free radical generation and nuclear factor kappa B activation. J Physiol. 2008;586(16):3979–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown RH. Dystrophin-associated proteins and the muscular dystrophies: a glossary. Brain Pathol. 1996;6:19–24.

    Article  CAS  PubMed  Google Scholar 

  • Burkin DJ, Kaufman SJ. The α7β1 integrin in muscle development and disease. Cell Tissue Res. 1999;296:183–90.

    Article  CAS  PubMed  Google Scholar 

  • Bush ME, Alkan SS, Nitecki DE, Goodman JW. Antigen recognition and the immune response. “Self-help” with symmetrical bifunctional antigen molecules. J Exp Med. 1972;136(6):1478–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byrd SK, Bode AK, Klug GA. Effects of exercise of varying duration on sarcoplasmetic reticulum function. J Appl Physiol. 1989;66:1383–9.

    Article  CAS  PubMed  Google Scholar 

  • Carafoli E. The homeostasis of calcium in heart cells. J Mol Cell Cardiol. 1985;17:203–12.

    Article  CAS  PubMed  Google Scholar 

  • Carpenter S, Karpati G. Segmental necrosis and its demarcation in experimental micropuncture injury of skeletal muscle fibers. J Neuropathol Exp Neurol. 1989;48(2):154–70.

    Article  CAS  PubMed  Google Scholar 

  • Castilho RF, Carvalho-Alves PC, Vercesi AE, Ferreira ST. Oxidative damage to sarcoplasmic reticulum Ca(2+)-pump induced by Fe2+/H2O2/ascorbate is not mediated by lipid peroxidation or thiol oxidation and leads to protein fragmentation. Mol Cell Biochem. 1996;159(2):105–14.

    Article  CAS  PubMed  Google Scholar 

  • Chang J, Musser JH, McGregor H. Phospliolipase A2: function and pharmacological regulation. Biochem Pharmacol. 1987;36:2429–36.

    Article  CAS  PubMed  Google Scholar 

  • Chang R, Turcotte R, Pearsall D. Hip adductor muscle function in forward skating. Sports Biomech. 2009;8(3):212–2222.

    Article  PubMed  Google Scholar 

  • Chargé SBP, Rudnicki MA. Cellular and molecular regulation of muscle regeneration. Physiol Rev. 2004;84:209–38.

    Article  PubMed  Google Scholar 

  • Cheah KS, Cheah AM. Malignant hyperthermia: molecular defects in membrane permeability. Experientia. 1985;41(5):656–61.

    Article  CAS  PubMed  Google Scholar 

  • Childs A, Jacobs C, Kaminski T, Halliwell B, Leeuwenburgh C. Supplementation with vitamin C and N-acetyl-cysteine increases oxidative stress in humans after an acute muscle injury induced by eccentric exercise. Free Radic Biol Med. 2001;31(6):745–53.

    Article  CAS  PubMed  Google Scholar 

  • Chiquet M. How do fibriblast translate mechanical signal into changes in extracellular matrix production? Matrix Biol. 2003;22:73–80.

    Article  CAS  PubMed  Google Scholar 

  • Clanton TL. Hypoxia-induced reactive oxygen species formation in skeletal muscle. J Appl Physiol. 2007;102(6):2379–88.

    Article  CAS  PubMed  Google Scholar 

  • Close GL, Ashton T, McArdle A, Maclaren DP. The emerging role of free radicals in delayed onset muscle soreness and contraction-induced muscle injury. Comp Biochem Physiol A Mol Integr Physiol. 2005;142(3):257–66.

    Article  PubMed  CAS  Google Scholar 

  • Cohn RD, Campbell KP. Molecular basis of muscular dystrophies. Muscle Nerve. 2000;23:1456–71.

    Article  CAS  PubMed  Google Scholar 

  • Colomo F, Lombardi V, Piazzesi G. The mechanisms of force enhancement during constant velocity lengthening in tetanized single fibres of frog muscle. Adv Exp Med Biol. 1988;226:489–502.

    CAS  PubMed  Google Scholar 

  • Cullen MJ, Fulthorpe JJ. Phagocytosis of the A band following Z line, and I band loss. Its significance in skeletal muscle breakdown. J Pathol. 1982;138(2):129–43.

    Article  CAS  PubMed  Google Scholar 

  • Davies CT, White MJ. Muscle weakness following eccentric work in man. Pflugers Arch. 1981;392(2):168–71.

    Article  CAS  PubMed  Google Scholar 

  • Dayton WR, Goll DE, Zeece MG, Robson RM, Reville WJ. A Ca2+-activated protease possibly involved in myofibrillar protein turnover. Purification from porcine muscle. Biochemistry. 1976;15(10):2150–8.

    Article  CAS  PubMed  Google Scholar 

  • Dayton WR, Schollmeyer JV, Chan AC, Allen CE. Elevated levels of a calcium-activated muscle protease in rapidly atrophying muscles from vitamin E-deficient rabbits. Biochim Biophys Acta. 1979;584(2):216–30.

    Article  CAS  PubMed  Google Scholar 

  • Demopoulos HB. Control of free radicals in biologic systems. Fed Proc. 1973a;32(8):1903–8.

    CAS  PubMed  Google Scholar 

  • Demopoulos HB. The basis of free radical pathology. Fed Proc. 1973b;32(8):1859–61.

    CAS  PubMed  Google Scholar 

  • Duan C, Delp MD, Hayes DA, Delp PD, Armstrong RB. Rat skeletal muscle mitochondrial [Ca2+] and injury from downhill walking. J Appl Physiol. 1990;68(3):1241–51.

    Article  CAS  PubMed  Google Scholar 

  • Duchen MR. Effects of metabolic inhibition on the membrane properties of isolated mouse primary sensory neurones. J Physiol. 1990;424:387–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan CJ. Role of calcium in triggering rapid ultrastructural damage in muscle: a study with chemically skinned fibres. J Cell Sci. 1987;87(Pt 4):581–94.

    CAS  PubMed  Google Scholar 

  • Duncan CJ, Greenaway HC, Smith JL. 2,4-dinitrophenol, lysosomal breakdown and rapid myofilament degradation in vertebrate skeletal muscle. Naunyn Schmiedeberg’s Arch Pharmacol. 1980;315(1):77–82.

    Article  CAS  Google Scholar 

  • Ebbeling CB, Clarkson PM. Exercise-induced muscle damage and adaptation. Sports Med. 1989;7(4):207–34.

    Article  CAS  PubMed  Google Scholar 

  • Ervasti JM. Costameres: the Achille’hell of Herculean muscle. J Biol Chem. 2004;278:13591–4.

    Article  CAS  Google Scholar 

  • Faulkner JA, Jones DA, Round JM. Injury to skeletal muscles of mice by forced lengthening during contractions. Q J Exp Physiol. 1989;74(5):661–70.

    Article  CAS  PubMed  Google Scholar 

  • Faust KB, Chiantella V, Vinten-Johansen J, Meredith JH. Oxygen-derived free radical scavengers and skeletal muscle ischemic/reperfusion injury. Am Surg. 1988;54(12):709–19.

    CAS  PubMed  Google Scholar 

  • Fisher JW. Pharmacologic modulation of erythropoietin production. Annu Rev Pharmacol Toxicol. 1988;28:101–22.

    Article  CAS  PubMed  Google Scholar 

  • Fluk M, Carson JA, Gordan SE, Ziemieeki Booth FW. Focal adhesion proteins FAK and paxillin increase in hypertrophied skeletal muscle. Am J Physiol Cell. 1999;277:152–62.

    Article  Google Scholar 

  • Fridén J, Lieber RL. Structural and mechanical basis of the exercise-induced muscle injury. Med Sci Sports Exerc. 1992;24:521–30.

    Article  PubMed  Google Scholar 

  • Fridén J, Sjöström M, Ekblom B. A morphological study of delayed muscle soreness. Experientia. 1981;37(5):506–7.

    Article  PubMed  Google Scholar 

  • Ganote CE, Humphrey SM. Effects of anoxic or oxygenated reperfusion in globally ischemic, isovolumic, perfused rat hearts. Am J Pathol. 1985;120(1):129–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garret WE. Muscle strain injury: clinical and basic aspects. Med Sci Sports Exerc. 1990;22:439–43.

    Google Scholar 

  • Garret WE Jr, Califf JC, Basset FH. Histochemical correlates of hamstring injuries. Am J Sports Med. 1984;12:98–103.

    Article  Google Scholar 

  • Garrett WE, Safran MR, Seaber AV. Biomechanical comparison of stimulated and non stimulated skeletal muscle pulled to failure. Am J Sports Med. 1987;15:448–54.

    Article  PubMed  Google Scholar 

  • Giancotti FG, Rouslathi E. Integrin signaling. Science. 1999;285:1028–32.

    Article  CAS  PubMed  Google Scholar 

  • Gillis JM. Relaxation of vertebrate skeletal muscle. A synthesis of the biochemical and physiological approaches. Biochim Biophys Acta. 1985;811(2):97–145.

    Article  CAS  PubMed  Google Scholar 

  • Goodman MN. Differential effects of acute changes in cell Ca2+ concentration on myofibrillar and non-myofibrillar protein breakdown in the rat extensor digitorum longus muscle in vitro. Assessment by production of tyrosine and N taumethylhistidine. Biochem J. 1987;241(1):121–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths HR, Lunec J, Jefferis R, Blake DR, Willson RL. A study of ROS induced denaturation of IgG3 using monoclonal antibodies; implications for inflammatory joint disease. Basic Life Sci. 1988;49:361–4.

    CAS  PubMed  Google Scholar 

  • Grounds MD. Towards understanding skeletal muscle regeneration. Pathol Res Pract. 1991;187:1–22.

    Article  CAS  PubMed  Google Scholar 

  • Hall-Craggs EC. Early ultrastructural changes in skeletal muscle exposed to the local anaesthetic bupivacaine (Marcaine). Br J Exp Pathol. 1980;61(2):139–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hansford RG. Relation between mitochondrial calcium transport and control of energy metabolism. Rev Physiol Biochem Pharmacol. 1985;102:1–72.

    Article  CAS  PubMed  Google Scholar 

  • Harris AJ, Duxson MJ, Fitzsimons RB, Rieger F. Myonuclear birthdates distinguish the origins of primary and secondary myotubes in embryonic mammalian skeletal muscles. Development. 1989;107(4):771–84.

    CAS  PubMed  Google Scholar 

  • Hess ML, Manson NH, Okabe E. Involvement of free radicals in the pathophysiology of ischemic heart disease. Can J Physiol Pharmacol. 1982;60(11):1382–9.

    Article  CAS  PubMed  Google Scholar 

  • Higuchi H, Umazume Y. Lattice shrinkage with increasing resting tension in stretched, single skinned fibers of frog muscle. Biophys J. 1986;50(3):385–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann EP. Clinical and histopathological features of abnormalities of the distrophin-based membrane cytoskeleton. Brain Pathol. 1996;163:203–15.

    Google Scholar 

  • Hofmann WW. Musculotrophic effects of insulin receptors before and after denervation. Brain Res. 1987;401(2):312–21.

    Article  CAS  PubMed  Google Scholar 

  • Horáková L, Strosová M, Skuciová M. Antioxidants prevented oxidative injury of SR induced by Fe2+/H2O2/ascorbate system but failed to prevent Ca2+-ATPase activity decrease. Biofactors. 2005;24(1–4):105–9.

    Article  PubMed  Google Scholar 

  • Huxley AF, Peachey LD. The maximum length for contraction in vertebrate striated muscle. J Physiol. 1961;156:150–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Infante AA, Klaupiks D, Davies RE. Length, tension and metabolism during short isometric contractions of frog Sartorius muscles. Biochim Biophys Acta. 1964;88:215–7.

    CAS  PubMed  Google Scholar 

  • Ishiura S, Sugita H, Nonaka I, Imahori K. Calcium-activated neutral protease. Its localization in the myofibril, especially at the Z-band. J Biochem. 1980;87(1):343–6.

    Article  CAS  PubMed  Google Scholar 

  • Jenkins RR. Free radical chemistry. Relationship to exercise. Sports Med. 1988;5(3):156–70.

    Article  CAS  PubMed  Google Scholar 

  • Julian FJ, Morgan DL. The effect on tension of non-uniform distribution of length changes applied to frog muscle fibres. J Physiol. 1979;293:379–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kääriäinen M, Järvinen TAH, Järvinen M, Kalimo H. Adhesion and regeneration of myofibers in injured skeletal muscle. Scan J Med Sci Sport. 2000a;10:332–7.

    Article  Google Scholar 

  • Kääriäinen M, Kääriäinen J, TLN J. Integrin and dystrophin associated adhesion protein complexes during regenerating of shearing-type muscle injury. Neuromuscul Disord. 2000b;10:121–34.

    Article  PubMed  Google Scholar 

  • Kameyama T, Etlinger JD. Calcium-dependent regulation of protein synthesis and degradation in muscle. Nature. 1979;279(5711):344–6.

    Article  CAS  PubMed  Google Scholar 

  • Kano Y, Masuda K, Furukawa H, Sudo M, Mito K, Sakamoto K. Histological skeletal muscle damage and surface EMG relationships following eccentric contractions. J Physiol Sci. 2008;58(5):349–55.

    Article  PubMed  Google Scholar 

  • Katz B. The relation between force and speed in muscular contraction. J Physiol. 1939;96(1):45–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerkweg U, Petrat F, Korth HG, de Groot H. Disruption of skeletal myocytes initiates superoxide release: contribution of NADPH oxidase. Shock. 2007;27(5):552–8.

    Article  CAS  PubMed  Google Scholar 

  • Klug GA, Tibbits GF. The effect of activity on calcium-mediated events in striated muscle. Exerc Sport Sci Rev. 1988;16:1–59.

    Article  CAS  PubMed  Google Scholar 

  • Koh ES, McNally EG. Ultrasound of skeletal muscle injury. Semin Musculoskelet Radiol. 2007;11:162–73.

    Article  PubMed  Google Scholar 

  • Koh TJ, Escobedo J. Cytoskeletal disruption and small heat shock protein translocation immediately after lengthening contractions. Am J Physiol Cell Physiol. 2004;286(3):C713–22.

    Article  CAS  PubMed  Google Scholar 

  • Kon M, Kimura F, Akimoto T, Tanabe K, Murase Y, Ikemune S, Kono I. Effect of Coenzyme Q10 supplementation on exercise-induced muscular injury of rats. Exerc Immunol Rev. 2007;13:76–88.

    PubMed  Google Scholar 

  • Kon M, Tanabe K, Akimoto T, Kimura F, Tanimura Y, Shimizu K, Okamoto T, Kono I. Reducing exercise-induced muscular injury in kendo athletes with supplementation of coenzyme Q10. Br J Nutr. 2008;100(4):903–9.

    Article  CAS  PubMed  Google Scholar 

  • Krisanda JM, Paul RJ. Dependence of force, velocity, and O2 consumption on [Ca2+]o in porcine carotid artery. Am J Phys. 1988;255(3 Pt 1):C393–400.

    Article  CAS  Google Scholar 

  • Kuipers H, Drukker J, Frederik PM, Geurten P, van Kranenburg G. Muscle degeneration after exercise in rats. Int J Sports Med. 1983;4(1):45–51.

    Article  CAS  PubMed  Google Scholar 

  • Lee JC. Calcium ion and cellular function. Sheng Li Ke Xue Jin Zhan. 1980;11(1):55–64.

    CAS  PubMed  Google Scholar 

  • Lee TC, Chow KL, Pang P, Schwartz RJ. Activation of skeletal a-actine gene transcription: the cooperative formation of serum response factor-binding complexes over positive cis-actin promoter serum response elements displaces a negative-actin nuclear factor enriched in replicating myoblast and non-myogenic cells. Mol Cell Biol. 1991;11:5090–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leonard JP, Salpeter MM. Agonist-induced myopathy at the neuromuscular junction is mediated by calcium. J Cell Biol. 1979;82(3):811–9.

    Article  CAS  PubMed  Google Scholar 

  • Lieber RL, Fridén J. Selective damage of fast glycolytic muscle fibres with eccentric contraction of the rabbit tibialis anterior. Acta Physiol Scand. 1988;133(4):587–8.

    Article  CAS  PubMed  Google Scholar 

  • Lieber RL, Woodburn TM, Fridén J. Muscle damage induced by eccentric contractions of 25% strain. J Appl Physiol. 1991;70:2498–507.

    Article  CAS  PubMed  Google Scholar 

  • Lovering RM, De Deyne PG. Contractile function, sarcolemma integrity, and the loss of dystrophin after skeletal muscle eccentric contraction-induced injury. Am J Physiol Cell Physiol. 2004;286(2):C230–8.

    Article  CAS  PubMed  Google Scholar 

  • Matsunaga M, Ohtaki H, Takaki A, Iwai Y, Yin L, Mizuguchi H, Miyake T, Usumi K, Shioda S. Nucleoprotamine diet derived from salmon soft roe protects mouse hippocampal neurons from delayed cell death after transient forebrain ischemia. Neurosci Res. 2003;47(3):269–7.

    Article  CAS  PubMed  Google Scholar 

  • Mayer U. Integrins: redundant or important players in skeletal muscle? J Biol Chem. 2003;278:14587–90.

    Article  CAS  PubMed  Google Scholar 

  • McCully KK, Faulkner JA. Injury to skeletal muscle fibers of mice following lengthening contractions. J Appl Physiol. 1985;59(1):119–26.

    Article  CAS  PubMed  Google Scholar 

  • McCully KK, Faulkner JA. Characteristics of lengthening contractions associated with injury to skeletal muscle fibers. J Appl Physiol. 1986;61:293–9.

    Article  CAS  PubMed  Google Scholar 

  • McMahon TA. Muscles, reflexes, and locomotion. Princeton, NJ: Princeton University Press; 1984.

    Google Scholar 

  • McMillin JB, Madden MC. The role of calcium in the control of respiration by muscle mitochondria. Med Sci Sports Exerc. 1989;21(4):406–10.

    Article  CAS  PubMed  Google Scholar 

  • McNeil PL, Khakee R. Disruption of muscle fiber plasma membranes Role in exercise-induced damage. Am J Pathol. 1992;140(5):1097–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michele DE, Campbell KP. Dystrophin-glycoprotein complex: post-transational processing and dystroglycan function. J Biol Chem. 2003;278:15457–60.

    Article  CAS  PubMed  Google Scholar 

  • Middleton WD. Ultrasonography of rotator cuff pathology. Top Magn Reson Imaging. 1994;6(2):133–8.

    Article  CAS  PubMed  Google Scholar 

  • Morgan DL. New insights into the behavior of muscle during active lengthening. Biophys J. 1990;57:209–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan DL. New insights into the behaviour of muscle during active lengthening. Biophys J. 1991;60(1):290–2.

    Article  Google Scholar 

  • Murachi S, Nogami H, Oki T, Ogino T. Familial tricho-rhino-phalangeal syndrome Type II. Clin Genet. 1981;19(3):149–55.

    Article  CAS  PubMed  Google Scholar 

  • Nadel ER, Bergh U, Saltin B. Body temperature during negative work. J Appl Physiol. 1972;33:553–8.

    Article  CAS  PubMed  Google Scholar 

  • Newham DJ, Mills KR, Quigley BM, Edwards RHT. Pain and fatigue after concentric and eccentric muscle contractions. Clin Sci. 1983;64:55–62.

    Article  CAS  Google Scholar 

  • Newham DJ, Jones DA, Ghosh G, Aurora P. Muscle fatigue and pain after eccentric contractions at long and short length. Clin Sci. 1988;74:553–7.

    Article  CAS  Google Scholar 

  • Nielsen B. Thermoregulation in rest and exercise. Acta Physiol Scand. 1969;323(Suppl):1–74.

    Article  CAS  Google Scholar 

  • Ogilvie RW, Hoppeler H, Armstrong RB. Decreased muscle function following eccentric exercise in the rat. Med Sci Sports Exerc. 1985;17:195.

    Article  Google Scholar 

  • Ogilvie RW, Armstrong RB, Baird KE, Bottoms CL. Lesions in the rat soleus muscle following eccentrically biased exercise. Am J Anat. 1988;182(4):335–46.

    Article  CAS  PubMed  Google Scholar 

  • Orrenius S, McConkey DJ, Bellomo G, Nicotera P. Role of Ca2+ in toxic cell killing. Trends Pharmacol Sci. 1989;10(7):281–5.

    Article  CAS  PubMed  Google Scholar 

  • Otey CA, Pavalko FM, Burridge K. An interaction between α-actinin and β-integrin subunit in vitro. J Cell Biol. 1990;111:721–9.

    Article  CAS  PubMed  Google Scholar 

  • Pahud P, Ravussin E, Acheson KJ, Jequier E. Energy expenditure during oxygen deficit of submaximal concentric and eccentric exercise. J Appl Physiol. 1980;49:16–21.

    Article  CAS  PubMed  Google Scholar 

  • Patel TJ, Cuizon D, Mathieu-Costello O, Fridén J, Lieber RL. Increased oxidative capacity does not protect skeletal muscle fibers from eccentric contraction-induced injury. Am J Phys. 1998;274(5 Pt 2):R1300–8.

    CAS  Google Scholar 

  • Patel TJ, Das R, Fridén J, Lutz GJ, Lieber RL. Sarcomere strain and heterogeneity correlate with injury to frog skeletal muscle fiber bundles. J Appl Physiol. 2004;97:1803–13.

    Article  PubMed  Google Scholar 

  • Pontremoli S, Melloni E. Extralysosomal protein degradation. Annu Rev Biochem. 1986;55:455–81.

    Article  CAS  PubMed  Google Scholar 

  • Popov EP. Engineering mechanics of solids. Englewood Cliffs, NJ: Prentice Hall; 1990.

    Google Scholar 

  • Potvin JR. Effects of muscle kinematics on surface amplitude and frequency during fatiguing dynamic contractions. J Appl Physiol. 1997;82(1):144–51.

    Article  CAS  PubMed  Google Scholar 

  • Publicover SJ, Duncan CJ, Smith JL. The use of A23187 to demonstrate the role of intracellular calcium in causing ultrastructural damage in mammalian muscle. J Neuropathol Exp Neurol. 1978;37(5):554–7.

    Article  CAS  PubMed  Google Scholar 

  • Quintanilha AT, Packer L, Davies JM, Racanelli TL, Davies KJ. Membrane effects of vitamin E deficiency: bioenergetic and surface charge density studies of skeletal muscle and liver mitochondria. Ann N Y Acad Sci. 1982;393:32–47.

    Article  CAS  PubMed  Google Scholar 

  • Radin EL, Simon SR, Rose RM, Paul IL. Practical biomechanics for the orthopaedic surgeon. New York: Wiley; 1979. p. 165.

    Google Scholar 

  • Rapoport SI. Mechanical properties of the sarcolemma and myoplasma in frog muscle as a function of sarcomere length. J Gen Physiol. 1972;59:559–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson SP, Johnson JD, Potter JD. The time-course of Ca2+ exchange with calmodulin, troponin, parvalbumin, and myosin in response to transient increases in Ca2+. Biophys J. 1981;34(3):559–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodemann HP, Waxman L, Goldberg AL. The stimulation of protein degradation in muscle by Ca2+ is mediated by prostaglandin E2 and does not require the calcium activated protease. J Biol Chem. 1982;257(15):8716–23.

    CAS  PubMed  Google Scholar 

  • Rouslathi E. Integrin signaling and matrix assembly. Tumor Biol. 1996;17:117–24.

    Article  Google Scholar 

  • Sacheck JM, Blumberg JB. Role of vitamin E and oxidative stress in exercise. Nutrition. 2001;17(10):809–14.

    Article  CAS  PubMed  Google Scholar 

  • Schache AG, Wrigley TV, Baker R, Pandy MG. Biomechanical response to hamstring muscle strain injury. Gait Posture. 2009;29(2):332–8.

    Article  PubMed  Google Scholar 

  • Schraufstätter I, Hyslop PA, Jackson JH, Cochrane CG. Oxidant-induced DNA damage of target cells. J Clin Invest. 1988;82(3):1040–5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwane JA, Armstrong RB. Effect of training on skeletal muscle injury from downhill running in rats. J Appl Physiol. 1983;55:969–75.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz W, Bird JW. Degradation of myofibrillar proteins by cathepsins B and D. Biochem J. 1977;167(3):811–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sembrowich WL, Quintinskie JJ, Li G. Calcium uptake in mitochondria from different skeletal muscle types. J Appl Physiol. 1985;59(1):137–41.

    Article  CAS  PubMed  Google Scholar 

  • Song WK, Wang W, Foster RF, Biesler DA, Kaugman SJ. H36-α7 is a novel integrin α chain that is developmentally regulated during skeletal myogenesis. J Cell Biol. 1992;117:643–57.

    Article  CAS  PubMed  Google Scholar 

  • Statham HE, Duncan CJ, Smith JL. The effect of the ionophore A23187 on the ultrastructure and electrophysiological properties of frog skeletal muscle. Cell Tissue Res. 1976;173(2):193–209.

    Article  CAS  PubMed  Google Scholar 

  • Stauber WT. Eccentric action of muscles: physiology, injury and adaptation. Exerc Sport Sci Rev. 1989;17:157–85.

    CAS  PubMed  Google Scholar 

  • Steenbergen C, Hill ML, Jennings RB. Cytoskeletal damage during myocardial ischemia: changes in vinculin immunofluorescence staining during total in vitro ischemia in canine heart. Circ Res. 1987;60(4):478–86.

    Article  CAS  PubMed  Google Scholar 

  • Steer JH, Mastaglia FL, Papadimitriou JM, Van Bruggen I. Bupivacaine-induced muscle injury. The role of extracellular calcium. J Neurol Sci. 1986;73(2):205–17.

    Article  CAS  PubMed  Google Scholar 

  • Sunada Y, Campbell KP. Dystrophin-glycoprotein complex: molecular organisation and critical roles in skeletal muscle. Curr Opin Neurol. 1995;8:379–84.

    Article  CAS  PubMed  Google Scholar 

  • Talbot JA, Morgan DL. The effects of stretch parameters on eccentric exercise-induced damage to toad skeletal muscle. J Muscle Res Cell Motil. 1998;19(3):237–45.

    Article  CAS  PubMed  Google Scholar 

  • Tappel AL. Lipidoperoxidation damage to cell components. Fed Proc. 1973;32(8):1870–4.

    CAS  PubMed  Google Scholar 

  • Tidball JG. Force transmission across muscle membrane. J Biomech. 1991;24(Suppl 1):43–52.

    Article  PubMed  Google Scholar 

  • Tidball JG, Daniel TL. Myotendinous junctions of tonic muscle cells: structure and loading. Cell Tissue Res. 1986a;245:315–22.

    Article  CAS  PubMed  Google Scholar 

  • Tidball JG, Daniel TL. Elastic energy storage in rigored skeletal muscle cells under physiological loading conditions. Am J Physiol. 1986b;250:R54–64.

    Google Scholar 

  • Tiidus PM, Ianuzzo CD. Effects of intensity and duration of muscular exercise on delayed muscular soreness. Med Sci Sports Exerc. 1973;15:461–5.

    Google Scholar 

  • Turner JD, Rotwein P, Novakofski J, Bechtel PJ. Induction of mRNA for IGF-I and -II during growth hormone-stimulated muscle hypertrophy. Am J Phys. 1988;255(4 Pt 1):E513–7.

    CAS  Google Scholar 

  • Van Der Vusse GJ, Janssen GM, Coumans WA, Kuipers H, Does RJ, Hoor F. Effect of training and 15-, 25-, and 42-km contests on the skeletal muscle content of adenine and guanine nucleotides, creatine phosphate, and glycogen. Int J Sports Med. 1989;10 Suppl 3:S146–52.

    Article  PubMed  Google Scholar 

  • Van Kuijk FJ, Dratz EA. Detection of phospholipid peroxides in biological samples. Free Radic Biol Med. 1987;3(5):349–54.

    Article  PubMed  Google Scholar 

  • Vane J, Botting R. Inflammation and the mechanism of action of anti-inflammatory drugs. FASEB J. 1987;1(2):89–96.

    Article  CAS  PubMed  Google Scholar 

  • Vihko V, Salminen A, Rantamäki J. Acid hydrolase activity in red and white skeletal muscle of mice during a two-week period following exhausting exercise. Pflugers Arch. 1978;378(2):99–106.

    Article  CAS  PubMed  Google Scholar 

  • Voss P, Engels M, Strosova M, Grune T, Horakova L. Protective effect of antioxidants against sarcoplasmic reticulum (SR) oxidation by Fenton reaction, however without prevention of Ca-pump activity. Toxicol In Vitro. 2008;22(7):1726–33.

    Article  CAS  PubMed  Google Scholar 

  • Warren JS, Johnson KJ, Ward PA. PAF and immune complex-induced injury. J Lipid Mediat. 1990;2:S229–37.

    CAS  PubMed  Google Scholar 

  • Warren GL, Hulderman T, Jensen N. Physiological role of tumor necrosis factor α in traumatic muscle injury. FASEB J. 2002;16:1630–2.

    Article  CAS  PubMed  Google Scholar 

  • Woledge RC, Curtin NA, Homsher E. Energetic aspects of muscle contraction. Monogr Physiol Soc. 1985;41:1–357.

    CAS  PubMed  Google Scholar 

  • Wrogemann K, Pena SD. Mitochondrial calcium overload: a general mechanism for cell-necrosis in muscle diseases. Lancet. 1976;1(7961):672–4.

    Article  CAS  PubMed  Google Scholar 

  • Xu KY, Zweier JL, Becker LC. Hydroxyl radical inhibits sarcoplasmic reticulum Ca(2+)-ATPase function by direct attack on the ATP binding site. Circ Res. 1997a;80(1):76–81.

    Article  CAS  PubMed  Google Scholar 

  • Xu KY, Zweier JL, Becker LC. Oxygen-free radicals directly attack the ATP binding site of the cardiac Na+,K+-ATPase. Ann N Y Acad Sci. 1997b;834:680–3.

    Article  CAS  PubMed  Google Scholar 

  • Yao C, Ziober BL, Squillace RM, Kramer RH. α7 integrin mediates cell adhesion and migration on specific lamin isoforms. J Biol Chem. 1996;271:25598–603.

    Article  CAS  PubMed  Google Scholar 

  • Zerba E, Komorowski TE, Faulkner JA. Free radical injury to skeletal muscles of young, adult, and old mice. Am J Phys. 1990;258(3 Pt 1):C429–35.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Volpi, P., Bisciotti, G.N. (2019). Biology and Etiology of Muscle-Tendon Injuries. In: Muscle Injury in the Athlete. Springer, Cham. https://doi.org/10.1007/978-3-030-16158-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16158-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16157-6

  • Online ISBN: 978-3-030-16158-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics