Skip to main content

Mapping Motion-Magnified Videos to Operating Deflection Shape Vectors Using Particle Filters

  • Conference paper
  • First Online:
Rotating Machinery, Optical Methods & Scanning LDV Methods, Volume 6

Abstract

Phase-based motion estimation and magnification are targetless methods that have been used recently to perform experimental modal analysis (EMA) and operational modal analysis (OMA) on a variety of structures. Mapping the motion-magnified sequence of images into quantified operating deflection shape (ODS) vectors is currently being conducted via edge detection methods that require intensive human supervision and interference. Within this study, a new hybrid computer vision approach is introduced to extract the quantified ODS vectors from the motion-magnified sequence of images with minimal human supervision. The particle filter point tracking method is utilized to follow the desired feature points in the motion-magnified sequence of images. Moreover, the k-means clustering algorithm is employed as an unsupervised learning approach to performing the segmentation of the particles and assigning them to specific feature points in the in the motion-magnified sequence of images. This study shows that the cluster centers can be employed to estimate the ODS vectors, and the performance of the proposed methodology is evaluated experimentally on a lab-scale cantilever beam and validated via a finite element model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baqersad, J., Poozesh, P., Niezrecki, C., Avitabile, P.: Photogrammetry and optical methods in structural dynamics–a review. Mech. Syst. Signal Process. 86(Part B), 17 (2017)

    Article  Google Scholar 

  2. Feng, D., Feng, M.Q.: Computer vision for SHM of civil infrastructure: from dynamic response measurement to damage detection–a review. Eng. Struct. 156, 105–117 (2018)

    Article  Google Scholar 

  3. Sarrafi, A., Poozesh, P., Mao, Z.: A comparison of computer-vision-based structural dynamics characterizations. In: Model Validation and Uncertainty Quantification, Volume 3, pp. 295–301. Springer, Cham (2017)

    Chapter  Google Scholar 

  4. Castellini, P., Martarelli, M., Tomasini, E.P.: Laser Doppler Vibrometry: development of advanced solutions answering to technology’s needs. Mech. Syst. Signal Process. 20, 1265–1285 (2006)

    Article  Google Scholar 

  5. Cigada, A., Mazzoleni, P., Zappa, E.: Vibration monitoring of multiple bridge points by means of a unique vision-based measuring system. Exp. Mech. 54, 255–271 (2014)

    Article  Google Scholar 

  6. Mazzoleni, P., Zappa, E.: Vision-based estimation of vertical dynamic loading induced by jumping and bobbing crowds on civil structures. Mech. Syst. Signal Process. 33, 1–12 (2012)

    Article  Google Scholar 

  7. Li, J., Xie, X., Yang, G., Zhang, B., Siebert, T., Yang, L.: Whole-field thickness strain measurement using multiple camera digital image correlation system. Opt. Lasers Eng. 90, 19–25 (2017)

    Article  Google Scholar 

  8. Xie, X., Zeng, D., Li, J., Dahl, J., Zhao, Q., Yang, L.: Tensile test for polymer plastics with extreme large elongation using quad-camera digital image correlation. SAE Technical Paper 0148-7191 (2016)

    Google Scholar 

  9. Baqersad, J., Niezrecki, C., Avitabile, P.: Full-field dynamic strain prediction on a wind turbine using displacements of optical targets measured by stereophotogrammetry. Mech. Syst. Signal Process. 62, 284–295 (2015)

    Article  Google Scholar 

  10. Baqersad, J., Niezrecki, C., Avitabile, P.: Extracting full-field dynamic strain on a wind turbine rotor subjected to arbitrary excitations using 3D point tracking and a modal expansion technique. J. Sound Vib. 352, 16–29 (2015)

    Article  Google Scholar 

  11. Baker, S., Matthews, I.: Lucas-kanade 20 years on: a unifying framework. Int. J. Comput. Vis. 56, 221–255 (2004)

    Article  Google Scholar 

  12. Javh, J., Slavič, J., Boltežar, M.: The subpixel resolution of optical-flow-based modal analysis. Mech. Syst. Signal Process. 88, 89–99 (2017)

    Article  Google Scholar 

  13. Javh, J., Slavič, J., Boltežar, M.: High frequency modal identification on noisy high-speed camera data. Mech. Syst. Signal Process. 98, 344–351 (2018)

    Article  Google Scholar 

  14. Feng, D., Feng, M.Q.: Identification of structural stiffness and excitation forces in time domain using noncontact vision-based displacement measurement. J. Sound Vib. 406, 15–28 (2017)

    Article  Google Scholar 

  15. Feng, D., Feng, M.Q., Ozer, E., Fukuda, Y.: A vision-based sensor for noncontact structural displacement measurement. Sensors. 15, 16557–16575 (2015)

    Article  Google Scholar 

  16. Celik, O., Dong, C.-Z., Catbas, F.N.: A computer vision approach for the load time history estimation of lively individuals and crowds. Comput. Struct. 200, 32–52 (2018)

    Article  Google Scholar 

  17. Fleet, D., Weiss, Y.: Optical flow estimation. In: Handbook of Mathematical Models in Computer Vision, pp. 237–257. Springer, New York (2006)

    Chapter  Google Scholar 

  18. Fleet, D.J., Jepson, A.D.: Computation of component image velocity from local phase information. Int. J. Comput. Vis. 5, 77–104 (1990)

    Article  Google Scholar 

  19. Wadhwa, N., Rubinstein, M., Durand, F., Freeman, W.T.: Phase-based video motion processing. ACM Transactions on Graphics (TOG). 32, 80 (2013)

    Article  Google Scholar 

  20. Wadhwa, N., Rubinstein, M., Durand, F., Freeman, W.T.: Riesz pyramids for fast phase-based video magnification. US Patent 9,338,331, 2016

    Google Scholar 

  21. Chen, J.G., Wadhwa, N., Cha, Y.-J., Durand, F., Freeman, W.T., Buyukozturk, O.: Modal identification of simple structures with high-speed video using motion magnification. J. Sound Vib. 345, 58–71 (2015)

    Article  Google Scholar 

  22. Yang, Y., Dorn, C., Mancini, T., Talken, Z., Theiler, J., Kenyon, G., et al.: Reference-free detection of minute, non-visible, damage using full-field, high-resolution mode shapes output-only identified from digital videos of structures. Struct. Health Monit. 17(3), 1475921717704385 (2017)

    Google Scholar 

  23. Yang, Y., Dorn, C., Mancini, T., Talken, Z., Kenyon, G., Farrar, C., et al.: Blind identification of full-field vibration modes from video measurements with phase-based video motion magnification. Mech. Syst. Signal Process. 85, 567–590 (2017)

    Article  Google Scholar 

  24. Yang, Y., Dorn, C., Mancini, T., Talken, Z., Nagarajaiah, S., Kenyon, G., et al.: Blind identification of full-field vibration modes of output-only structures from uniformly-sampled, possibly temporally-aliased (sub-Nyquist), video measurements. J. Sound Vib. 390, 232–256 (2017)

    Article  Google Scholar 

  25. Chen, J.G., Wadhwa, N., Cha, Y.-J., Durand, F., Freeman, W.T., Buyukozturk, O.: Structural modal identification through high speed camera video: Motion magnification. In: Topics in Modal Analysis I, vol. 7, pp. 191–197. Springer International Publishing (2014)

    Google Scholar 

  26. Sarrafi, A., Poozesh, P., Niezrecki, C., Mao, Z.: Detection of natural frequency and mode shape correspondence using phase-based video magnification in large-scale structures. In: Niezrecki, C., Baqersad, J. (eds.) Structural Health Monitoring, Photogrammetry & DIC, vol. 6. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham (2019)

    Google Scholar 

  27. Sarrafi, A., Mao, Z., Niezrecki, C., Poozesh, P.: Vibration-based damage detection in wind turbine blades using Phase-based Motion Estimation and motion magnification. J. Sound Vib. 421, 300–318 (2018)

    Article  Google Scholar 

  28. Sarrafi, A., Poozesh, P., Niezrecki, C., Mao, Z.: Mode extraction on wind turbine blades via phase-based video motion estimation. In: SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring, pp. 101710E–101710E-12 (2017)

    Google Scholar 

  29. Shang, Z., Shen, Z.: Multi-point vibration measurement and mode magnification of civil structures using video-based motion processing. Autom. Constr. 93, 231–240 (2018)

    Article  Google Scholar 

  30. Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50, 174–188 (2002)

    Article  Google Scholar 

  31. Schulz, D., Burgard, W., Fox, D., Cremers, A.B.: Tracking multiple moving targets with a mobile robot using particle filters and statistical data association. In: Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on, 2001, pp. 1665–1670

    Google Scholar 

  32. Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recogn. Lett. 31, 651–666 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu Mao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sarrafi, A., Mao, Z. (2019). Mapping Motion-Magnified Videos to Operating Deflection Shape Vectors Using Particle Filters. In: Niezrecki, C., Baqersad, J., Di Maio, D. (eds) Rotating Machinery, Optical Methods & Scanning LDV Methods, Volume 6. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-030-12935-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12935-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12934-7

  • Online ISBN: 978-3-030-12935-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics